VIEW Open Access Creating Diversity in Mammalian Facial Morphology: a Review of Potential Developmental Mechanisms Kaoru Usui and Masayoshi Tokita*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
JVP 26(3) September 2006—ABSTRACTS
Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra. -
2. Bilateral Cleft Anatomy 19
BILATERAL CLEFT ANATOMY IS ATTACHED TO THE SINGLE CLEFT THE PREMAXILLA NORMALLY ROTATED OUTWARD MAXILLA ON ONE SIDE AND THIS ENTIRE COMPONENT IS THE CLEFT SIDE MAXILLA IN AN VARYING DEGREES FROM ASYMMETRICAL DIFFERENT DISTORTION DOUBLE CLEFTS PRESENT AN ENTIRELY CONFIGURA TION IN THE COMPLETE BILATERAL CLEFT THE PREMAXILLA IS UNATTACHED THREE WHICH TO EITHER MAXILLA THUS THERE ARE SEPARATE COMPONENTS IN THEIR DISTORTION THE MAXILLAE ARE MORE OR LESS SYMMETRICAL TWO WHILE THE ARE USUALLY EQUAL TO EACH OTHER IN SIZE AND POSITION FORWARD ITS IN CENTRAL PREMAXILLARY ELEMENT PROCEEDS ON OWN WITHIN ITSELF FOR DIFFERENT DEGREES BUT WITH SYMMETRY EXCEPT IJI POSSIBLE DEVIATION FRONTONASAL THE COMPLETE SEPARATION OF THE CENTRAL COMPONENT OF PROLABIUM AND PREMAXILLA FROM THE LATERAL MAXILLARY SEGMENTS THE VASCULAR ABNORMALLY INFLUENCES NOSE PHILTRUM MUSCULATURE AND OF ALL THREE ELEMENTS ITY NERVE SUPPLY GROWTH DEVELOPMENT WHERE THE CLEFT IS INCOMPLETE ON BOTH SIDES THE DEFORMITY IS LESS AND IS STILL SYMMETRICAL IN SUCH CASE THERE IS USUALLY MORE OR LESS INTACT ALVEOLUS AND LITTLE OR NO PROTRUSION OF THE PRE THE MAXILLA THE COLUMELLA IS LIKELY TO BE LONGER THAN IN COMPLETE CLEFT BUT NOT OF NORMAL LENGTH SOMETIMES SOMETIMES THE DEGREE OF CLEFT VARIES ON EACH SIDE SIDE THE INCOMPLETENESS SHOWS AS ONLY THE SLIGHTEST NOTCH ON ONE SIDE OR THERE CLEFT ON THE OPPOSITE AND HALFWAY OR THREEQUARTER ON THE CLEFT ONE SIDE AND AN INCOMPLETE ONE CAN BE COMPLETE ON OF THE EXASPERATING ASPECT OTHER WHICH CONDITION EXAGGERATES THE ROTATION OF THE IN THE AND NOSE -
Proceedings of the United States National Museum
LIS T OF ILL US TRA TIONS. IX Pa«e. Apices of ovipositors : o, Polysphincta texaiui Cresson ; &, Eymenoepi- meois iciltii (Cresson); Mandible; c, H. tmltii (Cresson) 389 Apex of ovipositor of Theronia fulvesceiis Cresson 389 Apices of ovipositors: a, Itoplectis canqMisitor Say; b, Apechthis pictir cornis (Cresson) 389 Apex of abdomen of female of Coleocentrus occidentalis 390 Areolet of Lahena grallatoi- (Say) 390 Areolets: a, Tromatohia rufovariata (Cresson) ; b, Itoplectis conquisitor (Say) ; c, Epiurus alboricta (Cresson) 390 Sessile first tergite of Perithous pleuralis (Cresson) 390 Petioatel first tergite of Xorides yukonensis (Rohwer) 390 Mandible of Poemenva americana (Cresson) 391 Female of Labena confusa Rohwer 412 Female of Rhyssella nitida (Cresson) 424 Propodeum of Zonde* picea*u« (Rohwer) 434 Front view of head of Xoi'ides albopictus (Cresson) 437 Propodeum and basal abdominal segments of Xorides albopictus (Cresson) 437 Apical abdomen segments of Xorides albopictus (Cresson) 437 Female of Xorides rileyi (Ashmead) 440 Front view of head of Deuteroxorides caryae (Harrington) 446 Propodeum and basal abdominal segments of Deuteroxorides caryae (Harrington) 446 Apical abdominal segments of Z)c«feroa:ori<Ze« caryae (Harrington) 446 Female of Deuteroxorides caryae (Harrington) 447 Female of Odontomerus canadensis Provancher 459 Female of Phytodietus annulatus (Provancher) 467 Femaie of Phydotietus annulatus (Provancher) 467 Diagram showing relation of dike to vein, Hecla Mine. A, Dike; B, Crushed material with quartz and ore; C, Galena; D, Quartzite wall rock ; width of section 15 feet 481 Showing relation to dikes (A) to vein (B) on No. 1 level of Marsh Mine_ 484 Showing relation of dike (A) to vein (B) on 2,000-foot level of Standard- Mammoth Mine 492 Showing relation of dike (A) to vein (B) on 1,200-foot level of Standard- Mammoth Mine 492 Coleocentrus occidentalis. -
Convergent Evolution in the Euarchontoglires
