Generalised Wishart Processes

Total Page:16

File Type:pdf, Size:1020Kb

Generalised Wishart Processes Generalised Wishart Processes Andrew Gordon Wilson∗ Zoubin Ghahramani Department of Engineering Department of Engineering University of Cambridge, UK University of Cambridge, UK Abstract and Clive Granger won the 2003 Nobel prize in eco- nomics \for methods of analysing economic time series with time-varying volatility". The returns on major We introduce a new stochastic process called equity indices and currency exchanges are thought to the generalised Wishart process (GWP). It have a time changing variance and zero mean, and is a collection of positive semi-definite ran- GARCH (Bollerslev, 1986), a generalisation of En- dom matrices indexed by any arbitrary in- gle's ARCH (Engle, 1982), is arguably unsurpassed at put variable. We use this process as a prior predicting the volatilities of returns on these equity over dynamic (e.g. time varying) covariance indices and currency exchanges (Poon and Granger, matrices Σ(t). The GWP captures a diverse 2005; Hansen and Lunde, 2005; Brownlees et al., 2009). class of covariance dynamics, naturally han- Multivariate volatility models can be used to under- dles missing data, scales nicely with dimen- stand the dynamic correlations (or co-movement) be- sion, has easily interpretable parameters, and tween equity indices, and can make better univariate can use input variables that include covari- predictions than univariate models. A good estimate ates other than time. We describe how to of the covariance matrix Σ(t) is also necessary for port- construct the GWP, introduce general proce- folio management. An optimal portfolio allocation w∗ dures for inference and prediction, and show is said to maximise the Sharpe ratio (Sharpe, 1966): that it outperforms its main competitor, mul- tivariate GARCH, even on financial data that Portfolio return w>r(t) especially suits GARCH. = ; (1) Portfolio risk pw>Σ(t)w where r(t) are expected returns for each asset and Σ(t) 1 INTRODUCTION is the predicted covariance matrix for these returns. One may also wish to maximise the portfolio return > p Modelling the dependencies between random variables w r(t) for a fixed level of risk: w>Σ(t)w = λ. Mul- is fundamental in machine learning and statistics. Co- tivariate volatility models are also used to understand variance matrices provide the simplest measure of contagion: the transmission of a financial shock from dependency, and therefore much attention has been one entity to another (Bae et al., 2003). And generally placed on modelling covariance matrices. However, { in econometrics, machine learning, climate science, the often implausible assumption of constant variances or otherwise { it is useful to know input dependent un- and covariances can have a significant impact on sta- certainty, and the dynamic correlations between mul- tistical inferences. tiple entities. In this paper, we are concerned with modelling the dy- Despite their importance, existing multivariate volatil- namic covariance matrix Σ(t) = cov[yjt] (multivariate ity models suffer from tractability issues and a lack volatility), for high dimensional vector valued obser- of generality. For example, multivariate GARCH vations y(t). These models are especially important (MGARCH) has a number of free parameters that in econometrics. Brownlees et al. (2009) remark that scales with dimension to the fourth power, and in- \The price of essentially every derivative security is af- terpretation and estimation of these parameters is fected by swings in volatility." Indeed, Robert Engle difficult to impossible (Silvennoinen and Ter¨asvirta, 2009; Gouri´eroux, 1997), given the constraint that ∗ http://mlg.eng.cam.ac.uk/andrew Σ(t) must be positive definite at all points in time. Thus MGARCH, and alternative multivariate stochas- specifications. In the next section, we review Gaus- tic volatility models, are generally limited to studying sian processes (GPs), which are used to construct the processes with fewer than 5 components (Gouri´eroux GWP we use in this paper. In the following sec- et al., 2009). Recent efforts have led to simpler but tions we then review the Wishart distribution, present less general models, which make assumptions such as a GWP construction (which we use as a prior over constant correlations (Bollerslev, 1990). Σ(t) for all t), introduce procedures to sample from the posterior over Σ(t), review the main competitor, We hope to unite machine learning and economet- MGARCH, and present experiments comparing the rics in an effort to solve these problems. We intro- GWP to MGARCH on simulated and financial data. duce a stochastic process, the generalised Wishart pro- These experiments include a 5 dimensional data set, cess (GWP), which we use as a prior over covari- based on returns for NASDAQ, FTSE, NIKKEI, TSE, ance matrices Σ(t) at all times t. We call it the gen- and the Dow Jones