HEXANCHIDAE Sixgill Sharks

Total Page:16

File Type:pdf, Size:1020Kb

HEXANCHIDAE Sixgill Sharks HEXANCHIDAE HEXANCHIDAE cañabotas sixgill sharks Hexanchus nakamurai, cañabota ojigrande – Seis aberturas Hexanchus nakamurai, bigeye sixgill shark – Six gill slits; a branquiales altas; una sola aleta dorsal (Compagno 2002). single dorsal fin. SQUALIDAE SQUALIDAE galludos dogfish sharks Squalus cubensis, galludo cubano – Ambas aletas dorsales Squalus cubensis, Cuban dogfish – Both dorsal fins with a con una espina larga; margen posterior de las pectorales muy long strong spine; posterior margin of pectoral fins deeply cóncavo; aletas dorsales con el extremo negro (Bigelow & concave; dorsal fins with black tips. Schroeder 1948). Squalus mitsukurii, shortspine spurdog – Both dorsal fins Squalus mitsukurii, galludo espinilla – Ambas aletas dorsales with a long strong spine; posterior margin of pectoral fins con una espina; margen posterior de las aletas pectorales poco weakly concave; head wider. cóncavo; cabeza más ancha (Bigelow & Schroeder 1948). GINGLYMOSTOMATIDAE GINGLYMOSTOMATIDAE gatas nurse sharks Ginglymostoma cirratum, gata nodriza – Barbillas largas en el Ginglymostoma cirratum, nurse shark – Long barbels on short hocico corto y redondeado (Jordan & Evermann 1900). and rounded snout; fins rounded. SQUATINIDAE SQUATINIDAE tiburón angel angel sharks Squatina dumeril, tiburón angel – Cabeza y cuerpo muy Squatina dumeril, sand devil – Head and body strongly comprimido dorsoventralmente; aletas pectorales y pélvicas depressed; pectoral and pelvic fins enlarged and triangular. grandes y triangulares (Bigelow & Schroeder 1948). Apuntes / Notes: 12 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 58 (Suppl. 2): 1-207, October 2010 HEXANCHIDAE Hexanchus nakamurai SQUALIDAE Squalus cubensis Squalus mitsukurii GINGLYMOSTOMATIDAE Ginglymostoma cirratum SQUATINIDAE Squatina dumeril Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 58 (Suppl. 2): 1-207, October 2010 13.
Recommended publications
  • Sharks in Crisis: a Call to Action for the Mediterranean
    REPORT 2019 SHARKS IN CRISIS: A CALL TO ACTION FOR THE MEDITERRANEAN WWF Sharks in the Mediterranean 2019 | 1 fp SECTION 1 ACKNOWLEDGEMENTS Written and edited by WWF Mediterranean Marine Initiative / Evan Jeffries (www.swim2birds.co.uk), based on data contained in: Bartolí, A., Polti, S., Niedermüller, S.K. & García, R. 2018. Sharks in the Mediterranean: A review of the literature on the current state of scientific knowledge, conservation measures and management policies and instruments. Design by Catherine Perry (www.swim2birds.co.uk) Front cover photo: Blue shark (Prionace glauca) © Joost van Uffelen / WWF References and sources are available online at www.wwfmmi.org Published in July 2019 by WWF – World Wide Fund For Nature Any reproduction in full or in part must mention the title and credit the WWF Mediterranean Marine Initiative as the copyright owner. © Text 2019 WWF. All rights reserved. Our thanks go to the following people for their invaluable comments and contributions to this report: Fabrizio Serena, Monica Barone, Adi Barash (M.E.C.O.), Ioannis Giovos (iSea), Pamela Mason (SharkLab Malta), Ali Hood (Sharktrust), Matthieu Lapinksi (AILERONS association), Sandrine Polti, Alex Bartoli, Raul Garcia, Alessandro Buzzi, Giulia Prato, Jose Luis Garcia Varas, Ayse Oruc, Danijel Kanski, Antigoni Foutsi, Théa Jacob, Sofiane Mahjoub, Sarah Fagnani, Heike Zidowitz, Philipp Kanstinger, Andy Cornish and Marco Costantini. Special acknowledgements go to WWF-Spain for funding this report. KEY CONTACTS Giuseppe Di Carlo Director WWF Mediterranean Marine Initiative Email: [email protected] Simone Niedermueller Mediterranean Shark expert Email: [email protected] Stefania Campogianni Communications manager WWF Mediterranean Marine Initiative Email: [email protected] WWF is one of the world’s largest and most respected independent conservation organizations, with more than 5 million supporters and a global network active in over 100 countries.
