Agroterrorism: Threats and Preparedness
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Infectious Disease Research Biocontainment in Gain-Of-Function
Downloaded from Biocontainment in Gain-of-Function mbio.asm.org Infectious Disease Research W. Ian Lipkin on December 12, 2012 - Published by 2012. Biocontainment in Gain-of-Function Infectious Disease Research . mBio 3(5): . doi:10.1128/mBio.00290-12. Updated information and services can be found at: http://mbio.asm.org/content/3/5/e00290-12.full.html CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this mbio.asm.org article), more>> Information about commercial reprint orders: http://mbio.asm.org/misc/reprints.xhtml Information about Print on Demand and other content delivery options: http://mbio.asm.org/misc/contentdelivery.xhtml To subscribe to another ASM Journal go to: http://journals.asm.org/subscriptions/ Downloaded from COMMENTARY Biocontainment in Gain-of-Function Infectious Disease Research mbio.asm.org W. Ian Lipkin Columbia University, New York, New York, USA on December 12, 2012 - Published by ABSTRACT The discussion of H5N1 influenza virus gain-of-function research has focused chiefly on its risk-to-benefit ratio. An- other key component of risk is the level of containment employed. Work is more expensive and less efficient when pursued at biosafety level 4 (BSL-4) than at BSL-3 or at BSL-3 as modified for work with agricultural pathogens (BSL-3-Ag). However, here too a risk-to-benefit ratio analysis is applicable. BSL-4 procedures mandate daily inspection of facilities and equipment, moni- toring of personnel for signs and symptoms of disease, and logs of dates and times that personnel, equipment, supplies, and sam- ples enter and exit containment. -
Department of Agriculture
Vol. 76 Monday, No. 191 October 3, 2011 Part V Department of Agriculture Animal and Plant Health Inspection Service 7 CFR Part 331 9 CFR Part 121 Agricultural Bioterrorism Protection Act of 2002; Biennial Review and Republication of the Select Agent and Toxin List; Amendments to the Select Agent and Toxin Regulations; Proposed Rule VerDate Mar<15>2010 18:12 Sep 30, 2011 Jkt 226001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\03OCP3.SGM 03OCP3 srobinson on DSK4SPTVN1PROD with PROPOSALS3 61228 Federal Register / Vol. 76, No. 191 / Monday, October 3, 2011 / Proposed Rules DEPARTMENT OF AGRICULTURE and Development, PPD, APHIS, Station determines has the potential to pose a 3A–03.8, 4700 River Road Unit 118, severe threat to animal or plant health, Animal and Plant Health Inspection Riverdale, MD 20737–1238. or to animal or plant products. Service Supporting documents and any Paragraph (a)(2) of section 212 requires comments we receive on this docket the Secretary to review and republish 7 CFR Part 331 may be viewed at http:// the list every 2 years and to revise the www.regulations.gov/ list as necessary. In this document, we 9 CFR Part 121 #!docketDetail;D=APHIS-2009-0070 or are proposing to amend and republish [Docket No. APHIS–2009–0070] in our reading room, which is located in the list of select agents and toxins based room 1141 of the USDA South Building, on the findings of our third biennial RIN 0579–AD09 14th Street and Independence Avenue, review of the list. SW., Washington, DC. -
Pathogens As Weapons Gregory Koblentz the International Security Implications of Biological Warfare
Pathogens as Weapons Pathogens as Weapons Gregory Koblentz The International Security Implications of Biological Warfare Biological weapons have become one of the key security issues of the twenty-ªrst century.1 Three factors that ªrst emerged in the 1990s have contributed to this phenomenon. First, revelations regarding the size, scope, and sophistication of the Soviet and Iraqi biological warfare programs focused renewed attention on the prolifera- tion of these weapons.2 Second, the catastrophic terrorist attacks on September 11, 2001, and the anthrax letters sent to media outlets and Senate ofªces in the United States during the following month, demonstrated the desire of terror- ists to cause massive casualties and heightened concern over their ability to employ biological weapons.3 Third, signiªcant advances in the life sciences have increased concerns about how the biotechnology revolution could be ex- ploited to develop new or improved biological weapons.4 These trends suggest that there is a greater need than ever to answer several fundamental questions about biological warfare: What is the nature of the threat? What are the poten- tial strategic consequences of the proliferation of biological weapons? How ef- Gregory Koblentz is a doctoral candidate in Political Science at the Massachusetts Institute of Technology. I would like to thank Robert Art, Thomas Christensen, Linda Fu, Jeanne Guillemin, Kendall Hoyt, Milton Leitenberg, John Ellis van Courtland Moon, Julian Perry Robinson, Harvey Sapolsky, Mar- garet Sloane, Jonathan Tucker, and Stephen Van Evera for their support and discussion of previous drafts. I am also grateful for comments from the participants in seminars at the Massachusetts In- stitute of Technology’s Security Studies Program, Harvard University’s John M. -
Mitchell & Kilner
