Multi-Gene Phylogeny and Taxonomy of <I>Amauroderma</I> S. Lat. (<I

Total Page:16

File Type:pdf, Size:1020Kb

Multi-Gene Phylogeny and Taxonomy of <I>Amauroderma</I> S. Lat. (<I Persoonia 44, 2020: 206–239 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.44.08 Multi-gene phylogeny and taxonomy of Amauroderma s.lat. (Ganodermataceae) Y.-F. Sun1,2, D.H. Costa-Rezende3, J.-H. Xing1, J.-L. Zhou1, B. Zhang4, T.B. Gibertoni5, G. Gates6, M. Glen6, Y.-C. Dai1,2, B.-K. Cui1,2,* Key words Abstract Amauroderma s.lat. has been defined mainly by the morphological features of non-truncate and double- walled basidiospores with a distinctly ornamented endospore wall. In this work, taxonomic and phylogenetic stu- Ganodermataceae dies on species of Amauroderma s.lat. are carried out by morphological examination together with ultrastructural morphology observations, and molecular phylogenetic analyses of multiple loci including the internal transcribed spacer regions phylogeny (ITS), the large subunit of nuclear ribosomal RNA gene (nLSU), the largest subunit of RNA polymerase II (RPB1) Polyporales and the second largest subunit of RNA polymerase II (RPB2), the translation elongation factor 1-α gene (TEF) and ultrastructure the β-tubulin gene (TUB). The results demonstrate that species of Ganodermataceae formed ten clades. Species previously placed in Amauroderma s.lat. are divided into four clades: Amauroderma s.str., Foraminispora, Furtadoa and a new genus Sanguinoderma. The classification of Amauroderma s.lat. is thus revised, six new species are described and illustrated, and eight new combinations are proposed. SEM micrographs of basidiospores of Foramini­ spora and Sanguinoderma are provided, and the importance of SEM in delimitation of taxa in this study is briefly discussed. Keys to species of Amauroderma s.str., Foraminispora, Furtadoa, and Sanguinoderma are also provided. Article info Received: 19 January 2019; Accepted: 4 November 2019; Published: 4 May 2020. INTRODUCTION Coetzee et al. 2015, Hapuarachchi et al. 2015, Xing et al. 2016, 2018, Thawthong et al. 2017) and only a few studies dealt with Amauroderma was established by Murrill (1905) and is usually Amauroderma (Gomes-Silva et al. 2015, Costa-Rezende et classified in Ganodermataceae. The type species, A. schom­ al. 2016, 2017, Song et al. 2016). Regarding this phylogenetic burgkii was described from Guyana. The species of the genus context, Amauroderma has been pointed as polyphyletic and often emerged from the roots of living or dead trees on the regarded as Amauroderma s.lat., in which Amauroderma s.str. ground (Ryvarden 2004), and as traditional circumscription has been defined as a Neotropical clade (Gomes-Silva et al. the genus is distributed mainly in Neotropics and tropical or 2015, Costa-Rezende et al. 2016); as for the relevance of subtropical areas of Africa, Asia and Oceania. The taxonomy hyphal system composition and basidiospore ultrastructure for of the genus was mostly based on traditional morphological generic delimitation in the group was observed, as well as two characteristics. Macroscopically, it is usually characterized by new genera called Foraminispora and Furtadoa were proposed annual and stipitate to sessile basidiomata, dull to laccate pilei, (Costa-Rezende et al. 2017). Furthermore, the generic status fresh pore surface colour changing or not when bruised or dry. of Amauroderma s.lat. species from Asia and Oceania still was Microscopically, the genus presents dimitic to trimitic hyphal questioned (Song et al. 2016), such as ‘Amauroderma rude system, globose to ellipsoid basidiospores, without truncate clade’ composed by A. rude, A. rugosum