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • On the Occurrence of the Arrowhead Dogfish, Deania Profundorum
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sapientia On the occurrence of the arrowhead dogfish, Deania profundorum (Chondrichthyes: Squalidae) off southern Portugal, with a missing gill slit by Rui COELHO & Karim ERZINI (1) R É S U M É. - Signalement d’un Deania pro f u n d o ru m ( C h o n d r i c h- thyes : Squalidae) capturé dans le sud du Portugal, avec absence d’une fente branchiale. Dans ce travail, nous rapportons la capture d’un chien de mer pointe de flèche, Deania pro f u n d o ru m (Smith & Radcliffe, 1912), dans les eaux portugaises méridionales. Le spécimen, une grande femelle mature de 87,5 cm de longueur totale, n’avait que quatre fentes branchiales du côté droit, sans présenter de cicatrice à l’en- droit où la cinquième fente aurait dû se situer. Des mesures compa- ratives entre les tailles des fentes branchiales gauches et droites amènent à conclure que la fente manquante est probablement la première. Key words. - Chondrichthyes - Squalidae - Deania pro f u n d o ru m - ANE - Southern Portugal - Gill slit deformation - Record. The arrowhead dogfish, Deania pro f u n d o ru m (Smith & Rad- cliffe, 1912), is a squalid shark characterized by a greatly elongated snout, that is spatulate dorsal-ventrally and thin-depressed laterally (Compagno, 1984). This is a widely distributed species found on Figure 1. - Map of the southwest coast of Portugal with location of the cap- both sides of the Atlantic, from the Western Sahara to South A f r i c a ture ( ) of the Deania pro f u n d o ru m specimen.
    [Show full text]
  • Identification Guide to the Deep-Sea Cartilaginous Fishes Of
    Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean FAO. 2015. Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean. FishFinder Programme, by Ebert, D.A. and Mostarda, E., Rome, Italy. Supervision: Merete Tandstad, Jessica Sanders (FAO, Rome) Technical editor: Edoardo Mostarda (FAO, Rome) Colour illustrations, cover and graphic design: Emanuela D’Antoni (FAO, Rome) This guide was prepared under the “FAO Deep–sea Fisheries Programme” thanks to a generous funding from the Government of Norway (Support to the implementation of the International Guidelines on the Management of Deep-Sea Fisheries in the High Seas project) for the purpose of assisting states, institutions, the fishing industry and RFMO/As in the implementation of FAO International Guidelines for the Management of Deep-sea Fisheries in the High Seas. It was developed in close collaboration with the FishFinder Programme of the Marine and Inland Fisheries Branch, Fisheries Department, Food and Agriculture Organization of the United Nations (FAO). The present guide covers the deep–sea Southeastern Atlantic Ocean and that portion of Southwestern Indian Ocean from 18°42’E to 30°00’E (FAO Fishing Area 47). It includes a selection of cartilaginous fish species of major, moderate and minor importance to fisheries as well as those of doubtful or potential use to fisheries. It also covers those little known species that may be of research, educational, and ecological importance. In this region, the deep–sea chondrichthyan fauna is currently represented by 50 shark, 20 batoid and 8 chimaera species. This guide includes full species accounts for 37 shark, 9 batoid and 4 chimaera species selected as being the more difficult to identify and/or commonly caught.
