Lesser Butterfly-Orchid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Platanthera Chapmanii (Small) Luer
Common Name: CHAPMAN’S FRINGED ORCHID Scientific Name: Platanthera chapmanii (Small) Luer Other Commonly Used Names: none Previously Used Scientific Names: Platanthera X chapmanii (Small) Luer, Blephariglottis chapmanii Small Family: Orchidaceae (orchid) Rarity Ranks: G2/S1 State Legal Status: Special Concern Federal Legal Status: none Federal Wetland Status: OBL Description: Perennial herb 12 - 30 inches (30 - 77 cm) tall, with 2 - 4 stem leaves. Leaves 6 - 10 inches (15 - 26) long, - 1 inches (1 - 3 cm) wide, sheathing the stem and decreasing in size to the flower spike. Flower cluster a dense spike at the top of the stem with 30 - 75 bright orange flowers. Flower inch (2 cm) long, not including spur. Lateral sepals oval, held backward along the side of the flower; one upright sepal overlaps with 2 narrow, fringed petals to form a hood over the center of the flower. Lip petal oval with a deep, showy, delicate fringe. Spur about ¾ inch (1.75 - 2 cm) long, extends behind the flower and is about the same length as the ovary. Similar Species: Chapman’s fringed orchid is a species created by the natural crossing of orange fringed orchid (Platanthera ciliaris) and orange crested orchid (P. cristata); it closely resembles both ancestors but can be distinguished by spur length. The spur of orange fringed orchid ( - 1 inch) is much longer than its ovary; the spur of orange crested orchid ( - ¾ inch) is clearly shorter than its ovary. Related Rare Species: Yellow fringeless orchid (Platanthera integra, Special Concern) occurs in wet savannas and pitcherplant bogs in 5 Coastal Plain counties. -
Native Orchids in Southeast Alaska with an Emphasis on Juneau
Native Orchids in Southeast Alaska with an Emphasis on Juneau Marlin Bowles & Bob Armstrong 2019 Acknowledgements We are grateful to numerous people and agencies who provided essential assistance with this project. Carole Baker, Gilbette Blais, Kathy Hocker, John Hudson, Jenny McBride and Chris Miller helped locate and study many elusive species. Pam Bergeson, Ron Hanko, & Kris Larson for use of their photos. Ellen Carrlee provided access to the Juneau Botanical Club herbarium at the Alaska State Museum. The U.S. Forest Service Forestry Sciences Research Station at Juneau also provided access to its herbarium, and Glacier Bay National Park provided data on plant collections in its herbarium. Merrill Jensen assisted with plant resources at the Jensen-Olson Arboretum. Don Kurz, Jenny McBride, Lisa Wallace, and Mary Willson reviewed and vastly improved earlier versions of this book. About the Authors Marlin Bowles lives in Juneau, AK. He is a retired plant conservation biologist, formerly with the Morton Arboretum, Lisle, IL. He has studied the distribution, ecology and reproductionof grassland orchids. Bob Armstrong has authored and co-authored several books about nature in Alaska. This book and many others are available for free as PDFs at https://www.naturebob.com He has worked in Alaska as a biologist, research supervisor and associate professor since 1960. Table of Contents Page The southeast Alaska archipellago . 1 The orchid plant family . 2 Characteristics of orchids . 3 Floral anatomy . 4 Sources of orchid information . 5 Orchid species groups . 6 Orchid habitats . Fairy Slippers . 9 Eastern - Calypso bulbosa var. americana Western - Calypso bulbosa var. occidentalis Lady’s Slippers . -
Physiological Features of the Terrestrial Orchids
Anallelle Uniiversiităţiiii diin Craiiova, seriia Agriiculltură – Montanollogiie – Cadastru (Annalls of the Uniiversiity of Craiiova - Agriicullture, Montanollogy, Cadastre Seriies)Voll. XLIX/2019 PHYSIOLOGICAL FEATURES OF THE TERRESTRIAL ORCHIDS CEPHALANTHERA LONGIFOLIA AND PLATANTHERA BIFOLIA THAT GROW IN THE PEDO-CLIMATIC CONDITIONS FROM OLTENIA REGION OF ROMANIA BUSE-DRAGOMIR LUMINITA (1), NICOLAE ION (2), NICULESCU MARIANA (3) (1) University of Craiova, E-mail: [email protected] (2) University of Craiova, E-mail: [email protected] (3) University of Craiova, E-mail: [email protected] *Corresponding author email: [email protected] Key words: terrestrial orchids, transpiration, photosynthesis, light ABSTRACT For studying the physiology of terrestrial orchids, plants from the species Cephalanthera longifolia and Platanthera bifolia have been used. The experiences were carried out directly on the field, in Mehedinţi County, Comanesti Hills. In both species of orchids, the seasonal dynamics of photosynthesis registers a peak during the flowering period that corresponds to a maximum content of assimilating pigments and also a maximum leaf surface. In terrestrial orchids, the seasonal dynamics of leaf transpiration intensity is highest during spring, when the water content in the soil is high and minimal in summer. The graphs showing the diurnal variation of photosynthesis for the two species indicate that Cephalanthera longifolia prefers semi-shaded and sunny habitats, while the plants of Platanthera bifolia that are found in the studied areas prefer a more shaded environment INTRODUCTION Orchids that grow directly at the two, more or less globular or digitally- ground level in large areas of Europe or branched tubules. From the main tuber on the grasslands of the tropical regions comes the flowering stem. -
