Functional Consequences of Complete Gsk-3 Ablation in Mouse Embryonic Fibroblasts

Total Page:16

File Type:pdf, Size:1020Kb

Functional Consequences of Complete Gsk-3 Ablation in Mouse Embryonic Fibroblasts FUNCTIONAL CONSEQUENCES OF COMPLETE GSK-3 ABLATION IN MOUSE EMBRYONIC FIBROBLASTS By Ioana M Miron A thesis submitted in conformity with the requirements for the degree of Master of Science, Graduate Department of Medical Biophysics in the University of Toronto ©Copyright by Ioana M Miron 2008 Abstract Functional consequences of complete GSK-3 ablation in mouse embryonic fibroblasts Master of Science, 2008. Ioana M. Miron, Department of Medical Biophysics, University of Toronto Glycogen Synthase Kinase-3 (GSK-3) is a highly conserved serine/threonine kinase comprised of two mammalian homologues, GSK-3α and β, encoded by independent genes. This thesis reports the characterization of GSK-3-null primary mouse embryonic fibroblasts (MEFs) generated by gene targeting to gain insight into the physiological functions of this protein kinase. Combined inactivation of both alleles of GSK-3α and GSK-β led to elevated sensitivity to TNFα-induced apoptosis, altered organization of focal adhesion complexes, defects in cell spreading on fibronectin, decreased cell growth associated with altered cell cycle progression through the G2/M phase and increased spontaneous apoptosis. Future work will focus on unraveling the molecular mechanisms responsible for these effects and identifying the common and distinct cellular roles for GSK-3α and β, and specific variants of these isoforms. ii Table of Contents Abstract ____________________________________________________________________ ii Table of Contents ___________________________________________________________ iii List of Tables_______________________________________________________________ vi List of Figures ______________________________________________________________ vii Abbreviations _____________________________________________________________ viii Chapter 1: Introduction_______________________________________________________ 1 1.1 Therapeutic Potential of Protein Kinases ______________________________________ 2 1.2 Glycogen Synthase Kinase-3 Isoforms________________________________________ 2 1.3 GSK-3 Substrates ________________________________________________________ 4 1.4 Regulation of GSK-3 _____________________________________________________ 6 1.5 Role of GSK-3 in Cellular Functions _________________________________________ 9 1.5.1 Cell Cycle Progression ________________________________________________ 9 1.5.2 Intrinsic and Extrinsic Apoptosis________________________________________ 11 1.5.3 Cellular Architecture and Motility_______________________________________ 14 1.5.4 Mitogen-Activated Protein Kinase (MAPK) Signaling_______________________ 16 1.6 GSK-3 and Disease______________________________________________________ 17 1.8 Rationale and Thesis Objective ____________________________________________ 19 Chapter 2: Materials and Methods_____________________________________________ 21 2.1 Cell Culture____________________________________________________________ 22 2.2 Adenovirus Production ___________________________________________________ 22 2.3 Generation of Embryos Harbouring Conditional Alleles of GSK-3α and β __________ 22 2.4 Isolation of Embryonic Fibroblasts from GSK-3 αFL/FL/βFL/FL Mice ________________ 23 2.5 Preparation of Lysates and Cytosolic β-Catenin Isolation ________________________ 24 2.6 TCF-Reporter Assay_____________________________________________________ 24 2.7 Immunoblotting ________________________________________________________ 25 2.8 Immunofluorescence_____________________________________________________ 25 2.9 Microarray Analysis of GSK-3 Knockout MEFs _______________________________ 26 2.10 Alamar Blue Proliferation Assay __________________________________________ 27 2.11 Senescence