and A. perplexum; apex, which are double-walled with thick and ornamented and ‘Amauroderma yunnanense clade’ composed by A. yun­ endospore wall (rarely smooth) (Furtado 1981, Corner 1983, nanense (Costa-Rezende et al. 2017), as well as a variety of Aime et al. 2003, Ryvarden 2004). Asian and African species which were not phylogenetically Taxonomic and phylogenetic studies of Ganodermataceae have tested. In this study, taxonomic and phylogenetic analyses of been carried out in recent years, but most studies focused on Amauroderma s.lat. were carried out based on more samples Ganoderma (Smith & Sivasithamparam 2000, Hong & Jung from areas outside the neotropics, such as Africa, Asia and 2004, Pilotti et al. 2004, Wang et al. 2009, Cao et al. 2012, Oceania. Based on the abundant specimens, morphological Cao & Yuan 2013, Li et al. 2014b, Lima Júnior et al. 2014, descriptions inclu ding ultrastructural features combined with six gene markers provided convincing evidence to clarify the 1 Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, taxonomic status of the species in Amauroderma s.lat. Beijing Forestry University, Beijing 100083, China. 2 Institute of Microbiology, School of Ecology and Nature Conservation, Nine genera are accepted in Ganodermataceae, of which Beijing Forestry University, Beijing 100083, China. Amauroderma s.str., Foraminispora, Furtadoa, Haddowia and 3 Universidade Estadual de Feira de Santana, Departamento de Biologia, Magoderna have non-truncate basidiospores, while Gano­ Campus Universitário, CEP 44031-460, Feira de Santana, BA, Brasil. derma, Tomophagus, Humphreya and Trachyderma have ba- 4 Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China. sidiospores with obvious truncate apex (Karsten 1881, Imazeki 5 Universidade Federal de Pernambuco, Centro de Biociências, Departa- 1939, 1952, Steyaert 1972, Corner 1983, Moncalvo & Ryvarden mento de Micologia, Av. Avenida da Engenharia, s/n, CEP 50740-600, 1997, Costa-Rezende et al. 2017). Amauroderma s.str. is Recife, Pernambuco, Brasil. distinguished by di-trimitic hyphal system and endospore wall 6 Tasmanian Institute of Agriculture, Private bag 98, Hobart, Tasmania 7001, Australia. with solid columnar to semi-reticulated ornamentation (Costa- * Corresponding author e-mail: [email protected]. Rezende et al. 2017). Foraminispora has the unique ultrastruc- © 2020 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute You are free to share - to copy, distribute and transmit the work, under the following conditions: Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-commercial: You may not use this work for commercial purposes. No derivative works: You may not alter, transform, or build upon this work. For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights. Y.-F. Sun et al.: Phylogeny and taxonomy of Amauroderma 207 ture features of basidiospores with hollow columnar endospore DNA extraction, amplification and sequencing ornamentation, which persist to the exospore wall forming holes A CTAB rapid plant genome extraction kit-DN14 (Aidlab Bio- sometimes under SEM (Costa-Rezende et al. 2017). Furtadoa technologies Co., Ltd, Beijing, China) and an FH plant DNA is distinguished by a monomitic hyphal system in context, with kit II (Demeter Biotech Co., Ltd., Beijing, China) were used clamped and simple-septate generative hyphae which are differ- to extract total genomic DNA from dried specimens and to ent from other genera (Costa-Rezende et al. 2017). Haddowia perform the polymerase chain reaction (PCR) according to the has distinctive basidiospores, of which the exo spore wall with manufacturer’s instructions with some modifications (Cui et