Hooker's Orchid Platanthera Hookeri
Natural Heritage Hooker’s Orchid & Endangered Species Platanthera hookeri (Torr. ex A. Gray) Linkl. Program www.mass.gov/nhesp State Status: None Federal Status: None Massachusetts Division of Fisheries & Wildlife SPECIES DESCRIPTION: Hooker’s Orchid has two THREATS: A study by Reddoch and Reddoch in 2007 oval leaves, 6 to 12 cm (2-5 in.), that lie on the ground, of the population dynamics of this species found very and a typically leafless flowering stalk grows to 40cm little seed set, indicating a lack of pollinator visits, (16 in.) in height. The up-turned flowers are yellowish- possibly due to shading by canopy closure, herbivory by green, with a 13 to 25 mm spur and a lip that curves up. deer, and acid deposition as the primary causes of the It blooms from mid to late May into early July. It was orchid decline. Acid deposition may be affecting the named after an English botanist, Sir William Jackson orchids directly, or it may be impacting their associated Hooker (1785 to 1865). mycorrhizal fungi. DISTRIBUTION AND ABUNDANCE: The species ranges from Newfoundland west to Manitoba, south to REFERENCES: Iowa and Pennsylvania. The species has declined 30 to Gleason, H.A. and A. Cronquist. 1991. Manual of Vascular 50% across its range since the early to mid-1900s. It has Plants of Northeastern United States and Adjacent not been recently observed in several of the states at the Canada, Second Edition. The New York Botanical southern extent of its range, including Illinois, Indiana, Garden, Bronx, New York. Ohio, New Jersey and Connecticut. -
National List of Vascular Plant Species That Occur in Wetlands 1996
National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt. -
Identification and Comparison of the Pollinators for the Purple-Fringed
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work Fall 1-2006 Identification and Comparison of the ollinatP ors for the Purple- fringed Orchids Platanthera psycodes and P.grandiflora John Richard Evans University of Tennessee-Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Recommended Citation Evans, John Richard, "Identification and Comparison of the ollinatP ors for the Purple-fringed Orchids Platanthera psycodes and P.grandiflora" (2006). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/953 This is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Identification and Comparison of the Pollinators for the Purple-fringed Orchids Platanthera psycodes and P. grandijlora John R. Evans Department of Ecology and Evolutionary Biology The University of Tennessee Advised by John A. Skinner Professor, Department of Entomology and Plant Pathology The University of Tennessee Abstract The pollination ecologies of the two purple-fringed orchids, Platanthera psycodes and P. grandiflora, are compared to test the prediction that, despite an extraordinary similarity in appearance, internal differences in the position and shape of fertile structures contributes to a distinct difference in their respective pollination ecologies. Field observations and experiments conducted during the 2003 flowering season in Great Smoky Mountains National Park revealed a number of effective pollen vectors not previously documented for P. -
Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local Study)
plants Article Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local study) Lukáš Wittlinger and Lucia Petrikoviˇcová * Department of Geography and Regional Development, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 94974 Nitra, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +421-907-3441-04 Abstract: In the years 2018–2020, we carried out large-scale mapping in the Western Carpathians with a focus on determining the biodiversity of taxa of the family Orchidaceae using field biogeographical research. We evaluated the research using phytogeographic analysis with an emphasis on selected ecological environmental factors (substrate: ecological land unit value, soil reaction (pH), terrain: slope (◦), flow and hydrogeological productivity (m2.s−1) and average annual amounts of global radiation (kWh.m–2). A total of 19 species were found in the area, of which the majority were Cephalenthera longifolia, Cephalenthera damasonium and Anacamptis morio. Rare findings included Epipactis muelleri, Epipactis