Associated β-Galactosidase Staining _____________________________ 27 2.12 Cell Cycle Analysis and BrdU Incorporation_________________________________ 27 2.13 Annexin V Assay ______________________________________________________ 28 iii 2.14 Time-Lapse Microscopy_________________________________________________ 28 2.15 Adhesion Assay _______________________________________________________ 29 2.16 Cell Spreading Assay ___________________________________________________ 29 2.17 Cell Migration Assay ___________________________________________________ 30 2.18 Rho Activity Assay_____________________________________________________ 30 2.19 MAPK Activation______________________________________________________ 31 2.20 Statistical Analysis _____________________________________________________ 31 Chapter 3: Results __________________________________________________________ 32 3.1 Generation of GSK-3 Conditional Mouse Embryonic Fibroblasts__________________ 32 3.2 Microarray Analysis _____________________________________________________ 36 3.3 Effect of GSK-3 Deficiency on Cell Proliferation ______________________________ 36 3.4 Cell Cycle Regulation in GSK-3 Depleted Cells _______________________________ 36 3.5 Effect of GSK-3 Depletion on Apoptosis_____________________________________ 38 3.6 TNF sensitivity in GSK-3 Deficient Cells ____________________________________ 40 3.7 Cellular Morphology and Focal Adhesion Formation in the Absence of GSK-3 ______ 43 3.8 The Role of GSK-3 in Cell Adhesion, Spreading and Migration___________________ 47 3.9 Effect of Loss of GSK-3 on MAPK signaling _________________________________ 51 Chapter 4: Discussion and Future Directions ____________________________________ 54 4.1 Summary______________________________________________________________ 55 4.2 Proliferation ___________________________________________________________ 56 4.3 Cell Cycle Progression ___________________________________________________ 57 4.4 Stimuli-Induced Apoptosis________________________________________________ 58 4.5 Actin Organization and Focal Adhesion assembly______________________________ 58 4.6 MAPK Signaling _______________________________________________________ 61 4.7 Adipocyte Differentiation_________________________________________________ 62 4.8 GSK-3 Isoforms and Mutants______________________________________________ 62 References _________________________________________________________________ 65 Appendix: Identification of Novel GSK-3 Substrates ______________________________ 82 A.1 Introduction ___________________________________________________________ 83 A.2 Materials and Methods __________________________________________________ 85 iv A.2.1 Immunoprecipitation of BCLAF1 ______________________________________ 85 A.2.2 In-gel Enzymatic Cleavage and Extraction of Peptides ______________________ 86 A.2.3 Quantification of BCLAF1 Phosphorylation ________________________________ 86 A.3 Results _______________________________________________________________ 87 A.4 Discussion ____________________________________________________________ 90 A.4 References ____________________________________________________________ 91 v List of Tables Table 1.1: Putative GSK-3 substrates_______________________________________________5 Table 4.1 List of GSK-3α and β variants ___________________________________________64 Table A.1: Predicted GSK-3 phosphorylation sites on BCLAF1 identified using NetworKin.