    [Show full text]
  • Coelho Phd Lantern S
    UNIVERSIDADEdo ALGARVE FaculdadedeCiênciasdoMaredo Ambiente Biology,populationdynamics,managementandconservation ofdeepwaterlanternsharks,Etmopterusspinax and Etmopteruspusillus (Chondrichthyes:Etmopteridae)insouthernPortugal(northeastAtlantic). (DoutoramentoemCiênciaseTecnologiasdasPescas,especialidadedeBiologiaPesqueira) (ThesisforthedegreeinDoctorofPhilosophyinFisheriesSciencesandTechnologies,specialtyinFisheriesBiology) RUIPEDROANDRADECOELHO Faro (2007) UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS DO MAR E DO AMBIENTE Biology, population dynamics, management and conservation of deep water lantern sharks, Etmopterus spinax and Etmopterus pusillus (Chondrichthyes: Etmopteridae) in southern Portugal (northeast Atlantic). (Doutoramento em Ciências e Tecnologias das Pescas, especialidade de Biologia Pesqueira) (Thesis for the degree in Doctor of Philosophy in Fisheries Sciences and Technologies, specialty in Fisheries Biology) RUI PEDRO ANDRADE COELHO Orientador / Supervisor: Prof. Doutor Karim Erzini Júri / Jury: - Prof. Doutor José Pedro Andrade, Professor Catedrático da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve; - Prof. Doutor Karim Erzini, Professor Associado com Agregação da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve; - Prof. Doutor Leonel Paulo Sul de Serrano Gordo, Professor Auxiliar com Agregação da Faculdade de Ciências, Universidade de Lisboa; - Prof. Doutor Manuel Seixas Afonso Dias, Professor Auxiliar da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve;
    [Show full text]
  • First Age and Growth Estimates in the Deep Water Shark, Etmopterus Spinax (Linnaeus, 1758), by Deep Coned Vertebral Analysis
    Mar Biol DOI 10.1007/s00227-007-0769-y RESEARCH ARTICLE First age and growth estimates in the deep water shark, Etmopterus Spinax (Linnaeus, 1758), by deep coned vertebral analysis Enrico Gennari · Umberto Scacco Received: 2 May 2007 / Accepted: 4 July 2007 © Springer-Verlag 2007 Abstract The velvet belly Etmopterus spinax (Linnaeus, by an alternation of translucent and opaque areas (Ride- 1758) is a deep water bottom-dwelling species very com- wood 1921; Urist 1961; Cailliet et al. 1983). Vertebral mon in the western Mediterranean sea. This species is a dimensions, as well as their degree of calciWcation, vary portion of the by-catch of the red shrimps and Norway lob- considerably within the elasmobranch group (La Marca sters otter trawl Wsheries on the meso and ipo-bathyal 1966; Applegate 1967; Moss 1977). For example, vertebrae grounds. A new, simple, rapid, and inexpensive vertebral of coastal and pelagic species are more calciWed than those preparation method was used on a total of 241 specimens, of bottom dwelling deep-water sharks (Cailliet et al. 1986; sampled throughout 2000. Post-cranial portions of vertebral Cailliet 1990). These diVerences are also reXected in varia- column were removed and vertebrae were prepared for age- tions of shape and in growth zone appearance, such as the ing readings. Band pair counts ranged from 0 to 9 in presence and quality of bands and/or rings. Due to these females, and from 0 to 7 in males. Von BertalanVy growth diVerences, a general protocol for the elasmobranch group equations estimated for both sexes suggested a higher is not really available because of the high variability of cal- W longevity for females (males: L1 = 394.3 mm k =0.19 ci cation degree among species (Applegate 1967; Cailliet W t0 = ¡1.41 L0 = 92.7 mm A99 = 18.24 years; females: L1 = et al.
    [Show full text]
  • Greeneye Spurdog, Squalus Chloroculus
    Published Date: 1 March 2019 Greeneye Spurdog, Squalus chloroculus Report Card Recovering assessment IUCN Red List IUCN Red List Australian Endemic to Australia Global Near Threatened Assessment Assessment Assessors Walker, T.I. Management measures are expected to rehabilitate depleted Report Card Remarks populations Summary The Greeneye Spurdog is a large, deepwater endemic dogfish from southeast Australia. The species has low biological productivity due to its high longevity and low reproductive output. Fishing was intense in some Source: CSIRO National Fish Collection. License: CC BY Attribution areas where it has caused severe population reductions. Fishing intensity has since reduced, and management measures such as a low combined Total Allowable Catch of all deepwater dogfish in southeast Australia and a network of refuges have stabilised the population. The management actions are expected to rehabilitate the population. Therefore, the Greeneye Spurdog is assessed as Near Threatened (IUCN) and Transitional Recovering (SAFS). Distribution The Greeneye Spurdog occurs off southern Australia from New South Wales (NSW) to the Great Australian Bight (Last and Stevens 2009). Stock structure and status The Greeneye Spurdog is a recently described species (Last et al. 2007). The relative abundance of populations has varied widely across its distribution range with localised depletion in some localities and comparatively high abundance in others (Walker and Gason 2007). Declines in the population indicated by both fishery-dependent monitoring and fishery-independent scientific surveys show that Greeneye Spurdog is vulnerable to rapid population decline where it is heavily fished. Fisheries The primary threat to the Greeneye Spurdog is fishing. Fishing is intensive on trawl grounds around southeast Australia, where there is evidence that this species has been severely depleted in some localities, but less so in others.