al. longitudinal ridges partly connected with short transverse walls 2019, Shen et al. 2019). (Steyaert 1972, Corner 1983). Magoderna can be distinguished The internal transcribed spacer regions (ITS) was amplified with by woody hard basidiomata with slightly shiny pileus and fibrotic primer pairs ITS5 and ITS4 (White et al. 1990); for the large context, and its hyphae in pileal cover anticlinal (Steyaert 1972). subunit of nuclear ribosomal RNA gene (nLSU) we used LR0R Tomophagus has light basidiomata, with a pale and soft context and LR5 (Vilgalys & Hester 1990). The primer pairs RPB1-Af (Le et al. 2012). Humphreya can be characterized by basidi- and RPB1-Cr (Matheny et al. 2002) were used to amplify the ospores with reticular or erratic irregular ridged double walls largest subunit of RNA polymerase II (RPB1), and primer (Steyaert 1972). Trachyderma is mainly characterized by a pairs fRPB2-5F and fRPB2-7CR (Liu et al. 1999) were used fleshy succulent context when growing (Imazeki 1939, 1952). to amplify the second subunit of RNA polymerase II (RPB2). In this study, in order to clarify the taxonomy and phylogeny of The translation elongation factor 1-α gene (TEF) was amplified taxa in Amauroderma s.lat., specimens from different regions with primer pairs EF1-983F and EF1-1567R (Rehner & Buckley of the world were studied using macro-morphology, microscopic 2005). Primer pairs Bt-1a and Bt-1b (Glass & Donaldson 1995) examinations together with ultrastructural observations and mo- were used to amplify the β-tubulin gene (TUB). The primer LR7 lecular phylogenetic analyses of six genes (including ITS, nLSU, (Vilgalys & Hester 1990) was used sometimes as an alternative RPB1, RPB2, TEF and TUB). According to the integrative re- to LR5; i2.2F and aCr (Binder et al. 2010) were used as alterna- search,
Recommended publications
  • Ergosterol Purified from Medicinal Mushroom Amauroderma Rude Inhibits Cancer Growth in Vitro and in Vivo by Up-Regulating Multiple Tumor Suppressors
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 19 Ergosterol purified from medicinal mushroom Amauroderma rude inhibits cancer growth in vitro and in vivo by up-regulating multiple tumor suppressors Xiangmin Li1,2,3,4,*, Qingping Wu2,*, Yizhen Xie2, Yinrun Ding2, William W. Du3,4, Mouna Sdiri3,4, Burton B. Yang3,4 1School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China 2State Key Laboratory of Applied Microbiology Southern China (The Ministry-Province Joint Development), Guangdong Institute of Microbiology, Guangzhou, 510070, PR China 3Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, M4N3M5, Canada 4Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N3M5, Canada *These authors have contributed equally to this work Correspondence to: Yizhen Xie, e-mail: [email protected] Burton B. Yang, e-mail: [email protected] Keywords: herbal medicine, medicinal mushroom, Foxo3a, Bim, Fas Received: April 08, 2015 Accepted: May 13, 2015 Published: May 27, 2015 ABSTRACT We have previously screened thirteen medicinal mushrooms for their potential anti-cancer activities in eleven different cell lines and found that the extract of Amauroderma rude exerted the highest capacity in inducing cancer cell death. The current study aimed to purify molecules mediating the anti-cancer cell activity. The extract of Amauroderma rude was subject to fractionation, silica gel chromatography, and HPLC. We purified a compound and identified it as ergosterol by EI-MS and NMR, which was expressed at the highest level in Amauroderma rude compared with other medicinal mushrooms tested. We found that ergosterol induced cancer cell death, which was time and concentration dependent.