Composite, and a set of returns eralised Wishart process, since it is a generalisation for 3 foreign currency exchanges. We also have a 200 of the first Wishart process defined by Bru (1991).1 dimensional experiment to show how the GWP can be To great acclaim, Bru's Wishart process has recently used to study high dimensional problems. been used (Gouri´erouxet al., 2009) in multivariate stochastic volatility models (Philipov and Glickman, Also, although it is not the focus of this paper, we 2006; Harvey et al., 1994). This prior work is lim- show in the inference section how the GWP can be ited for several reasons: 1) it cannot scale to greater used as part of a new GP based regression model that than 5 × 5 covariance matrices, 2) it assumes the in- accounts for changing correlations. In other words, it put variable is a scalar, 3) it is restricted to using can be used to predict the mean µ(t) together with an Ornstein-Uhlenbeck (Brownian motion) covariance the covariance matrix Σ(t) of a multivariate process. structure (which means Σ(t + a) and Σ(t − a) are in- Alternative GP based multivariate regression models dependent given Σ(t), and complex interdependencies for µ(t), which account for fixed correlations, were re- cannot be captured), 4) it is autoregressive, and 5) cently introduced by Bonilla et al. (2008), Teh et al. there are no general learning and inference procedures. (2005), and Boyle and Frean (2004). We develop this The generalised Wishart process (GWP) addresses all extension, and many others, in a forthcoming paper. of these issues. Specifically, in our GWP formulation, 2 GAUSSIAN PROCESSES • Estimation of Σ(t) is tractable in at least 200 di- mensions, even without a factor representation. We briefly review Gaussian processes, since the gener- alised Wishart process is constructed from GPs. For • The input variable can come from any arbitrary more detail, see Rasmussen and Williams (2006). index set X , just as easily as it can represent time. This allows one to condition on covariates like in- A Gaussian process is a collection of random variables, terest rates. any finite number of which have a joint Gaussian dis- tribution. Using a Gaussian process, we can define a • One can easily handle missing data. distribution over functions u(x): • One can easily specify a vast range of co- u(x) ∼ GP(m(x); k(x; x0)) ; (2) variance structures (periodic, smooth, Ornstein- Uhlenbeck, . ). where x is an arbitrary (potentially vector valued) in- put variable, and the mean m(x) and kernel function • We develop Bayesian inference procedures to k(x; x0) are respectively defined as make predictions, and to learn distributions over m(x) = E[u(x)] ; (3) any relevant parameters. Aspects of the covari- 0 0 ance structure are learned from data, rather than k(x; x ) = cov(u(x); u(x )) : (4) being a fixed property of the model. This means that any collection of function values has a joint Gaussian distribution: Overall, the GWP is versatile and simple. It does (u(x ); u(x ); : : : ; u(x ))> ∼ N (µ;K) ; (5) not require any free parameters, and any optional pa- 1 2 N rameters are easy to interpret. For this reason, it where the N × N covariance matrix K has entries also scales well with dimension. Yet, the GWP pro- Kij = k(xi; xj), and the mean µ has entries µi = vides an especially general description of multivariate m(xi). The properties of these functions (smoothness, volatility { more so than the most general MGARCH periodicity, etc.) are determined by the kernel func- tion. The squared exponential kernel is popular: 1Our model is also related to Gelfand et al. (2004)'s coregionalisation model, which we discuss in section 5. k(x; x0) = exp(−0:5jjx − x0jj2=l2) : (6) Functions drawn from a Gaussian process with this by replacing these Gaussian distributions with Gaus- kernel function are smooth, and can display long range sian processes, we define a process with Wishart trends. The length-scale hyperparameter l is easy to marginals { an example of a generalised Wishart pro- interpret: it determines how much the function values cess. It is a collection of positive semi-definite ran- u(x) and u(x + a) depend on one another, for some dom matrices indexed by any arbitrary (potentially constant a. high dimensional) variable x. For clarity, we assume that time is the input variable, even though it takes Autoregressive processes such as no more effort to use a vector-valued variable x from u(t + 1) = u(t) + (t) ; (7) any arbitrary set. Everything still applies if we re- place t with x. In an upcoming journal submission (t) ∼ N (0; 1) ; (8) (Wilson and Ghahramani, 2011b), we introduce sev- are widely used in time series modelling and are a par- eral new constructions, some of which do not have ticularly simple special case of Gaussian processes. Wishart marginals. Suppose we have νD independent Gaussian process 3 WISHART DISTRIBUTION functions, uid(t) ∼ GP(0; k), where i = 1; : : : ; ν and 0 d = 1;:::;D.