leptochila and Limodorum abortivum. We determined the ecological demands of the abiotic environment of individual species by means of a functional analysis of communities. The research confirmed that most of the orchids that were studied occurred in acidified, calcified and basophil locations. From the location of the distribution of individual populations, it is clear that they are generally arranged compactly and occasionally scattered, which results in ecological and environmental diversity. During the research, we identified 129 localities with the occurrence of Citation: Wittlinger, L.; Petrikoviˇcová, L. Phytogeographical Analysis and 19 species and subspecies of orchids. We identify the main factors that threaten them and propose Ecological Factors of the Distribution specific measures to protect vulnerable populations. -
The Dynamics of Island Populations of Platanthera Bifolia in the Biebrza National Park (NE Poland)
Ann. Bot. Fennici 40: 243–253 ISSN 0003-3847 Helsinki 29 August 2003 © Finnish Zoological and Botanical Publishing Board 2003 The dynamics of island populations of Platanthera bifolia in the Biebrza National Park (NE Poland) Emilia Brzosko University in Białystok, Institute of Biology, ul. Swierkowa 20B, PL-15-950 Białystok, Poland (e-mail: [email protected]) Received 20 Aug. 2002, revised version received 20 Nov. 2002, accepted 22 Jan. 2003 Brzosko, E. 2003: The dynamics of island populations of Platanthera bifolia in the Biebrza National Park (NE Poland). — Ann. Bot. Fennici 40: 243–253. Two isolated populations of Platanthera bifolia (Orchidaceae) were monitored for six years in the Biebrza National Park. Platanthera bifolia populations seem to be affected by habitat conditions. The populations differed in size, proportion of fl owering indi- viduals and the effectiveness of reproduction. The natural fruiting rate of P. bifolia is high (over 90%), due to high levels of autogamy (almost 60%). Some costs of repro- duction (in terms of reduction of leaf size) were observed. Leaves were largest before fl owering and in subsequent years their size decreased. Dormancy affected population dynamics, varying from 22.4% in one population to 16.3% in the other. Both P. bifolia populations appeared to be healthy and are not threatened with extinction at the two study sites. Key words: autogamy, cost of reproduction, dormancy, fl owering, fruiting, orchids, Platanthera bifolia, population dynamics Introduction authors, because according to Ackerman (1998) “populations are the basic unit of species con- Information on biology and demography of servation”. In most cases monitoring of orchid orchid species is still limited given the size of the populations follows year-to-year changes in num- Orchidaceae, reaching 20 000 species (Atwood bers of individuals, their fl owering and fruiting 1986). -
Platanthera Chapmanii: Culture, Population Augmentation, and Mycorrhizal Associations
Platanthera chapmanii: culture, population augmentation, and mycorrhizal associations By Kirsten Poff, B.S. A Thesis In Plant and Soil Science Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved Dr. Jyotsna Sharma Chair of Committee Dr. Scott Longing Dr. John Zak Dr. Mark Sheridan Dean of the Graduate School August, 2016 © 2016, Kirsten Poff Texas Tech University, Kirsten Poff, August 2016 ACKNOWLEDGEMENTS First I would like to thank my mentor and advisor, Dr. Jyotsna Sharma for all of her help and support. She has challenged and encouraged me throughout my program and the duration of this project. Thanks to her, I am light-years ahead of where I was two years ago. Texas Parks and Wildlife is also gratefully acknowledged for funding portions of this study. I also wish to express my gratitude to Dr. John Zak for his enthusiasm and for encouraging my love of microbes. I also gratefully thank Dr. Scott Longing for his advice, and constructive comments. I sincerely thank all three committee members for all the time and energy they have spent on me throughout the duration of my project. I gratefully acknowledge Dr. Jason Woodward for his encouragement and recommendations as well. I also acknowledge Dr. Cynthia McKenney and Mr. Russel Plowman for their support; I now have a passion for teaching, and a much better understanding of what it is like to teach college level courses. I want to also thank Mr. Robby Carlson for his time and technological assistance. -
The Vascular Flora of Rarău Massif (Eastern Carpathians, Romania). Note Ii