    [Show full text]
  • Diversity of Polyporales in the Malay Peninsular and the Application of Ganoderma Australe (Fr.) Pat
    DIVERSITY OF POLYPORALES IN THE MALAY PENINSULAR AND THE APPLICATION OF GANODERMA AUSTRALE (FR.) PAT. IN BIOPULPING OF EMPTY FRUIT BUNCHES OF ELAEIS GUINEENSIS MOHAMAD HASNUL BIN BOLHASSAN FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2013 DIVERSITY OF POLYPORALES IN THE MALAY PENINSULAR AND THE APPLICATION OF GANODERMA AUSTRALE (FR.) PAT. IN BIOPULPING OF EMPTY FRUIT BUNCHES OF ELAEIS GUINEENSIS MOHAMAD HASNUL BIN BOLHASSAN THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2013 UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate: MOHAMAD HASNUL BIN BOLHASSAN (I.C No: 830416-13-5439) Registration/Matric No: SHC080030 Name of Degree: DOCTOR OF PHILOSOPHY Title of Project Paper/Research Report/Disertation/Thesis (“this Work”): DIVERSITY OF POLYPORALES IN THE MALAY PENINSULAR AND THE APPLICATION OF GANODERMA AUSTRALE (FR.) PAT. IN BIOPULPING OF EMPTY FRUIT BUNCHES OF ELAEIS GUINEENSIS. Field of Study: MUSHROOM DIVERSITY AND BIOTECHNOLOGY I do solemnly and sincerely declare that: 1) I am the sole author/writer of this work; 2) This Work is original; 3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledge in this Work; 4) I do not have any actual
    [Show full text]
  • A New Pericarbonyl Lignan from Amauroderma Rude
    ORIGINAL ARTICLE Rec. Nat. Prod. 13:4 (2019) 296-300 A New Pericarbonyl Lignan from Amauroderma rude Miao Dong 1, Zuhong Ma 2, Qiaofen Yang 2, Qiuyue Hu 2, Yanqing Ye 2,* and Min Zhou 1,* 1Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, P.R. China 2 School of Chemistry and Environment, Yunnan Minzu University, Kunming 650031, P.R. China (Received October 24, 2018; Revised November 29, 2018; Accepted November 30, 2018) Abstract: A new pericarbonyl lignan (1), named amaurolignan A was isolated from an ethanol extract of the fruiting bodies in Amauroderma rude of family Ganodermataceae, together with two known lignans, 4-methoxymatairesinol 4′-β-D-glucoside (2) and lappaol F (3). The structures of compounds (1-3) were elucidated using NMR and MS spectroscopic methods. Keywords: Pericarbonyl lignan; amaurolignan A; Amauroderma rude. © 2019 ACG Publications. All rights reserved. 1. Introduction “Lingzhi” is a mushroom that has been renowned in China for more than 2000 years because of its claimed medicinal properties and symbolic fortune, which translates as ‘Ganodermataceae’ in a broad sense, and in a narrow sense it represents the highly prized medicinal Ganoderma species distributed in East Asia [1]. Its medicinal properties include anti-aging, lowering blood pressure, improving immunity, and preventing and treating various cancers, chronic bronchitis, gastric ulcers, hepatitis, neurasthenia and thrombosis [2-4]. The medicinal effects of many mushrooms such as Ganoderma lucidum, Lentinula edodes, Agaricus blazei, Antrodia camphorate and Grifola frondosaI come from their metabolites including polysaccharides, triterpenes, lucidenic acids, adenosine, ergosterol, glucosamine and cerebrosides [5-8].
    [Show full text]
  • Phylogenetic Analysis of Widely Cultivated Ganoderma in China Based on the Mitochondrial V4-V6 Region of SSU Rdna
    Phylogenetic analysis of widely cultivated Ganoderma in China based on the mitochondrial V4-V6 region of SSU rDNA X.W. Zhou1,2, K.Q. Su2 and Y.M. Zhang1 1School of Life and Environment Science, Shanghai Normal University, Shanghai, China 2Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China Corresponding authors: Y.M. Zhang / X.W. Zhou E-mail: [email protected] / [email protected] Genet. Mol. Res. 14 (1): 886-897 (2015) Received February 6, 2014 Accepted May 15, 2014 Published February 2, 2015 DOI http://dx.doi.org/10.4238/2015.February.2.12 ABSTRACT. Ganoderma mushroom is one of the most prescribed traditional medicines and has been used for centuries, particularly in China, Japan, Korea, and other Asian countries. In this study, different strains of Ganoderma spp and the genetic relationships of the closely related strains were identified and investigated based on the V4-V6 region of mitochondrial small subunit ribosomal DNA of the Ganoderma species. The sizes of the mitochondrial ribosomal DNA regions from different Ganoderma species showed 2 types of sequences, 2.0 or 0.5 kb. A phylogenetic tree was constructed, which revealed a high level of genetic diversity in Ganoderma species. Ganoderma lucidum G05 and G. eupense G09 strains were clustered into a G. resinaceum group. Ganoderma spp G29 and G22 strains were clustered into a G. lucidum group. However, Ganoderma spp G19, G20, and G21 strains were Genetics and Molecular Research 14 (1): 886-897 (2015) ©FUNPEC-RP www.funpecrp.com.br Characterization of V4-V6 region of SSU rDNA of Ganoderma 887 clustered into a single group, the G.