__84 vi List of Figures Figure 1.1: A schematic representation of the mammalian GSK-3 isoforms, α and β. ________ 3 Figure 1.2: Schematic representation of the Wnt signaling pathway. _____________________ 8 Figure 3.1: Treatment of GSK-3 α(FL/FL) / β(FL/FL) MEFs with AdCre results in compound knockouts of GSK-3α and β, stabilization of β-catenin and β-catenin/TCF-transactivation activity. ____________________________________________________________________ 35 Figure 3.2: Functional analysis of microarray data. __________________________________ 37 Figure 3.3: GSK-3 is critical for primary MEF proliferation. __________________________ 37 Figure 3.4: Role of GSK-3 in cell cycle regulation in MEFs. __________________________ 39 Figure 3.5: GSK-3 deletion induces spontaneous apoptosis. ___________________________ 41 Figure 3.6: Enhanced TNFα-induced apoptosis in GSK-3 deficient MEFs. _______________ 42 Figure 3.7: Morphology of GSK-3 DKO MEFs in regular culture conditions. _____________ 44 Figure 3.8: F-actin distribution and focal complex assembly in GSK-3-null cells in normal culture conditions. ___________________________________________________________ 45 Figure 3.9: Normal Rho activity in GSK-3 DKO MEFs after LPA stimulation. ____________ 46 Figure 3.10: Deletion of GSK-3 does not cause defective cell adhesion. _________________ 48 Figure 3.11: GSK-3-null MEFs exhibit abnormal spreading on fibronectin._______________ 50 Figure 3.12: Migration of MEFs is not impeded by lack of GSK-3. _____________________ 52 Figure 3.13: Effects of loss of GSK-3 expression on ERK, JNK/SAPK and p38 MAPK activities.___________________________________________________________________ 53 Figure A.1: BCLAF1 phosphorylation sites identified using mass spectrometry.___________ 88 Figure A.2: Quantitative measurement of GSK-3-dependent phosphorylation of BCLAF1. __ 89 vii Abbreviations 7-AAD 7-amino-actinomycin D AdCre adenovirus encoding cre recombinase AdLacZ adenovirus expressing LacZ ADD1 adipocyte determination- and differentiation-dependent factor 1 AIP Aurora-A-interacting protein Ala alanine ANOVA analysis of variance APC adenomatous polyposis coli Apo apoptosis-inducing ligand ATP adenosine triphosphate BCLAF1 Bcl-2-associated transcription factor 1 BCL-2 B-cell lymphoma-2 BCL-3 B-cell lymphoma 3-encoded protein BrdU 5-bromo-2-deoxyuridine BSA bovine serum albumin BUB1 budding uninhibited by benzimidazole
Recommended publications
  • Aurora Kinase a in Gastrointestinal Cancers: Time to Target Ahmed Katsha1, Abbes Belkhiri1, Laura Goff3 and Wael El-Rifai1,2,4*
    Katsha et al. Molecular Cancer (2015) 14:106 DOI 10.1186/s12943-015-0375-4 REVIEW Open Access Aurora kinase A in gastrointestinal cancers: time to target Ahmed Katsha1, Abbes Belkhiri1, Laura Goff3 and Wael El-Rifai1,2,4* Abstract Gastrointestinal (GI) cancers are a major cause of cancer-related deaths. During the last two decades, several studies have shown amplification and overexpression of Aurora kinase A (AURKA) in several GI malignancies. These studies demonstrated that AURKA not only plays a role in regulating cell cycle and mitosis, but also regulates a number of key oncogenic signaling pathways. Although AURKA inhibitors have moved to phase III clinical trials in lymphomas, there has been slower progress in GI cancers and solid tumors. Ongoing clinical trials testing AURKA inhibitors as a single agent or in combination with conventional chemotherapies are expected to provide important clinical information for targeting AURKA in GI cancers. It is, therefore, imperative to consider investigations of molecular determinants of response and resistance to this class of inhibitors. This will improve evaluation of the efficacy of these drugs and establish biomarker based strategies for enrollment into clinical trials, which hold the future direction for personalized cancer therapy. In this review, we will discuss the available data on AURKA in GI cancers. We will also summarize the major AURKA inhibitors that have been developed and tested in pre-clinical and clinical settings. Keywords: Aurora kinases, Therapy, AURKA inhibitors, MNL8237, Alisertib, Gastrointestinal, Cancer, Signaling pathways Introduction stage [9-11]. Furthermore, AURKA is critical for Mitotic kinases are the main proteins that coordinate ac- bipolar-spindle assembly where it interacts with Ran- curate mitotic processing [1].