    [Show full text]
  • Tropical Eastern Pacific Records of the Prickly Shark, Echinorhinus Cookei
    Tropical Eastern Pacific Records of the Prickly Shark, Echinorhinus cookei (Chondrichthyes: Echinorhinidae)1 Douglas J. Long,2,3,5 John E. McCosker,3 Shmulik Blum,4 and Avi Klapfer4 Abstract: Most records of the prickly shark, Echinorhinus cookei Pietschmann, 1928, are from temperate and subtropical areas of the Pacific rim, with few rec- ords from the tropics. This seemingly disjunct distribution led some authors to consider E. cookei to have an antitropical distribution. Unreported museum spec- imens and underwater observations of E. cookei from Cocos Island, Costa Rica; the Galápagos Islands; and northern Peru confirm its occurrence in the trop ical eastern Pacific and, combined with other published records from the eastern Pacific, establish a continuous, panhemispheric eastern Pacific distribution. The genus Echinorhinus contains two spe- Mundy [1994] and Crow et al. [1996]); it has cies, the bramble shark, E. brucus (Bonnaterre, subsequently been collected or observed off 1788), from the Atlantic, Mediterranean, Japan (Taniuchi and Yanagisawa 1983, Ko- western Indian Ocean, and Australia, New bayashi 1986), Taiwan (Teng 1958), Palau Zealand, and Japan, and the prickly shark, (Saunders 1984), Tonga (Randall et al. 2003), E. cookei Pietschmann, 1928, known from New Caledonia (Fourmanoir 1979), New Hawai‘i and the western and eastern Pacific Zealand (Garrick 1960, Garrick and More- Ocean (Compagno et al. 2005, Last and Ste- land 1968), northeastern and southeastern vens 2009). The species are easily differenti- Australia (Last and Stevens 2009), and possi- ated by visual examination: E. brucus possesses bly the Gilbert Islands ( Whitley and Colefax few, relatively large, sparse denticles, some of 1938). In the northeastern Pacific it was first which are fused into plates, and E.
    [Show full text]
  • Centrophorus Squamosus
    Published Date: 1 March 2019 Leafscale Gulper Shark, Centrophorus squamosus Report Card Undefined Stock assessment IUCN Red List IUCN Red List Refer to Global Australian Global Vulnerable Assessment Assessment Assessment Assessors White, W.T. & Graham, K.J. Sensitive to fishing pressure with some catches in Australia but Report Card Remarks uncertainty over stock status Summary The Leafscale Gulper Shark is a deepwater dogfish with a global distribution. Its flesh and livers are marketed in varying quantities over much of the species' range. Most targeted fishing pressure is in the northeast Atlantic where it is an important component of deepwater fisheries and declines of Source: CSIRO National Fish Collection. License: CC BY Attribution >80% have been reported. Catches of the species off Australia are relatively low and do not represent a significant component of deepwater catches. However, significant declines in closely related species in southeast Australia led to management measures to promote recovery of deepwater dogfish populations, such as catch limits and a ban on trawling below 700 m. The Leafscale Gulper Shark has intrinsically very low productivity, evident in significant population declines where it is heavily fished. Therefore, the species is assessed as globally Vulnerable (IUCN) and in Australia, Undefined Stock (SAFS) because the information is uncertain and insufficient to assess the Australian fish stock status. Distribution The Leafscale Gulper Shark occurs sporadically in the eastern Atlantic (Iceland to South Africa), in the Indian Ocean (South Africa and the Aldabra Islands), and the western Pacific (Japan, Taiwan, Philippines, Indonesia, New Zealand and Australia); a recent capture off the Galapagos Island extended the range to the eastern central Pacific (Acuna-Marrero et al.