THE NEWSLETTER VOLUME 9 OF THE CENTER NUMBER 3 FOR BIOETHICS AND SUMMER 2003 HUMAN DIGNITY Inside: Remaking Humans: The New Utopians Versus a Truly Human Future1 Remaking Humans: The New Utopians Versus a Truly Human C. Ben Mitchell, Ph.D., Senior FeIIow,The Center for Bioethics and Human Dignity 1 John F. Kilner, Ph.D., President,The Center for Bioethics and Human Dignity Future If the nineteenth century was the age of the mentally by making use of reason, science, The Genetics of Mice and Men: machine and the twentieth century the infor and technology. In addition, respect for the Can—and Should—We mation age, this century is, by most accounts, rights of the individual and a belief in the 2 the age of biotechnology. In this biotech cen power of human ingenuity are important ele Intervene? tury we may witness the invention of cures for ments of transhumanism. Transhumanists genetically linked diseases, including also repudiate belief in the existence of super Movie Review natural powers that guide us. These things 4 Alzheimer’s, cancer, and a host of maladies News from the Field that cause tremendous human suffering. We together represent the core of our philosophy. may see amazing developments in food pro The critical and rational approach which duction with genetically modified foods that transhumanists support is at the service of the 6 Book Review actually carry therapeutic drugs inside them. desire to improve humankind and humanity in all their facets.” Bioterrorism and high-tech weaponry may 7 Center Resources also be in our future. Some researchers are even suggesting that our future might include Again, the idea of improving society through the remaking of the human species. -
A Paradox of Zoonotic Disease
Tropical Medicine and Infectious Disease Communication The Convergence of High-Consequence Livestock and Human Pathogen Research and Development: A Paradox of Zoonotic Disease Julia M. Michelotti 1,* ID , Kenneth B. Yeh 1 ID , Tammy R. Beckham 2, Michelle M. Colby 3 ID , Debanjana Dasgupta 1, Kurt A. Zuelke 4 and Gene G. Olinger 1 1 MRI Global, Gaithersburg, MD 20878, USA; [email protected] (K.B.Y.); [email protected] (D.D.); [email protected] (G.G.O.) 2 College of Veterinary Medicine, Kansas State University, Manhattan, KS 66503, USA; [email protected] 3 Institute of Food Production and Sustainability, National Institute of Food and Agriculture, United States Department of Agriculture, Washington, DC 20250, USA; [email protected] 4 Strategic Biosecurity and Biocontainment Facility Management Consultant, Kurt Zuelke Consulting, Lenexa, KS 66220, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-240-361-4062 Received: 23 April 2018; Accepted: 23 May 2018; Published: 30 May 2018 Abstract: The World Health Organization (WHO) estimates that zoonotic diseases transmitted from animals to humans account for 75 percent of new and emerging infectious diseases. Globally, high-consequence pathogens that impact livestock and have the potential for human transmission create research paradoxes and operational challenges for the high-containment laboratories that conduct work with them. These specialized facilities are required for conducting all phases of research on high-consequence pathogens (basic, applied, and translational) with an emphasis on both the generation of fundamental knowledge and product development. To achieve this research mission, a highly-trained workforce is required and flexible operational methods are needed. -
Federal Select Agent Program (FSAP)
United States of America: Perspectives and Approaches to Biosafety and Biosecurity Regulatory Framework Samuel S. Edwin, PhD Director, Division of Select Agents and Toxins September 26-28, 2018 Centers for Disease Control and Prevention Office of Public Health Preparedness and Response Federal Select Agent Program (FSAP) FSAP regulates the possession, use, and transfer of biological select agents and toxins that have the potential to pose a severe threat to public, animal or plant health, or to animal or plant products Managed jointly by: ▪ The Division of Select Agents and Toxins (DSAT) at the Centers for Disease Control and Prevention (CDC), part of the U.S. Department of Health and Human Services (HHS) ▪ The Agriculture Select Agent Services (AgSAS) at the Animal and Plant Health Inspection Service (APHIS), part of the U.S. Department of Agriculture (USDA) Overview & History 2001 anthrax attacks led to strengthening of program Title II of the Public Health Security and Bioterrorism Preparedness and Response Act of 2002 ▪ Legal authority for the current Federal Select Agent Program ▪ Required security measures in addition to biosafety measures ▪ Strengthened the regulatory authorities of HHS ▪ Granted comparable regulatory authorities to USDA 1. Establish and maintain a list of biological agents and toxins that have the potential to pose a severe threat to public health and safety. Consider: 1. Effect on human health 2. Degree of contagiousness and transmissibility 3. Availability of pharmacotherapies and immunizations 4. Other -
Agroterrorism: Threats and Preparedness