    [Show full text]
  • RASSF1A Interacts with and Activates the Mitotic Kinase Aurora-A
    Oncogene (2008) 27, 6175–6186 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $32.00 www.nature.com/onc ORIGINAL ARTICLE RASSF1A interacts with and activates the mitotic kinase Aurora-A L Liu1, C Guo1, R Dammann2, S Tommasi1 and GP Pfeifer1 1Division of Biology, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, USA and 2Institute of Genetics, University of Giessen, Giessen, Germany The RAS association domain family 1A (RASSF1A) gene tumorigenesis and carcinogen-induced tumorigenesis is located at chromosome 3p21.3 within a specific area of (Tommasi et al., 2005; van der Weyden et al., 2005), common heterozygous and homozygous deletions. RASS- supporting the notion that RASSF1A is a bona fide F1A frequently undergoes promoter methylation-asso- tumor suppressor. However, it is not fully understood ciated inactivation in human cancers. Rassf1aÀ/À mice how RASSF1A is involved in tumor suppression. are prone to both spontaneous and carcinogen-induced The biochemical function of the RASSF1A protein is tumorigenesis, supporting the notion that RASSF1A is a largely unknown. The homology of RASSF1A with the tumor suppressor. However, it is not fully understood how mammalian Ras effector novel Ras effector (NORE)1 RASSF1A is involved in tumor suppression pathways. suggests that the RASSF1A gene product may function Here we show that overexpression of RASSF1A inhibits in signal transduction pathways involving Ras-like centrosome separation. RASSF1A interacts with Aurora-A, proteins. However, recent data indicate that RASSF1A a mitotic kinase. Surprisingly, knockdown of RASS- itself binds to RAS only weakly and that binding to F1A by siRNA led to reduced activation of Aurora-A, RAS may require heterodimerization of RASSF1A and whereas overexpression of RASSF1A resulted in in- NORE1 (Ortiz-Vega et al., 2002).
    [Show full text]
  • Mtor REGULATES AURORA a VIA ENHANCING PROTEIN STABILITY
    mTOR REGULATES AURORA A VIA ENHANCING PROTEIN STABILITY Li Fan Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Biochemistry and Molecular Biology, Indiana University December 2013 Accepted by the Graduate Faculty, of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Lawrence A. Quilliam, Ph.D., Chair Doctoral Committee Simon J. Atkinson, Ph.D. Mark G. Goebl, Ph.D. October 22, 2013 Maureen A. Harrington, Ph.D. Ronald C. Wek, Ph.D. ii © 2013 Li Fan iii DEDICATION I dedicate this thesis to my family: to my parents, Xiu Zhu Fan and Shu Qin Yang, who have been loving, supporting, and encouraging me from the beginning of my life; to my husband Fei Huang, who provided unconditional support and encouragement through these years; to my son, David Yan Huang, who has made my life highly enjoyable and meaningful. iv ACKNOWLEDGMENTS I sincerely thank my mentor Dr. Lawrence Quilliam for his guidance, motivation, support, and encouragement during my dissertation work. His passion for science and the scientific and organizational skills I have learned from Dr. Quilliam made it possible for me to achieve this accomplishment. Many thanks to Drs. Ron Wek, Mark Goebl, Maureen Harrington, and Simon Atkinson for serving on my committee and providing constructive suggestions and technical advice during my Ph.D. program. I have had a pleasurable experience working with all the people in our laboratory. Thanks Drs. Justin Babcock and Sirisha Asuri, and Mr.
    [Show full text]
  • Covalent Aurora a Regulation by the Metabolic Integrator Coenzyme A
    bioRxiv preprint doi: https://doi.org/10.1101/469585; this version posted November 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Covalent Aurora A regulation by the metabolic integrator coenzyme A Yugo Tsuchiya1#, Dominic P Byrne2#, Selena G Burgess3#, Jenny Bormann4, Jovana Bakovic1, Yueyan Huang1, Alexander Zhyvoloup1, Sew Peak-Chew5, Trang Tran6, Fiona Bellany6, Alethea Tabor6, AW Edith Chan7, Lalitha Guruprasad8, Oleg Garifulin9, Valeriy Filonenko9, Samantha Ferries10, Claire E Eyers10, John Carroll4^, Mark Skehel5, Richard Bayliss3*, Patrick A Eyers2* and Ivan Gout1,9* 1Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK 2Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK 3School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK 4Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK 5MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK 6Department of Chemistry, University College London, London WC1E 6BT, UK 7Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK 8School of Chemistry, University of Hyderabad, Hyderabad 500 046, India 9Department of Cell