Recommended publications
  • STAT 802: Multivariate Analysis Course Outline
    STAT 802: Multivariate Analysis Course outline: Multivariate Distributions. • The Multivariate Normal Distribution. • The 1 sample problem. • Paired comparisons. • Repeated measures: 1 sample. • One way MANOVA. • Two way MANOVA. • Profile Analysis. • 1 Multivariate Multiple Regression. • Discriminant Analysis. • Clustering. • Principal Components. • Factor analysis. • Canonical Correlations. • 2 Basic structure of typical multivariate data set: Case by variables: data in matrix. Each row is a case, each column is a variable. Example: Fisher's iris data: 5 rows of 150 by 5 matrix: Case Sepal Sepal Petal Petal # Variety Length Width Length Width 1 Setosa 5.1 3.5 1.4 0.2 2 Setosa 4.9 3.0 1.4 0.2 . 51 Versicolor 7.0 3.2 4.7 1.4 . 3 Usual model: rows of data matrix are indepen- dent random variables. Vector valued random variable: function X : p T Ω R such that, writing X = (X ; : : : ; Xp) , 7! 1 P (X x ; : : : ; Xp xp) 1 ≤ 1 ≤ defined for any const's (x1; : : : ; xp). Cumulative Distribution Function (CDF) p of X: function FX on R defined by F (x ; : : : ; xp) = P (X x ; : : : ; Xp xp) : X 1 1 ≤ 1 ≤ 4 Defn: Distribution of rv X is absolutely con- tinuous if there is a function f such that P (X A) = f(x)dx (1) 2 ZA for any (Borel) set A. This is a p dimensional integral in general. Equivalently F (x1; : : : ; xp) = x1 xp f(y ; : : : ; yp) dyp; : : : ; dy : · · · 1 1 Z−∞ Z−∞ Defn: Any f satisfying (1) is a density of X. For most x F is differentiable at x and @pF (x) = f(x) : @x @xp 1 · · · 5 Building Multivariate Models Basic tactic: specify density of T X = (X1; : : : ; Xp) : Tools: marginal densities, conditional densi- ties, independence, transformation.
    [Show full text]
  • Mx (T) = 2$/2) T'w# (&&J Terp
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Applied Mathematics Letters PERGAMON Applied Mathematics Letters 16 (2003) 643-646 www.elsevier.com/locate/aml Multivariate Skew-Symmetric Distributions A. K. GUPTA Department of Mathematics and Statistics Bowling Green State University Bowling Green, OH 43403, U.S.A. [email protected] F.-C. CHANG Department of Applied Mathematics National Sun Yat-sen University Kaohsiung, Taiwan 804, R.O.C. [email protected] (Received November 2001; revised and accepted October 200.2) Abstract-In this paper, a class of multivariateskew distributions has been explored. Then its properties are derived. The relationship between the multivariate skew normal and the Wishart distribution is also studied. @ 2003 Elsevier Science Ltd. All rights reserved. Keywords-Skew normal distribution, Wishart distribution, Moment generating function, Mo- ments. Skewness. 1. INTRODUCTION The multivariate skew normal distribution has been studied by Gupta and Kollo [I] and Azzalini and Dalla Valle [2], and its applications are given in [3]. This class of distributions includes the normal distribution and has some properties like the normal and yet is skew. It is useful in studying robustness. Following Gupta and Kollo [l], the random vector X (p x 1) is said to have a multivariate skew normal distribution if it is continuous and its density function (p.d.f.) is given by fx(z) = 24&; W(a’z), x E Rp, (1.1) where C > 0, Q E RP, and 4,(x, C) is the p-dimensional normal density with zero mean vector and covariance matrix C, and a(.) is the standard normal distribution function (c.d.f.).