    [Show full text]
  • Phylogenetic Classification of a Colombian Basidiomycete Producer of Cytotoxic Components Against Jurkat Cells
    PHYLOGENETIC CLASSIFICATION OF A COLOMBIAN BASIDIOMYCETE PRODUCER OF CYTOTOXIC COMPONENTS AGAINST JURKAT CELLS 1 2 1 1 1 Andrea Bedoya López , Sonia Dávila , Monserrat García García , Mauricio A. Trujillo-Roldán , Norma A. Valdez-Cruz 1. Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas/UNAM; 2. Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología/UNAM. [email protected] Key words: fungus, ITS, molecular taxonomy Introduction. Approximately 150,000 different mushrooms existing on Earth and probably less than 10% have been described (1). Although many morphological descriptions were made, phylogenetic analyses of rRNA gene sequences is one of the most used descriptive tools to understand the fungal taxonomy and diversity (2). For this purpose, regions of different fungal rRNA genes as internal transcribed spacer (ITS), small subunit (SSU) and large-subunits (LSU) have been reported (2). The Internal ITS regions of fungal ribosomal DNA (rDNA) are sequences with high variability, which allowed to distinguish fungal species. In this work, a phylogenetic analysis of the ITS region of a new Basidiomicete from Colombia was performed. This mushroom was morphologically classified as Humphreya coffeata (Berk.) Stey. (Ganodermataceae). The importance of this analysis lies is the molecular classification of this mushroom which is used as an alternative medicine. Also, previous data reports a cytotoxic activity on lymphoma cell line (Jurkat) Fig.1. Maximum Likelihood phylogenetic tree, using ITS 1, ITS 2 and the 5.8 ribosomal subunit. The sequences have their identification number by submerged culture filtrates (3). and the problem sequence was named as Humphreya coffeata morphology like . Methods. The test sample was isolated from Tierra Alta, Colombia and acquired from the culture collection of the Conclusions.
    [Show full text]
  • Ganoderma: Progresos En Investigación, Manejo Y Retos a Futuro* Ganoderma: Research Advances, Management and Future Challenges
    sesión 1. plagas y enfermedades Ganoderma: progresos en investigación, manejo y retos a futuro* Ganoderma: Research Advances, Management and Future Challenges autores: Shamala Sundram, Idris Abu Seman, Nur Diyana Roslan, Lee Pei Lee Angel, Intan Nur Ainni Mohamed Azni, Salwa Abdullah Sirajuddin. citación: Sundram, S., Seman, I. A., Roslan, N. D., Angel, L. P. L., Mohamed- Azni, I. N. A., & Sirajuddin, S. A. (2019). Ganoderma: progresos en investigación, manejo y retos a futuro. Palmas, 40 (Especial Tomo I), 57-69. palabras clave: palma de aceite, Ganoderma, Pudrición basal del estípite, manejo, retos. keywords: Oil palm, Ganoderma, basal stem rot, control, challenges. *Artículo original recibido en inglés y traducido por Carlos Arenas París. Shamala Sundram Junta de Aceite de Palma de Malasia Malaysian Palm Oil Board (MPOB) Resumen La palma de aceite, el cultivo que se extiende por la región del cinturón ecuatorial, no está exenta de pestes y enfermedades. Este cultivo es altamente susceptible a una serie de enfermedades limitadas a la región donde se planta. La Pudrición basal del estípite es causada por Ganoderma spp., la amenaza número uno en la región del Sudeste Asiático. Históricamente, era percibida como una enfermedad senescente, pero pronto se descubrió que su prevalencia no tiene correlación con la edad de la palma. Además de los factores predisponentes que incluyen parámetros bióticos y abióticos, se planteó la hipótesis de que los materiales de siembra anteriores, el tipo de suelo, el estado de los nutrientes y las técnicas de replantación contribuían a su propagación. De todos estos factores, la técnica de replantación juega un papel fundamental para controlarla, pero no es suficiente.