    [Show full text]
  • Kinase-Targeted Cancer Therapies: Progress, Challenges and Future Directions Khushwant S
    Bhullar et al. Molecular Cancer (2018) 17:48 https://doi.org/10.1186/s12943-018-0804-2 REVIEW Open Access Kinase-targeted cancer therapies: progress, challenges and future directions Khushwant S. Bhullar1, Naiara Orrego Lagarón2, Eileen M. McGowan3, Indu Parmar4, Amitabh Jha5, Basil P. Hubbard1 and H. P. Vasantha Rupasinghe6,7* Abstract The human genome encodes 538 protein kinases that transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues. Many of these kinases are associated with human cancer initiation and progression. The recent development of small-molecule kinase inhibitors for the treatment of diverse types of cancer has proven successful in clinical therapy. Significantly, protein kinases are the second most targeted group of drug targets, after the G-protein- coupled receptors. Since the development of the first protein kinase inhibitor, in the early 1980s, 37 kinase inhibitors have received FDA approval for treatment of malignancies such as breast and lung cancer. Furthermore, about 150 kinase-targeted drugs are in clinical phase trials, and many kinase-specific inhibitors are in the preclinical stage of drug development. Nevertheless, many factors confound the clinical efficacy of these molecules. Specific tumor genetics, tumor microenvironment, drug resistance, and pharmacogenomics determine how useful a compound will be in the treatment of a given cancer. This review provides an overview of kinase-targeted drug discovery and development in relation to oncology and highlights the challenges and future potential for kinase-targeted cancer therapies. Keywords: Kinases, Kinase inhibition, Small-molecule drugs, Cancer, Oncology Background Recent advances in our understanding of the fundamen- Kinases are enzymes that transfer a phosphate group to a tal molecular mechanisms underlying cancer cell signaling protein while phosphatases remove a phosphate group have elucidated a crucial role for kinases in the carcino- from protein.
    [Show full text]
  • Cell Cycle Genes 243831 at MAPK6
    Identificación de vulnerabilidades en tumores sólidos: ¿aportes hacia una medicina personalizada? Alberto Ocana Albacete University Hospital Salamanca May 19th, 2016 WHAT IS PERSONALIZED MEDICINE? Molecular alteration------------targeted agents---------companion diagnostic Drugs with companion diagnostic Ocana A et al, Oncotarget 2016 Meta-analyses companion vs non-companion diagnostics PFS OS Meta-analyses of toxicities • Methods to identify oncogenic and non-oncogenic vulnerabilities • How to evaluate novel agents against them Our personal experience Synthetic Lethality Interactions Ocana A and Pandiella A, Personalized therapies in the cancr omics era. Mol Cancer 2010 Summary Mutation and copy number analyses Phospho-kinase profiling Transcriptomic analyses Synthetic Lethality Interactions- Evaluation of new drugs “Academic iniciatives: Drug developer” software as a tool Mutation and copy number analyses No very useful if not linked with a functional evaluation in a specific genetic context A somatic cancer driver event may depend on the constellation of polymorphisms already present in an individual’s germline . (Germline variants single nucleotide polymorphisms, SNPs). But it can be useful for: Clonal evolution of tumors Heterogeneity of tumors Monitor response to treatments and identify mechanism of resistance Single cell sequencing Circulating tumor DNA As a part of a global study; pathway level alterations Example: Evaluation of mutations in ER using circulating DNA in patients treated with palbociclib + hormonotherapy Phospho-kinase