This is a repository copy of Convergent evolution in the Euarchontoglires. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/133262/ Version: Published Version Article: Morris, Philip James Rencher, Cobb, Samuel Nicholas Frederick orcid.org/0000-0002- 8360-8024 and Cox, Philip Graham orcid.org/0000-0001-9782-2358 (2018) Convergent evolution in the Euarchontoglires. Biology letters. 2018036. ISSN 1744-957X https://doi.org/10.1098/rsbl.2018.0366 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Downloaded from http://rsbl.royalsocietypublishing.org/ on August 1, 2018 Evolutionary biology Convergent evolution in the rsbl.royalsocietypublishing.org Euarchontoglires Philip J. R. Morris1, Samuel N. F. Cobb2 and Philip G. Cox2 1Hull York Medical School, University of Hull, Hull HU6 7RX, UK Research 2Department of Archaeology and Hull York Medical School, University of York, York YO10 5DD, UK SNFC, 0000-0002-8360-8024; PGC, 0000-0001-9782-2358 Cite this article: Morris PJR, Cobb SNF, Cox PG. 2018 Convergent evolution in the Convergence—the independent evolution of similar phenotypes in distantly Euarchontoglires. -
Mammals from the Mesozoic of Mongolia
Mammals from the Mesozoic of Mongolia Introduction and Simpson (1926) dcscrihed these as placental (eutherian) insectivores. 'l'he deltathcroids originally Mongolia produces one of the world's most extraordi- included with the insectivores, more recently have narily preserved assemblages of hlesozoic ma~nmals. t)een assigned to the Metatheria (Kielan-Jaworowska Unlike fossils at most Mesozoic sites, Inany of these and Nesov, 1990). For ahout 40 years these were the remains are skulls, and in some cases these are asso- only Mesozoic ~nanimalsknown from Mongolia. ciated with postcranial skeletons. Ry contrast, 'I'he next discoveries in Mongolia were made by the Mesozoic mammals at well-known sites in North Polish-Mongolian Palaeontological Expeditions America and other continents have produced less (1963-1971) initially led by Naydin Dovchin, then by complete material, usually incomplete jaws with den- Rinchen Barsbold on the Mongolian side, and Zofia titions, or isolated teeth. In addition to the rich Kielan-Jaworowska on the Polish side, Kazi~nierz samples of skulls and skeletons representing Late Koualski led the expedition in 1964. Late Cretaceous Cretaceous mam~nals,certain localities in Mongolia ma~nmalswere collected in three Gohi Desert regions: are also known for less well preserved, but important, Bayan Zag (Djadokhta Formation), Nenlegt and remains of Early Cretaceous mammals. The mammals Khulsan in the Nemegt Valley (Baruungoyot from hoth Early and Late Cretaceous intervals have Formation), and llcrmiin 'ISav, south-\vest of the increased our understanding of diversification and Neniegt Valley, in the Red beds of Hermiin 'rsav, morphologic variation in archaic mammals. which have heen regarded as a stratigraphic ecluivalent Potentially this new information has hearing on the of the Baruungoyot Formation (Gradzinslti r't crl., phylogenetic relationships among major branches of 1977). -
2015 Nicaragua Mammal Report
Nicaragua Mammal Extravaganza, Feb 4-17, 2015 Led by Fiona Reid and Jose Gabriel Martinez, with Mike Richardson and Paul Carter. Photos by Fiona except where noted. Feb 04, Laguna del Apoyo (LA) Our trip officially started on Feb 5, but we all landed a day early, with Paul arriving in the late morning. I asked Jose to see if he could get some help setting up nets and still find time to collect me and Mike from the airport at 9 p.m. We met up with Paul and two friends of Jose’s at a location near our hotel on the Laguna just after 10 p.m. They had caught 7 species of bats, including Common Vampire and Central American Yellow Bat. Of note Paul had also seen 3 Southern Spotted Skunks, a Vesper Rat, Common Opossum and a Central Southern Spotted Skunk (Paul Carter) American Woolly Opossum (last of which obligingly stayed