    [Show full text]
  • First Record of Swimming Speed of the Pacific Sleeper Shark Somniosus
    Journal of the Marine First record of swimming speed of the Pacific Biological Association of the United Kingdom sleeper shark Somniosus pacificus using a baited camera array cambridge.org/mbi Yoshihiro Fujiwara , Yasuyuki Matsumoto, Takumi Sato, Masaru Kawato and Shinji Tsuchida Original Article Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Yokosuka, Kanagawa 237-0061, Japan Cite this article: Fujiwara Y, Matsumoto Y, Sato T, Kawato M, Tsuchida S (2021). First record of swimming speed of the Pacific Abstract sleeper shark Somniosus pacificus using a baited camera array. Journal of the Marine The Pacific sleeper shark Somniosus pacificus is one of the largest predators in deep Suruga Biological Association of the United Kingdom Bay, Japan. A single individual of the sleeper shark (female, ∼300 cm in total length) was 101, 457–464. https://doi.org/10.1017/ observed with two baited camera systems deployed simultaneously on the deep seafloor in S0025315421000321 the bay. The first arrival was recorded 43 min after the deployment of camera #1 on 21 July 2016 at a depth of 609 m. The shark had several remarkable features, including the Received: 26 July 2020 Revised: 14 April 2021 snout tangled in a broken fishing line, two torn anteriormost left-gill septums, and a parasitic Accepted: 14 April 2021 copepod attached to each eye. The same individual appeared at camera #2, which was First published online: 18 May 2021 deployed at a depth of 603 m, ∼37 min after it disappeared from camera #1 view. Finally, the same shark returned to camera #1 ∼31 min after leaving camera #2.
    [Show full text]
  • SQUAL Dal 1 1983 FAO SPECIES IDENTIFICATION SHEETS FAMILY
    click for previous page SQUAL Dal 1 1983 FAO SPECIES IDENTIFICATION SHEETS FAMILY: SQUALIDAE FISHING AREA 51 (W. Indian Ocean) Dalatias licha (Bonnaterre, 1788) OTHER SCIENTIFIC NAMES STILL IN USE: Scymnorhinus licha (Bonnaterre, 1788) VERNACULAR NAMES: FAO : En - Kitefin shark Fr - Squale liche Sp - Carocho NATIONAL: DISTINCTIVE CHARACTERS: A small to moderately large shark of cylindrical body; dermal denticles of back low, sessile, with short, pointed cusps and longitudinal ridges; eyes moderately large; snout rounded and conical, about as long as mouth width; lips very thick and fringed with transverse pleats and grooves; teeth differing in upper and lower jaws, uppers much smaller,not bladelike, with slender, erect to semi-oblique, needlelike cusps and no cusplets; lowers very large, bladelike, with a single, very broad, high, erect or semi-erect cusp, no cusplets, a shallow to deep outer notch and serrations. No spines on dorsal fins; first dorsal closer to pectorals than to pelvics, its origin posterior to inner corners of pectorals; second dorsal slightly larger than first: pectoral fins considerably shorter than upper caudal margin; caudal fin with subterminal notch strongly developed, its lower lobe very weak or undeveloped. Caudal peduncle without dermal keels or precaudal pits. Colour: a uniform dark grey or chocolate brown, rear edges of fins light. underside of head fringed lips upper and lower dermal denticles teeth on symphyses DISTINGUISHING CHARACTERS OF SIMILAR SPECIES OCCURRING IN THE AREA: The combination of characters underlined above readily separates this shark from all other squalids known in the area. SIZE: Maximum: possibly to 192 cm, most adults between 100 and 150 cm.
    [Show full text]
  • A Quantitative Assessment of the Diet of the Blue Shark (Prionace Glauca) Off Nova Scotia, Canada
    J Northw Atl Fish Sci, Vol 32: 5763 A Quantitative Assessment of the Diet of the Blue Shark (Prionace glauca) off Nova Scotia, Canada Meaghen E McCord and Steven E Campana Marine Fish Division, Fisheries and Oceans Canada Bedford Institute of Oceanography, P O Box 1006, Dartmouth, Nova Scotia B2Y 4A2 Abstract A quantitative analysis of the stomach contents of blue sharks (Prionace glauca) caught in recreational shark fishing tournaments in Nova Scotia, Canada tested for dietary differences based on sex, maturity and tournament location across 3 sampling years (19992001) Of 706 sharks examined, 303 stomachs (43%) were everted, 131 (19%) were empty, 231 (33%) contained food items and 41 stomachs (5%) were not examined Pelagic teleosts and groundfish were found in 19% and 14% of examined blue shark stomachs, respectively Stomach fullness did not differ between sexes or maturity category Differences existed between the diet of immature and mature males as well as between immature females and immature males, suggesting sexual segregation during feeding The frequency of occurrence of pelagic teleosts and groundfish changed across sampling years Blue sharks off Nova Scotia appear to be opportunistic predators, consuming a wide range of fish species, mammalian tissues and inanimate objects Keywords: dietary differences, groundfish, Nova Scotia, pelagic teleosts, Prionace glauca, recreational shark fishery, stomach contents Introduction reel The average time interval between shark capture and examination was 4 to 5 hours Upon return to the Blue
    [Show full text]