    [Show full text]
  • Figure S1. Reverse Transcription‑Quantitative PCR Analysis of ETV5 Mrna Expression Levels in Parental and ETV5 Stable Transfectants
    Figure S1. Reverse transcription‑quantitative PCR analysis of ETV5 mRNA expression levels in parental and ETV5 stable transfectants. (A) Hec1a and Hec1a‑ETV5 EC cell lines; (B) Ishikawa and Ishikawa‑ETV5 EC cell lines. **P<0.005, unpaired Student's t‑test. EC, endometrial cancer; ETV5, ETS variant transcription factor 5. Figure S2. Survival analysis of sample clusters 1‑4. Kaplan Meier graphs for (A) recurrence‑free and (B) overall survival. Survival curves were constructed using the Kaplan‑Meier method, and differences between sample cluster curves were analyzed by log‑rank test. Figure S3. ROC analysis of hub genes. For each gene, ROC curve (left) and mRNA expression levels (right) in control (n=35) and tumor (n=545) samples from The Cancer Genome Atlas Uterine Corpus Endometrioid Cancer cohort are shown. mRNA levels are expressed as Log2(x+1), where ‘x’ is the RSEM normalized expression value. ROC, receiver operating characteristic. Table SI. Clinicopathological characteristics of the GSE17025 dataset. Characteristic n % Atrophic endometrium 12 (postmenopausal) (Control group) Tumor stage I 91 100 Histology Endometrioid adenocarcinoma 79 86.81 Papillary serous 12 13.19 Histological grade Grade 1 30 32.97 Grade 2 36 39.56 Grade 3 25 27.47 Myometrial invasiona Superficial (<50%) 67 74.44 Deep (>50%) 23 25.56 aMyometrial invasion information was available for 90 of 91 tumor samples. Table SII. Clinicopathological characteristics of The Cancer Genome Atlas Uterine Corpus Endometrioid Cancer dataset. Characteristic n % Solid tissue normal 16 Tumor samples Stagea I 226 68.278 II 19 5.740 III 70 21.148 IV 16 4.834 Histology Endometrioid 271 81.381 Mixed 10 3.003 Serous 52 15.616 Histological grade Grade 1 78 23.423 Grade 2 91 27.327 Grade 3 164 49.249 Molecular subtypeb POLE 17 7.328 MSI 65 28.017 CN Low 90 38.793 CN High 60 25.862 CN, copy number; MSI, microsatellite instability; POLE, DNA polymerase ε.
    [Show full text]
  • Proteomic Characterization of the Angiogenesis Inhibitor SU6668 Reveals Multiple Impacts on Cellular Kinase Signaling
    Research Article Proteomic Characterization of the Angiogenesis Inhibitor SU6668 Reveals Multiple Impacts on Cellular Kinase Signaling Klaus Godl,1 Oliver J. Gruss,2 Jan Eickhoff,1 Josef Wissing,1,3 Stephanie Blencke,1 Martina Weber,1 Heidrun Degen,1 Dirk Brehmer,1 La´szlo´O˝rfi,4 Zolta´n Horva´th,4 Gyo¨rgy Ke´ri,4 Stefan Mu¨ller,1 Matt Cotten,1 Axel Ullrich,5,6 and Henrik Daub1 1Axxima Pharmaceuticals AG, Munich, Germany; 2ZMBH, Heidelberg, Germany; 3Department of Cell Biology, GBF, Braunschweig, Germany; 4Vichem Chemie Ltd., Budapest, Hungary; 5Department of Molecular Biology, Max Planck Institute of Biochemistry, Martinsried, Germany; and 6Centre for Molecular Medicine, Agency for Science, Technology, and Research, Proteos, Singapore Abstract activation of its cognate receptor on endothelial cells is particularly important for angiogenesis early in tumor develop- Knowledge about molecular drug action is critical for the h development of protein kinase inhibitors for cancer therapy. ment, whereas PDGFR signaling in pericytes plays a critical role Here, we establish a chemical proteomic approach to profile for the maintenance of established blood vessels in late-stage the anticancer drug SU6668, which was originally designed as tumors (3). Moreover, fibroblast growth factor receptor (FGFR)– a selective inhibitor of receptor tyrosine kinases involved in mediated VEGF biosynthesis in endothelial cells has been tumor vascularization. By employing immobilized SU6668 for reported as an autocrine mechanism that further augments the affinity capture of cellular drug targets in combination angiogenesis (4). with mass spectrometry, we identified previously unknown The knowledge about RTK function in the process of tumor vascularization has provided rationales for the development of targets of SU6668 including Aurora kinases and TANK-binding antiangiogenic small molecule drugs such as the indolinone kinase 1.