    [Show full text]
  • High Phenotypic Plasticity of Ganoderma Sinense (Ganodermataceae, Polyporales) in China
    Asian Journal of Mycology 2(1): 1–47 (2019) ISSN 2651-1339 www.asianjournalofmycology.org Article Doi 10.5943/ajom/2/1/1 High phenotypic plasticity of Ganoderma sinense (Ganodermataceae, Polyporales) in China Hapuarachchi KK3, 4, Karunarathna SC5, McKenzie EHC6, Wu XL7, Kakumyan P4, Hyde KD2, 3, 4, Wen TC1, 2* 1State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China 2The Engineering Research Center of Southwest Bio–Pharmaceutical Resource Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China 3Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 4School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 5Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 6Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand 7Guizhou Academy of Sciences, Guiyang, 550009, Guizhou Province, China Hapuarachchi KK, Karunarathna SC, McKenzie EHC, Wu XL, Kakumyan P, Hyde KD, Wen TC 2019 – High phenotypic plasticity of Ganoderma sinense (Ganodermataceae, Polyporales) in China. Asian Journal of Mycology 2(1), 1–47, Doi 10.5943/ajom/2/1/1 Abstract Ganoderma is a typical polypore genus which has been used in traditional medicines for centuries and is increasingly being used in pharmaceutical industries worldwide. The genus has been extensively researched due to its beneficial medicinal properties and chemical constituents. However, the taxonomy of Ganoderma remains unclear, and has been plagued by confusion and misinterpretations.
    [Show full text]
  • II. the Genus Amauroderma Murrill
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 1968/1969 Band/Volume: 22 Autor(en)/Author(s): Otieno Nickson E. Artikel/Article: Polyporaceae of Eastern Africa: II. The genus Amauroderma Murrill. 173-178 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Polyporaceae of Eastern Africa: II. The genus Amauroderma Murrill By N. C. O tie no, Bot. Dept. University College, Nairobi, Kenya. With plates VII—X. Introduction: This is the third paper to report results of work which has been carried out in the Department of Botany, University College Nairobi, on Polyporaceae of Eastern Africa. The first paper (Otieno: 1966) was concerned with the genus Favolus Fr., while the second paper (In Press) has produced a check-list of Polyporaceae which have been col- lected from our area. The genus Amauroderma appears to be fairly widespread in Eastern Africa as the present paper shows. It is inter- esting, however, to note that, of the eleven species herein described, seven are from Uganda, three from Kenya and one from Rhodesia. The twelfth species from Zambia has not been seen by the writer and it is only mentioned in passing. Recently, one species has been collected by the writer from Tanzania near Dar-es-Salaam, another from the coast of Kenya near Mombasa. These will be reported separately in a sub- sequent paper. It is evident, therefore, that the discontinuity in the distribution of Amauroderma in eastern Africa could be attributed to scanty col- lecting that has been done; and it is our hope that this preliminary paper will stimulate further work on Amauroderma so that our knowl- edge of the genus becomes more thorough than it is at present.
    [Show full text]
  • Mycosphere Essays 1: Taxonomic Confusion in the Ganoderma Lucidum Species Complex Article
    Mycosphere 6 (5): 542–559(2015) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2015 Online Edition Doi 10.5943/mycosphere/6/5/4 Mycosphere Essays 1: Taxonomic Confusion in the Ganoderma lucidum Species Complex Hapuarachchi KK 1, 2, 3, Wen TC1, Deng CY5, Kang JC1 and Hyde KD2, 3, 4 1The Engineering and Research Center of Southwest Bio–Pharmaceutical Resource Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China 2Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3Center of Excellence in Fungal Research, and 4School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 5Guizhou Academy of Sciences, Guiyang, 550009, Guizhou Province, China Hapuarachchi KK, Wen TC, Deng CY, Kang JC, Hyde KD – Mycosphere Essays 1: Taxonomic confusion in the Ganoderma lucidum species complex. Mycosphere 6(5), 542–559, Doi 10.5943/mycosphere/6/5/4 Abstract The genus Ganoderma (Ganodermataceae) has been widely used as traditional medicines for centuries in Asia, especially in China, Korea and Japan. Its species are widely researched, because of their highly prized medicinal value, since they contain many chemical constituents with potential nutritional and therapeutic values. Ganoderma lucidum (Lingzhi) is one of the most sought after species within the genus, since it is believed to have considerable therapeutic properties. In the G. lucidum species complex, there is much taxonomic confusion concerning the status of species, whose identification and circumscriptions are unclear because of their wide spectrum of morphological variability. In this paper we provide a history of the development of the taxonomic status of the G.