Memoirs of the Scientific Sections of the Romanian Academy Tome XXXVI, 2013 BIOLOGY THE VASCULAR FLORA OF RARĂU MASSIF (EASTERN CARPATHIANS, ROMANIA). NOTE II ADRIAN OPREA1 and CULIŢĂ SÎRBU2 1 “Anastasie Fătu” Botanical Garden, Str. Dumbrava Roşie, nr. 7-9, 700522–Iaşi, Romania 2 University of Agricultural Sciences and Veterinary Medicine Iaşi, Faculty of Agriculture, Str. Mihail Sadoveanu, nr. 3, 700490–Iaşi, Romania Corresponding author: [email protected] This second part of the paper about the vascular flora of Rarău Massif listed approximately half of the whole number of the species registered by the authors in their field trips or already included in literature on the same area. Other taxa have been added to the initial list of plants, so that, the total number of taxa registered by the authors in Rarău Massif amount to 1443 taxa (1133 species and 310 subspecies, varieties and forms). There was signaled out the alien taxa on the surveyed area (18 species) and those dubious presence of some taxa for the same area (17 species). Also, there were listed all the vascular plants, protected by various laws or regulations, both internal or international, existing in Rarău (i.e. 189 taxa). Finally, there has been assessed the degree of wild flora conservation, using several indicators introduced in literature by Nowak, as they are: conservation indicator (C), threat conservation indicator) (CK), sozophytisation indicator (W), and conservation effectiveness indicator (E). Key words: Vascular flora, Rarău Massif, Romania, conservation indicators. 1. INTRODUCTION A comprehensive analysis of Rarău flora, in terms of plant diversity, taxonomic structure, biological, ecological and phytogeographic characteristics, as well as in terms of the richness in endemics, relict or threatened plant species was published in our previous note (see Oprea & Sîrbu 2012). -
Mississippi Natural Heritage Program Special Plants - Tracking List -2018
MISSISSIPPI NATURAL HERITAGE PROGRAM SPECIAL PLANTS - TRACKING LIST -2018- Approximately 3300 species of vascular plants (fern, gymnosperms, and angiosperms), and numerous non-vascular plants may be found in Mississippi. Many of these are quite common. Some, however, are known or suspected to occur in low numbers; these are designated as species of special concern, and are listed below. There are 495 special concern plants, which include 4 non- vascular plants, 28 ferns and fern allies, 4 gymnosperms, and 459 angiosperms 244 dicots and 215 monocots. An additional 100 species are designated “watch” status (see “Special Plants - Watch List”) with the potential of becoming species of special concern and include 2 fern and fern allies, 54 dicots and 44 monocots. This list is designated for the primary purposes of : 1) in environmental assessments, “flagging” of sensitive species that may be negatively affected by proposed actions; 2) determination of protection priorities of natural areas that contain such species; and 3) determination of priorities of inventory and protection for these plants, including the proposed listing of species for federal protection. GLOBAL STATE FEDERAL SPECIES NAME COMMON NAME RANK RANK STATUS BRYOPSIDA Callicladium haldanianum Callicladium Moss G5 SNR Leptobryum pyriforme Leptobryum Moss G5 SNR Rhodobryum roseum Rose Moss G5 S1? Trachyxiphium heteroicum Trachyxiphium Moss G2? S1? EQUISETOPSIDA Equisetum arvense Field Horsetail G5 S1S2 FILICOPSIDA Adiantum capillus-veneris Southern Maidenhair-fern G5 S2 Asplenium -
Ja Roheka Käokeele (Platanthera Chlorantha) Levik Ning Kaitse Eestis Lõputöö Liina Sirel
Tartu Ülikool Kahelehise käokeele (Platanthera bifolia) ja roheka käokeele (Platanthera chlorantha) levik ning kaitse Eestis Lõputöö Liina Sirel Juhendaja: teadur Silvia Pihu Kaitsmisele lubatud: Juhendaja: /allkiri, kuupäev/ Osakonna juhataja: /allkiri, kuupäev/ Tartu 2013 SISUKORD 1. SISSEJUHATUS ....................................................................................................... 3 2. MATERJAL JA METOODIKA ................................................................................ 4 3. KAHELEHINE JA ROHEKAS KÄOKEEL ............................................................. 5 3.1. Käokeelte üldiseloomustus ................................................................................. 5 3.2. Käokeelte morfoloogilised tunnused ja Eesti liikide eristamine ........................ 6 3.3. Kahelehise ja roheka käokeele levik Eestis ........................................................ 7 3.4. Kahelehise ja roheka käokeele bioloogia ja paljunemine................................. 11 3.5. Käokeelte ohustatus ja kaitse (Eestis) .............................................................. 13 4. ARUTELU ............................................................................................................... 15 KOKKUVÕTE ................................................................................................................ 16 SUMMARY .................................................................................................................... 17 TÄNUAVALDUSED ....................................................................................................