    [Show full text]
  • Jadomycin B, an Aurora-B Kinase Inhibitor Discovered Through Virtual Screening
    2386 Jadomycin B, an Aurora-B kinase inhibitor discovered through virtual screening Da-Hua Fu,1 Wei Jiang,1 Jian-Ting Zheng,2 Jadomycin B is a new Aurora-B kinase inhibitor worthy of Gui-Yu Zhao,1 Yan Li,1 Hong Yi,1 Zhuo-Rong Li,1 further investigation. [Mol Cancer Ther 2008;7(8):2386–93] Jian-Dong Jiang,1 Ke-Qian Yang,2 Yanchang Wang,3 and Shu-Yi Si1 Introduction In mammals, there are three Aurora kinases, Aurora-A, B, 1Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, and 2Institute and C, which display >60% sequence identity (1). Although of Microbiology, Chinese Academy of Sciences, Beijing, China; the catalytic domains of the three kinases are highly and 3Department of Biomedical Sciences, College of Medicine, conserved, they show distinct subcellular localization and Florida State University, Tallahassee, Florida biological function (2, 3). Aurora-A, which is required for centrosome maturation and separation, localizes to centro- somes from early S phase to late M phase (4). Aurora-B is a Abstract component of chromosomal passenger complex, whose Aurora kinases have emerged as promising targets for function in mitosis has been extensively studied. In cancer therapy because of their critical role in mitosis. addition to Aurora-B, the chromosomal passenger complex These kinases are well-conserved in all eukaryotes, and contains Survivin, Borealin, and inner centromere protein IPL1 gene encodes the single Aurora kinase in budding (5–7). The chromosomal passenger complex associates yeast. In a virtual screening attempt, 22 compounds were with centromeric regions of chromosomes in the early identified from nearly 15,000 microbial natural products as stages of mitosis, but it translocates to microtubules after potential small-molecular inhibitors of human Aurora-B the onset of anaphase.
    [Show full text]
  • Necroptosis Molecular Mechanisms: Recent findings Regarding Novel Necroptosis Regulators Jinho Seo1,Youngwoonam2, Seongmi Kim2,Doo-Byoungoh1,3 and Jaewhan Song 2
    Seo et al. Experimental & Molecular Medicine (2021) 53:1007–1017 https://doi.org/10.1038/s12276-021-00634-7 Experimental & Molecular Medicine REVIEW ARTICLE Open Access Necroptosis molecular mechanisms: Recent findings regarding novel necroptosis regulators Jinho Seo1,YoungWooNam2, Seongmi Kim2,Doo-ByoungOh1,3 and Jaewhan Song 2 Abstract Necroptosis is a form of programmed necrosis that is mediated by various cytokines and pattern recognition receptors (PRRs). Cells dying by necroptosis show necrotic phenotypes, including swelling and membrane rupture, and release damage-associated molecular patterns (DAMPs), inflammatory cytokines, and chemokines, thereby mediating extreme inflammatory responses. Studies on gene knockout or necroptosis-specific inhibitor treatment in animal models have provided extensive evidence regarding the important roles of necroptosis in inflammatory diseases. The necroptosis signaling pathway is primarily modulated by activation of receptor-interacting protein kinase 3 (RIPK3), which phosphorylates mixed-lineage kinase domain-like protein (MLKL), mediating MLKL oligomerization. In the necroptosis process, these proteins are fine-tuned by posttranslational regulation via phosphorylation, ubiquitination, glycosylation, and protein–protein interactions. Herein, we review recent findings on the molecular regulatory mechanisms of necroptosis. Introduction stimuli, such as physical, mechanical, and chemical stres- 1 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Cell death is a terminal physiological event and is ses, prompt necrosis, which is representative of an ACD . intricately related to the maintenance of homeostasis in Cells dying by necrosis, which is not regulated by signaling multicellular organisms. Cell death can be classified into pathways, exhibit swelling, membrane rupture, and two modes: regulated cell death (RCD) and accidental cell secretion of cellular contents1. Apoptosis has been regar- death (ACD).