Order Code RL32521 Agroterrorism: Threats and Preparedness Updated March 12, 2007 Jim Monke Analyst in Agricultural Policy Resources, Science, and Industry Division Agroterrorism: Threats and Preparedness Summary The potential for terrorist attacks against agricultural targets (agroterrorism) is increasingly recognized as a national security threat, especially after the events of September 11, 2001. Agroterrorism is a subset of bioterrorism, and is defined as the deliberate introduction of an animal or plant disease with the goal of generating fear, causing economic losses, and/or undermining social stability. The goal of agroterrorism is not to kill cows or plants. These are the means to the end of causing economic damage, social unrest, and loss of confidence in government. Human health could be at risk if contaminated food reaches the table or if an animal pathogen is transmissible to humans (zoonotic). While agriculture may not be a terrorist’s first choice because it lacks the “shock factor” of more traditional terrorist targets, many analysts consider it a viable secondary target. Agriculture has several characteristics that pose unique vulnerabilities. Farms are geographically disbursed in unsecured environments. Livestock are frequently concentrated in confined locations, and transported or commingled with other herds. Many agricultural diseases can be obtained, handled, and distributed easily. International trade in food products often is tied to disease-free status, which could be jeopardized by an attack. Many veterinarians lack experience with foreign animal diseases that are eradicated domestically but remain endemic in foreign countries. In the past five years, “food defense” has received increasing attention in the counterterrorism and bioterrorism communities. Laboratory and response capacity are being upgraded to address the reality of agroterrorism, and national response plans now incorporate agroterrorism. -
Bioterrorism, Biological Weapons and Anthrax
Bioterrorism, Biological Weapons and Anthrax Part IV Written by Arthur H. Garrison Criminal Justice Planning Coordinator Delaware Criminal Justice Council Bioterrorism and biological weapons The use of bio-terrorism and bio-warfare dates back to 6th century when the Assyrians poisoned the well water of their enemies. The goal of using biological weapons is to cause massive sickness or death in the intended target. Bioterrorism and biological weapons The U.S. took the threat of biological weapons attack seriously after Gulf War. Anthrax vaccinations of U.S. troops Investigating Iraq and its biological weapons capacity The Soviet Union manufactured various types of biological weapons during the 1980’s • To be used after a nuclear exchange • Manufacturing new biological weapons – Gene engineering – creating new types of viruses/bacteria • Contagious viruses – Ebola, Marburg (Filoviruses) - Hemorrhagic fever diseases (vascular system dissolves) – Smallpox The spread of biological weapons after the fall of the Soviet Union •Material • Knowledge and expertise •Equipment Bioterrorism and biological weapons There are two basic categories of biological warfare agents. Microorganisms • living organic germs, such as anthrax (bacillus anthrax). –Bacteria –Viruses Toxins • By-products of living organisms (natural poisons) such as botulism (botulinum toxin) which is a by- product of growing the microorganism clostridium botulinum Bioterrorism and biological weapons The U.S. was a leader in the early research on biological weapons Research on making -
Agricultural Bioterrorism
From the pages of Recent titles Agricultural Bioterrorism: A Federal Strategy to Meet the Threat Agricultural in the McNair MCNAIR PAPER 65 Bioterrorism: Paper series: A Federal Strategy to Meet the Threat 64 The United States ignores the The Strategic Implications of a Nuclear-Armed Iran Agricultural potential for agricultural bioter- Kori N. Schake and rorism at its peril. The relative Judith S. Yaphe Bioterrorism: ease of a catastrophic bio- weapons attack against the 63 A Federal Strategy American food and agriculture All Possible Wars? infrastructure, and the devastat- Toward a Consensus View of the Future Security to Meet the Threat ing economic and social conse- Environment, 2001–2025 quences of such an act, demand Sam J. Tangredi that the Nation pursue an aggres- sive, focused, coordinated, and 62 stand-alone national strategy to The Revenge of the Melians: Asymmetric combat agricultural bioterrorism. Threats and the Next QDR The strategy should build on Kenneth F. McKenzie, Jr. counterterrorism initiatives already underway; leverage exist- 61 ing Federal, state, and local pro- Illuminating HENRY S. PARKER grams and capabilities; and Tomorrow’s War Martin C. Libicki involve key customers, stake- PARKER holders, and partners. The U.S. 60 Department of Agriculture The Revolution in should lead the development of Military Affairs: this strategy. Allied Perspectives Robbin F. Laird and Holger H. Mey Institute for National Strategic Studies National Defense University About the Author NATIONAL DEFENSE UNIVERSITY President: Vice Admiral Paul G. Gaffney II, USN Henry S. Parker is National Program Leader for Aquaculture at the Vice President: Ambassador Robin Lynn Raphel Agricultural Research Service in the U.S. -
Efficient Responses to Catastrophic Risk Richard A