    [Show full text]
  • Bayesian Inference Via Approximation of Log-Likelihood for Priors in Exponential Family
    1 Bayesian Inference via Approximation of Log-likelihood for Priors in Exponential Family Tohid Ardeshiri, Umut Orguner, and Fredrik Gustafsson Abstract—In this paper, a Bayesian inference technique based x x x ··· x on Taylor series approximation of the logarithm of the likelihood 1 2 3 T function is presented. The proposed approximation is devised for the case, where the prior distribution belongs to the exponential family of distributions. The logarithm of the likelihood function is linearized with respect to the sufficient statistic of the prior distribution in exponential family such that the posterior obtains y1 y2 y3 yT the same exponential family form as the prior. Similarities between the proposed method and the extended Kalman filter for nonlinear filtering are illustrated. Furthermore, an extended Figure 1: A probabilistic graphical model for stochastic dy- target measurement update for target models where the target namical system with latent state xk and measurements yk. extent is represented by a random matrix having an inverse Wishart distribution is derived. The approximate update covers the important case where the spread of measurement is due to the target extent as well as the measurement noise in the sensor. (HMMs) whose probabilistic graphical model is presented in Fig. 1. In such filtering problems, the posterior to the last Index Terms—Approximate Bayesian inference, exponential processed measurement is in the same form as the prior family, Bayesian graphical models, extended Kalman filter, ex- distribution before the measurement update. Thus, the same tended target tracking, group target tracking, random matrices, inference algorithm can be used in a recursive manner.
    [Show full text]
  • Interpolation of the Wishart and Non Central Wishart Distributions
    Interpolation of the Wishart and non central Wishart distributions Gérard Letac∗ Angers, June 2016 ∗Laboratoire de Statistique et Probabilités, Université Paul Sabatier, 31062 Toulouse, France 1 Contents I Introduction 3 II Wishart distributions in the classical sense 3 III Wishart distributions on symmetric cones 5 IV Wishart distributions as natural exponential families 10 V Properties of the Wishart distributions 12 VI The one dimensional non central χ2 distributions and their interpola- tion 16 VII The classical non central Wishart distribution. 17 VIIIThe non central Wishart exists only if p is in the Gindikin set 17 IX The rank problem for the non central Wishart and the Mayerhofer conjecture. 19 X Reduction of the problem: the measures m(2p; k; d) 19 XI Computation of m(1; 2; 2) 23 XII Computation of the measure m(d − 1; d; d) 28 XII.1 Zonal functions . 28 XII.2 Three properties of zonal functions . 30 XII.3 The calculation of m(d − 1; d; d) ....................... 32 XII.4 Example: m(2; 3; 3) .............................. 34 XIIIConvolution lemmas in the cone Pd 35 XIVm(d − 2; d − 1; d) and m(d − 2; d; d) do not exist for d ≥ 3 37 XV References 38 2 I Introduction The aim of these notes is to present with the most natural generality the Wishart and non central Wishart distributions on symmetric real matrices, on Hermitian matrices and sometimes on a symmetric cone. While the classical χ2 square distributions are familiar to the statisticians, they quickly learn that these χ2 laws as parameterized by n their degree of freedom, can be interpolated by the gamma distributions with a continuous shape parameter.
    [Show full text]
  • Singular Inverse Wishart Distribution with Application to Portfolio Theory
    Working Papers in Statistics No 2015:2 Department of Statistics School of Economics and Management Lund University Singular Inverse Wishart Distribution with Application to Portfolio Theory TARAS BODNAR, STOCKHOLM UNIVERSITY STEPAN MAZUR, LUND UNIVERSITY KRZYSZTOF PODGÓRSKI, LUND UNIVERSITY Singular Inverse Wishart Distribution with Application to Portfolio Theory Taras Bodnara, Stepan Mazurb and Krzysztof Podgorski´ b; 1 a Department of Mathematics, Stockholm University, Roslagsv¨agen101, SE-10691 Stockholm, Sweden bDepartment of Statistics, Lund University, Tycho Brahe 1, SE-22007 Lund, Sweden Abstract The inverse of the standard estimate of covariance matrix is frequently used in the portfolio theory to estimate the optimal portfolio weights. For this problem, the distribution of the linear transformation of the inverse is needed. We obtain this distribution in the case when the sample size is smaller than the dimension, the underlying covariance matrix is singular, and the vectors of returns are inde- pendent and normally distributed. For the result, the distribution of the inverse of covariance estimate is needed and it is derived and referred to as the singular inverse Wishart distribution. We use these results to provide an explicit stochastic representation of an estimate of the mean-variance portfolio weights as well as to derive its characteristic function and the moments of higher order. ASM Classification: 62H10, 62H12, 91G10 Keywords: singular Wishart distribution, mean-variance portfolio, sample estimate of pre- cision matrix, Moore-Penrose inverse 1Corresponding author. E-mail address: [email protected]. The authors appreciate the financial support of the Swedish Research Council Grant Dnr: 2013-5180 and Riksbankens Jubileumsfond Grant Dnr: P13-1024:1 1 1 Introduction Analyzing multivariate data having fewer observations than their dimension is an impor- tant problem in the multivariate data analysis.