    [Show full text]
  • Fungimap Newsletter Issue 20 August 2003
    August 2003 AUSTRALIA’S FUNGI MAPPING SCHEME Ian McCann’s latest book, Australian Fungi Inside this Edition: Illustrated, was launched at the Conference, and was met with great enthusiasm by all who Contacting Fungimap ......................................2 obtained a copy. It is filled with colour photos Interesting Groups and Websites ....................2 of over 400 species of fungi, and while it is Ian McCann – An Appreciation......................3 not a field guide, it will be of great value to Australian Fungi Illustrated by Ian McCann .3 anyone interested in fungi. Australian Fungi Illustrated – Fungimap Targets......................................3 On a sad note, it is with regret that we The 2nd National Fungimap Conference .........4 acknowledge the recent death of Ian McCann, Treading Softly................................................5 naturalist and author. The world is the poorer Flavours of Fungimap – colour supplement ...6 for his passing. His friend Dave Munro has The 11th International Fungi written a tribute (see page 3). & Fibre Symposium ................................10 Other members of the Fungimap family have Regional Coordinator News..........................12 been touched by sadness in the past few WA FSG: Nanga Foray Report.....................14 months. Our deepest sympathy goes to Roz Fungi of the South-West Forests Hart and her family, as they come to terms by Richard Robinson...............................14 with the loss of her husband. Our thoughts are Forthcoming Events ......................................15
    [Show full text]
  • Diversity of Mushrooms at Mu Ko Chang National Park, Trat Province
    Proceedings of International Conference on Biodiversity: IBD2019 (2019); 21 - 32 Diversity of mushrooms at Mu Ko Chang National Park, Trat Province Baramee Sakolrak*, Panrada Jangsantear, Winanda Himaman, Tiplada Tongtapao, Chanjira Ayawong and Kittima Duengkae Forest and Plant Conservation Research Office, Department of National Parks, Wildlife and Plant Conservation, Chatuchak District, Bangkok, Thailand *Corresponding author e-mail: [email protected] Abstract: Diversity of mushrooms at Mu Ko Chang National Park was carried out by surveying the mushrooms along natural trails inside the national park. During December 2017 to August 2018, a total of 246 samples were classified to 2 phyla Fungi; Ascomycota and Basidiomycota. These mushrooms were revealed into 203 species based on their morphological characteristic. They were classified into species level (78 species), generic level (103 species) and unidentified (22 species). All of them were divided into 4 groups according to their ecological roles in the forest ecosystem, namely, saprophytic mushrooms 138 species (67.98%), ectomycorrhizal mushrooms 51 species (25.12%), plant parasitic mushrooms 6 species (2.96%) termite mushroom 1 species (0.49%). Six species (2.96%) were unknown ecological roles and 1 species as Boletellus emodensis (Berk.) Singer are both of the ectomycorrhizal and plant parasitic mushroom. The edibility of these mushrooms were edible (29 species), inedible (8 species) and unknown edibility (166 species). Eleven medicinal mushroom species were recorded in this study. The most interesting result is Spongiforma thailandica Desjardin, et al. has been found, the first report found after the first discovery in 2009 at Khao Yai National Park by E. Horak, et al. Keywords: Species list, ecological roles, edibility, protected area, Spongiforma thailandica Introduction Mushroom is a group of fungi which has the reproductive part known as the fruit body or fruiting body and develops to form and distribute the spores.
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]