around for me and Mike). We were off to a great start! Feb 05, Apoyo and Montibelli (MB) We spent the morning at Apoyo, where Mantled Howlers and Variegated Squirrel are easily seen. In the afternoon we went to Montibelli Private Reserve. We located roosting Lesser White-lined Bats on a tree trunk and some Jamaican Fruit-eating Bats hidden in leaves of a Dracaena plant (we caught both these species later too). After seeing a Jamaican Fruit-eating Bat, good variety of dry forest birds stained yellow with pollen and our first Central American Agouti, we set up a few nets and caught Greater and Pale Spear-nosed Bats along with various other common species (see list). -
Index of Handbook of the Mammals of the World. Vol. 9. Bats
Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A. -
Fossil Primates
AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates. -
Guest Editorial Bats: Magnificent and Mysterious
Guest Editorial Bats: Magnificent and Mysterious ,WLVLQGHHGDQKRQRXUWREHJUDQWHGWKHRSSRUWXQLW\WR Research Unit (also known as Trinibats) on an evening of ZULWHLQWKH/LYLQJ:RUOG-RXUQDORQDWRSLF,KROGGHDU mist netting at the Asa Wright Nature Centre in the Arima ,QWKLVJXHVWHGLWRULDO,KLJKOLJKWWKHLPSRUWDQFHRIEDWVLQ Valley on October 12 th , 2018. The bats cooperated fully RXUHFRV\VWHPVUHÀHFWRQWKHGLYHUVLW\RIEDWVLQ7ULQLGDG WKLVHYHQLQJZLWKEDWVRIVSHFLHVEHLQJFDSWXUHG and Tobago, highlight some of the research taking place in and safely released back into the night. This was the largest Trinidad and Tobago, and advocate for continued research catch rate for the entire 2018 Trinibats expedition, and we into these marvellous creatures. were able to highlight a wide array of feeding guilds to :KHQHYHU , DP JLYHQ WKH RSSRUWXQLW\ WR SUHVHQW RQ the Honourable Minister. Bats comprise over 20% of the WKHLPSRUWDQFHRIEDWV,VWDUWE\DVNLQJWKHDXGLHQFHZKDW ZRUOG¶VPDPPDOLDQIDXQDDQGORFDOO\,Q7ULQLGDG they believe to be the importance of birds. Depending on and Tobago there are roughly 70 species of bat, and this list WKHDXGLHQFH,PD\JHWDIHZSHRSOHDQVZHULQJWKDWWKHLU is likely to grow given the fact that molecular techniques plumage or songs are appealing. With some prompting, used to differentiate species have not been conducted on ¿QDOO\ PHPEHUV RI WKH DXGLHQFH VSHDN RI SROOLQDWLRQ most of the species present. Using such techniques, the seed dispersal, and insect control. Bats are the night shift only endemic species of mammal in Trinidad and Tobago for these services. One study on the pollination services was recently found in Tobago, Sir David Attenborough’s of new world phyllostomid bats found that they pollinate Myotis, Myotis attenboroughi . The rich diversity we are WKH ÀRZHUV RI VSHFLHV RI SODQWV RI JHQHUD DQG fortunate to have in Trinidad and Tobago can be discussed 44 families. -
Fieldbook of ILLINOIS MAMMALS
Field book of ILLINOIS MAMMALS Donald F. Hoffm*isler Carl O. Mohr 1LLINOI S NATURAL HISTORY SURVEY MANUAL 4 NATURAL HISTORY SURVEY LIBRARY Digitized by the Internet Archive in 2010 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/fieldbookofillinOOhof JfL Eastern cottontail, a mammal that is common in Illinois. STATE OF ILLINOIS William G. Stratton, Governor DEPARTMENT OF REGISTRATION AND EDUCATION Vera M. Binks, Director Fieldbook of ILLINOIS MAMMALS Donald F. HofFmeister Carl O. Mohr MANUAL 4 Printed by Authority of the State of Illinois NATURAL HISTORY SURVEY DIVISION Harlow B. Mills, Chief URBANA. June. 1957 STATE OF ILLINOIS William G. Stratton, Governor DEPARTMENT OF REGISTRATION AND EDUCATION Vera M. Binks, Director BOARD OF NATURAL RESOURCES AND CONSERVATION Vera M. Binks, Chairman A. E. Emerson, Ph.D., Biology Walter H. Newhouse, Ph.D., Geology L. H. Tiffany, Ph.D., Forestry Roger Adams, Ph.D., D.Sc, Chemistry Robert H. Anderson, B.S.C.E., Engineering W. L. Everitt, E.E., Ph.D., representing the President of the University of Illinois Delyte W. Morris, Ph.D., President of Southern Illinois University NATURAL HISTORY SURVEY DIVISION Urbana, Illinois HARLOW B. MILLS, Ph.D., Chief Bessie B. East, M.S., Assistant to the Chief This paper is a ct>ntribution from the Sectittn of Faunistic Surveys and Insect Identification and from the Section of Wildlife Research. ( 1 1655—5M—9-56) FOREWORD IN 1936 the first number of the Manual series of the Natural His- tory Survey Division appeared. It was titled the Firldbook of Illinois Wild Flowers. -