    [Show full text]
  • An Introduction to Wishart Matrix Moments Adrian N
    An Introduction to Wishart Matrix Moments Adrian N. Bishop1, Pierre Del Moral2 and Angèle Niclas3 1University of Technology Sydney (UTS) and CSIRO, Australia; [email protected] 2INRIA, Bordeaux Research Center, France; [email protected] 3École Normale Supérieure de Lyon, France ABSTRACT These lecture notes provide a comprehensive, self-contained introduction to the analysis of Wishart matrix moments. This study may act as an introduction to some particular aspects of random matrix theory, or as a self-contained exposition of Wishart matrix moments. Random matrix theory plays a central role in statistical physics, computational mathematics and engineering sci- ences, including data assimilation, signal processing, combi- natorial optimization, compressed sensing, econometrics and mathematical finance, among numerous others. The mathe- matical foundations of the theory of random matrices lies at the intersection of combinatorics, non-commutative algebra, geometry, multivariate functional and spectral analysis, and of course statistics and probability theory. As a result, most of the classical topics in random matrix theory are technical, and mathematically difficult to penetrate for non-experts and regular users and practitioners. The technical aim of these notes is to review and extend some important results in random matrix theory in the specific Adrian N. Bishop, Pierre Del Moral and Angèle Niclas (2018), “An Introduction to Wishart Matrix Moments”, Foundations and Trends R in Machine Learning: Vol. 11, No. 2, pp 97–218. DOI: 10.1561/2200000072. 2 context of real random Wishart matrices. This special class of Gaussian-type sample covariance matrix plays an impor- tant role in multivariate analysis and in statistical theory.
    [Show full text]
  • Package 'Matrixsampling'
    Package ‘matrixsampling’ August 25, 2019 Type Package Title Simulations of Matrix Variate Distributions Version 2.0.0 Date 2019-08-24 Author Stéphane Laurent Maintainer Stéphane Laurent <[email protected]> Description Provides samplers for various matrix variate distributions: Wishart, inverse-Wishart, nor- mal, t, inverted-t, Beta type I, Beta type II, Gamma, confluent hypergeometric. Allows to simu- late the noncentral Wishart distribution without the integer restriction on the degrees of freedom. License GPL-3 URL https://github.com/stla/matrixsampling BugReports https://github.com/stla/matrixsampling/issues Encoding UTF-8 LazyData true Imports stats, keep ByteCompile true RoxygenNote 6.1.1 NeedsCompilation no Repository CRAN Date/Publication 2019-08-24 22:00:02 UTC R topics documented: rinvwishart . .2 rmatrixbeta . .3 rmatrixbetaII . .4 rmatrixCHIIkind2 . .6 rmatrixCHIkind2 . .7 rmatrixCHkind1 . .8 1 2 rinvwishart rmatrixgamma . .9 rmatrixit . 10 rmatrixnormal . 11 rmatrixt . 12 rwishart . 13 rwishart_chol . 14 Index 16 rinvwishart Inverse-Wishart sampler Description Samples the inverse-Wishart distribution. Usage rinvwishart(n, nu, Omega, epsilon = 0, checkSymmetry = TRUE) Arguments n sample size, a positive integer nu degrees of freedom, must satisfy nu > p-1, where p is the dimension (the order of Omega) Omega scale matrix, a positive definite real matrix epsilon threshold to force invertibility in the algorithm; see Details checkSymmetry logical, whether to check the symmetry of Omega; if FALSE, only the upper tri- angular part of Omega is used Details The inverse-Wishart distribution with scale matrix Ω is defined as the inverse of the Wishart dis- tribution with scale matrix Ω−1 and same number of degrees of freedom.