    [Show full text]
  • Dual PDK1/Aurora Kinase a Inhibitors Reduce Pancreatic Cancer Cell Proliferation and Colony Formation
    cancers Article Dual PDK1/Aurora Kinase A Inhibitors Reduce Pancreatic Cancer Cell Proliferation and Colony Formation 1, 1, 2 3 3 Ilaria Casari y, Alice Domenichini y, Simona Sestito , Emily Capone , Gianluca Sala , Simona Rapposelli 2 and Marco Falasca 1,* 1 Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia; [email protected] (I.C.); [email protected] (A.D.) 2 Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy; [email protected] (S.S.); [email protected] (S.R.) 3 Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University “G. d’Annunzio” di Chieti-Pescara, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy; [email protected] (E.C.); [email protected] (G.S.) * Correspondence: [email protected]; Tel.: +61-8-92669712 These authors contributed equally to this work. y Received: 8 October 2019; Accepted: 28 October 2019; Published: 31 October 2019 Abstract: Deregulation of different intracellular signaling pathways is a common feature in cancer. Numerous studies indicate that persistent activation of the phosphoinositide 3-kinase (PI3K) pathway is often observed in cancer cells. 3-phosphoinositide dependent protein kinase-1 (PDK1), a transducer protein that functions downstream of PI3K, is responsible for the regulation of cell proliferation and migration and it also has been found to play a key role in different cancers, pancreatic and breast cancer amongst others. As PI3K is being described to be aberrantly expressed in several cancer types, designing inhibitors targeting various downstream molecules of PI3K has been the focus of anticancer agent development for a long time.
    [Show full text]
  • Proteomic Characterization of the Angiogenesis Inhibitor SU6668 Reveals Multiple Impacts on Cellular Kinase Signaling
    Research Article Proteomic Characterization of the Angiogenesis Inhibitor SU6668 Reveals Multiple Impacts on Cellular Kinase Signaling Klaus Godl,1 Oliver J. Gruss,2 Jan Eickhoff,1 Josef Wissing,1,3 Stephanie Blencke,1 Martina Weber,1 Heidrun Degen,1 Dirk Brehmer,1 La´szlo´O˝rfi,4 Zolta´n Horva´th,4 Gyo¨rgy Ke´ri,4 Stefan Mu¨ller,1 Matt Cotten,1 Axel Ullrich,5,6 and Henrik Daub1 1Axxima Pharmaceuticals AG, Munich, Germany; 2ZMBH, Heidelberg, Germany; 3Department of Cell Biology, GBF, Braunschweig, Germany; 4Vichem Chemie Ltd., Budapest, Hungary; 5Department of Molecular Biology, Max Planck Institute of Biochemistry, Martinsried, Germany; and 6Centre for Molecular Medicine, Agency for Science, Technology, and Research, Proteos, Singapore Abstract activation of its cognate receptor on endothelial cells is particularly important for angiogenesis early in tumor develop- Knowledge about molecular drug action is critical for the h development of protein kinase inhibitors for cancer therapy. ment, whereas PDGFR signaling in pericytes plays a critical role Here, we establish a chemical proteomic approach to profile for the maintenance of established blood vessels in late-stage the anticancer drug SU6668, which was originally designed as tumors (3). Moreover, fibroblast growth factor receptor (FGFR)– a selective inhibitor of receptor tyrosine kinases involved in mediated VEGF biosynthesis in endothelial cells has been tumor vascularization. By employing immobilized SU6668 for reported as an autocrine mechanism that further augments the affinity capture of cellular drug targets in combination angiogenesis (4). with mass spectrometry, we identified previously unknown The knowledge about RTK function in the process of tumor vascularization has provided rationales for the development of targets of SU6668 including Aurora kinases and TANK-binding antiangiogenic small molecule drugs such as the indolinone kinase 1.
    [Show full text]