University of Chicago Law School Chicago Unbound Journal Articles Faculty Scholarship 2006 Efficient Responseso t Catastrophic Risk Richard A. Posner Follow this and additional works at: https://chicagounbound.uchicago.edu/journal_articles Part of the Law Commons Recommended Citation Richard A. Posner, "Efficient Responseso t Catastrophic Risk," 6 Chicago Journal of International Law 511 (2006). This Article is brought to you for free and open access by the Faculty Scholarship at Chicago Unbound. It has been accepted for inclusion in Journal Articles by an authorized administrator of Chicago Unbound. For more information, please contact [email protected]. Efficient Responses to Catastrophic Risk Richard A. Posner* The Indian Ocean tsunami of December 2004 has focused attention on a type of disaster to which policymakers pay too little attention-a disaster that has a very low or unknown probability of occurring but that if it does occur creates enormous losses. Great as the death toll, physical and emotional suffering of survivors, and property damage caused by the tsunami were, even greater losses could be inflicted by other disasters of low (but not negligible) or unknown probability. The asteroid that exploded above Siberia in 1908 with the force of a hydrogen bomb might have killed millions of people had it exploded above a major city. Yet that asteroid was only about two hundred feet in diameter, and a much larger one (among the thousands of dangerously large asteroids in orbits that intersect the earth's orbit) could strike the earth and cause the total extinction of the human race through a combination of shock waves, fire, tsunamis, and blockage of sunlight wherever it struck. -
Placing Global Biosecurity Engagement Programs Under the Umbrella of Global Health Security
FAS Issue Brief May 2014 Placing Global Biosecurity Engagement Programs under the Umbrella of Global Health Security Michelle Rozo Federation of American Scientists FAS ISSUE BRIEF Author Michelle Rozo, Ph.D. Candidate, Cell, Molecular, Developmental Biology and Biophysics, Johns Hopkins University. About FAS Issue Briefs FAS Issue Briefs provide nonpartisan research and analysis for policymakers, government officials, academics, and the general public. All statements of fact and expressions of opinion contained in this and other FAS Issue Briefs are the sole responsibility of the author or authors. This report does not necessarily represent the views of the Federation of American Scientists. About FAS Founded in 1945 by many of the scientists who built the first atomic bombs, the Federation of American Scientists (FAS) is devoted to the belief that scientists, engineers, and other technically trained people have the ethical obligation to ensure that the technological fruits of their intellect and labor are applied to the benefit of humankind. The founding mission was to prevent nuclear war. While nuclear security remains a major objective of FAS today, the organization has expanded its critical work to address urgent issues at the intersection of science and security. FAS publications are produced to increase the understanding of policymakers, the public, and the press about urgent issues in science and security policy. Individual authors who may be FAS staff or acknowledged experts from outside the institution write these reports. Thus, these reports do not represent an FAS institutional position on policy issues. All statements of fact and expressions of opinion contained in this and other FAS Issue Briefs are the sole responsibility of the author or authors. -
Biosurveillance Signatures for Biosecurity and Public Health
Biosurveillance Signatures for biosecurity and public health A Los Alamos National Laboratory Implementation Plan for the Science of Signatures Biological Signatures for National Security Los Alamos National Laboratory Biosurveillance at Los Alamos Table of Contents Los Alamos National Laboratory’s charge is to develop science and technology that will make the nation safer and enhance our global standing. This breadth of mission scope requires careful Biosurveillance at Los Alamos ....................................2 internal planning and effective cooperation with external partners and other governmental agencies. The document you A National Imperative .................................................4 are holding is one of the products of ongoing planning efforts that are designed to bring to bear the Laboratories unique Laboratory Planning .....................................................5 capabilities on problems of the greatest significance. To those unfamiliar with the extent of our science, it may seem odd that Who should read this ....................................................5 our planning includes such a strong biology focus, yet our work in this area extends all the way back to the Manhattan Project and the birth of large scale LANL Strategic Context ...............................................6 government-sponsored research. Following World War II, the Laboratory began programs in health and radiation physics that expanded to become the robust Biosurveillance Overview.............................................8