    [Show full text]
  • Arxiv:1402.4306V2 [Stat.ML] 19 Feb 2014 Advantages Come at No Additional Computa- Archambeau and Bach, 2010]
    Student-t Processes as Alternatives to Gaussian Processes Amar Shah Andrew Gordon Wilson Zoubin Ghahramani University of Cambridge University of Cambridge University of Cambridge Abstract simple exact learning and inference procedures, and impressive empirical performances [Rasmussen, 1996], Gaussian processes as kernel machines have steadily We investigate the Student-t process as an grown in popularity over the last decade. alternative to the Gaussian process as a non- parametric prior over functions. We de- At the heart of every Gaussian process (GP) is rive closed form expressions for the marginal a parametrized covariance kernel, which determines likelihood and predictive distribution of a the properties of likely functions under a GP. Typ- Student-t process, by integrating away an ically simple parametric kernels, such as the Gaus- inverse Wishart process prior over the co- sian (squared exponential) kernel are used, and its pa- variance kernel of a Gaussian process model. rameters are determined through marginal likelihood We show surprising equivalences between dif- maximization, having analytically integrated away the ferent hierarchical Gaussian process models Gaussian process. However, a fully Bayesian nonpara- leading to Student-t processes, and derive a metric treatment of regression would place a nonpara- new sampling scheme for the inverse Wishart metric prior over the Gaussian process covariance ker- process, which helps elucidate these equiv- nel, to represent uncertainty over the kernel function, alences. Overall, we
    [Show full text]
  • Wishart Distributions for Covariance Graph Models
    WISHART DISTRIBUTIONS FOR COVARIANCE GRAPH MODELS By Kshitij Khare Bala Rajaratnam Technical Report No. 2009-1 July 2009 Department of Statistics STANFORD UNIVERSITY Stanford, California 94305-4065 WISHART DISTRIBUTIONS FOR COVARIANCE GRAPH MODELS By Kshitij Khare Bala Rajaratnam Department of Statistics Stanford University Technical Report No. 2009-1 July 2009 This research was supported in part by National Science Foundation grant DMS 0505303. Department of Statistics STANFORD UNIVERSITY Stanford, California 94305-4065 http://statistics.stanford.edu Technical Report, Department of Statistics, Stanford University WISHART DISTRIBUTIONS FOR COVARIANCE GRAPH MODELS By Kshitij Khare† and Bala Rajaratnam∗ Stanford University Gaussian covariance graph models encode marginal independence among the compo- nents of a multivariate random vector by means of a graph G. These models are distinctly different from the traditional concentration graph models (often also referred to as Gaus- sian graphical models or covariance selection models), as the zeroes in the parameter are now reflected in the covariance matrix Σ, as compared to the concentration matrix −1 Ω=Σ . The parameter space of interest for covariance graph models is the cone PG of positive definite matrices with fixed zeroes corresponding to the missing edges of G.As in Letac and Massam [20] we consider the case when G is decomposable. In this paper we construct on the cone PG a family of Wishart distributions, that serve a similar pur- pose in the covariance graph setting, as those constructed by Letac and Massam [20]and Dawid and Lauritzen [8] do in the concentration graph setting. We proceed to undertake a rigorous study of these “covariance” Wishart distributions, and derive several deep and useful properties of this class.