Of Premaxilla
12G OF THE CLEFT WHICH INFLUENCES MOST IMPORTANT ASPECT DEFORMITY THE DENTAL OCCLUSION AND MAXILLARY PLATFORM FOR THE FACE IS THE OF CLEFT OF THE ALVEOLUS EXTENDING THE HARD PRESENCE THROUGH CLEFT DOES THE THERE PALATE IF THE NOT GO THROUGH ALVEOLUS IS ANTERIOR ARCH MAINTAIN USUALLY ENOUGH BUTTRESS IN THE BONY TO OCCLUSION WITH THE MANDIBLE AND RESIST DISTORTIONS CAUSED DIRECTLY BY THE SURGER OR SECONDARILY BY POSTSURGICAL CONTRACTURE THE DISCREPANCIES IN THE MAXILLAR AND PREMAXILLARY SEGMENTS OF DISTORTION IT IS ASSOCIATED WITH CLEFTING PRESENT VARYING DEGREES THE NATURE OF SURGEON TO TAKE UP THE SCALPEL OR CHISEL TO CORRECT DEFORMITY AND ALTHOUGH MANY WETE CONTENT TO USE THE COM MOLD THE PLESSION OF BANDAGES OR LIP CLOSURE TO PREMAXILLAR PROTRUSION SOME WERE STIMULATED TO TAKE MORE RADICAL ACTION EXCISION OF PREMAXILLA IN 1814 XAVIER BICHAT NOTED THAT DESAULT HAD REMOVED THE PROJECTING BONY PROMINENCE OF THE PREMAXILLA IN BILATERAL CLEFTS AND BY THREE MONTHS ALL HAD HEALED HE ALSO OBSERVED BUT THE NANSVERSE DIAMCTER OF THE UPPER JAW DIMINISHED BY THE WHOLE IDRH OF THE PLOJECRING BUTTON DID NOR CORRESPOND ANY MORE TO THE LOWEI OF THE JAW ND AS IS OFTEN OBSERVED IN OLD PERSONS THERE SUPERVENED SETTING UPPER IN THE LOWER JAW WHICH WAS EXTREMELY INCONVENIENT FOT MASTICATION THIS INCONVENIENCE BEING THE OBVIOUS TESULT OF LO OF SUBSTANCE IN THE SUPERIOR MAXILLARY BONE CHANGED THE PRACTICE OF DESAULT ON THIS POINT HE TURNED EXTERNAL THE TO PRESSURE AGAINST PREMAXILLA PRESURGICAL ORTHOPEDICS VV ITH LINEN CLOTH BANDAGES OSTECTOMY AND OSTEOTOMY -
The Bat Sign in Maya Hieroglyphic Writing: Some Notes and Suggestions, Based on Examples on Late Classic Ceramics
The Bat Sign in Maya Hieroglyphic Writing: Some Notes and Suggestions, Based on Examples on Late Classic Ceramics by Erik Boot (e-mail: [email protected]) February 20, 2009, Rijswijk, the Netherlands Now air is hush’d, save where the weak-eyed bat / With short shrill shrieks flits by on leathern wing William Collins, 1746 The catalog of Maya hieroglyphs, organized and categorized by J. Eric S. Thompson and published in 1962, contains one sign that represents the head of a bat, Glyph 756 (or simply T756). Thompson provided four variants for this sign (Figure 1). a b c d Figure 1: The Thomspon “Bat Sign” T756 (drawings by Kornelia Kurbjuhn [Kurbjuhn 1989: 110], after Thompson 1962: 343, 455) In his description of the sign, Thompson (1962: 348) opened with the following paragraph: The role of Glyph 756, a reasonable naturalistic representation of the leaf-nosed vampire bat, is perplexing. Despite its ubiquity on the monuments, it appears in the codices only as the month sign Zotz’, which means “bat” in most Maya languages and dialects. Unfortunately, Thompson made a mistake here. The “bat sign” does appear outside the context of the month sign in the Maya codices or screenfold books (e.g. Dresden Codex, Page 17, B3 & C1: ya- BAT.SIGN; see below).1 Additionally, two of the four variants he provided are conflations of two separate signs. T756c is a conflation of T756a-b with T568a lu, while T756d is a conflation of T756a-b with T528 ku (the postfixed scroll-like sign is actually the lower part of a -wa sign that served as a phonetic complement to a superfixed ’AJAW sign on Copan Altar U).2 In this essay I provide some notes and suggestions on the origin and possible reading of the bat sign in Maya hieroglyphic writing.