    [Show full text]
  • 2. Wishart Distributions and Inverse-Wishart Sampling
    Wishart Distributions and Inverse-Wishart Sampling Stanley Sawyer | Washington University | Vs. April 30, 2007 1. Introduction. The Wishart distribution W (§; d; n) is a probability distribution of random nonnegative-de¯nite d £ d matrices that is used to model random covariance matrices. The parameter n is the number of de- grees of freedom, and § is a nonnegative-de¯nite symmetric d £ d matrix that is called the scale matrix. By de¯nition Xn 0 W ¼ W (§; d; n) ¼ XiXi;Xi ¼ N(0; §) (1:1) i=1 so that W ¼ W (§; d; n) is the distribution of a sum of n rank-one matrices d de¯ned by independent normal Xi 2 R with E(X) = 0 and Cov(X) = §. In particular 0 E(W ) = nE(XiXi) = n Cov(Xi) = n§ (See multivar.tex for more details.) In general, any X ¼ N(¹; §) can be represented X = ¹ + AZ; Z ¼ N(0;Id); so that § = Cov(X) = A Cov(Z)A0 = AA0 (1:2) The easiest way to ¯nd A in terms of § is the LU-decomposition, which ¯nds 0 a unique lower diagonal matrix A with Aii ¸ 0 such that AA = §. Then by (1.1) and (1.2) with ¹ = 0 Xn µXn ¶ 0 0 0 W (§; d; n) ¼ (AZi)(AZi) ¼ A ZiZi A ;Zi ¼ N(0;Id) i=1 i=1 0 ¼ AW (d; n) A where W (d; n) = W (Id; d; n) (1:3) In particular, W (§; d; n) can be easily represented in terms of W (d; n) = W (Id; d; n). Assume in the following that n > d and § is invertible.
    [Show full text]
  • Bayesian Inference for the Multivariate Normal
    Bayesian Inference for the Multivariate Normal Will Penny Wellcome Trust Centre for Neuroimaging, University College, London WC1N 3BG, UK. November 28, 2014 Abstract Bayesian inference for the multivariate Normal is most simply instanti- ated using a Normal-Wishart prior over the mean and covariance. Predic- tive densities then correspond to multivariate T distributions, and the moments from the marginal densities are provided analytically or via Monte-Carlo sampling. We show how this textbook approach is applied to a simple two-dimensional example. 1 Introduction This report addresses the following question. Given samples of multidimensional vectors drawn from a multivariate Normal density with mean m and precision Λ, what are the likely values of m and Λ ? Here, the precision is simply the inverse of the covariance i.e. Λ = C−1. Whilst it is simple to compute the sample mean and covariance, for inference we need the probability distributions over these quantities. In a Bayesian conception of this problem we place prior distributions over all quantities of interest and use Bayes rule to compute the posterior. We follow the formulation in Bernardo and Smith [1] (tabularised on page 441). 2 Preliminaries 2.1 Multivariate T distribution The multivariate T distribution over a d-dimensional random variable x is p(x) = T (x; µ, Λ; v) (1) with parameters µ, Λ and v. The mean and covariance are given by E(x) = µ (2) v V ar(x) = Λ−1 v − 2 The multivariate T approaches a multivariate Normal for large degrees of free- dom, v, as shown in Figure 1.
    [Show full text]
  • Exact Largest Eigenvalue Distribution for Doubly Singular Beta Ensemble
    Exact Largest Eigenvalue Distribution for Doubly Singular Beta Ensemble Stepan Grinek Institute for Systems Genetics, NYU Langone Medical Center, New York, NY, USA Abstract In [1] beta type I and II doubly singular distributions were introduced and their densities and the joint densities of nonzero eigenvalues were derived. In such matrix variate distributions p, the dimension of two singular Wishart distributions defining beta distribution is larger than m and q, degrees of freedom of Wishart matrices. We found simple formula to compute exact largest eigenvalue distribution for doubly singular beta ensemble in case of identity scale matrix, Σ = I. Distribution is presented in terms of existing expression for CDF of Roys statistic: −1 λmax ∼ max eig Wq(m; I)Wq(p − m + q; I) ; where Wk(n; I) is Wishart distribution with k dimensions, n degrees of free- dom and identity scale matrix. 1. Introduction The presented work is motivated by recent research on the method in the field of multivariate genomics data, Principal Component of Heritability (PCH). PCH is a method to reduce multivariate measurements on multiple arXiv:1905.01774v3 [math.ST] 4 Jan 2020 samples to one or two vectors representing the relative importance of the measurements. The criterion of the optimisation is the ratio between ex- plained (model) variance and residual variance in the multivariate regression model [3]. We recently achieved exact generalisation of this method to the case when number of measurements, p, is higher than number of observations, Email address: [email protected] (Stepan Grinek) Preprint submitted to Elsevier January 7, 2020 n, see our package P CEV on Comprehensive R Archive Network (CRAN).
    [Show full text]