Multiple Origins of the Common Chameleon in Southern Italy

Total Page:16

File Type:pdf, Size:1020Kb

Multiple Origins of the Common Chameleon in Southern Italy Herpetozoa 32: 11–19 (2019) DOI 10.3897/herpetozoa.32.e35611 Multiple origins of the common chameleon in southern Italy Roberto Basso1, Maria Luisa Vannuccini2, Luca Nerva3,4, Giuseppe Mazza5, Matteo Seno1, Emiliano Mori6 1 Museo Civico di Storia Naturale di Jesolo, Via Enzo Ferrari 3, 30016, Lido di Jesolo (Venezia), Italy 2 Dipartimento di Scienze Ambientali, Università degli Studi di Siena, Via P.A. Mattioli 4, 53100, Siena, Italy 3 CREA Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015, Conegliano Veneto (Treviso), Italy 4 Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy 5 CREA Research Centre for Plant Protection and Certification, Via Lanciola 12/A, 50125, Cascine del Riccio (Firenze), Italy 6 Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via P.A. Mattioli 4, 53100, Siena, Italy http://zoobank.org/18928D5C-5BFA-4596-B80D-C66126121886 Corresponding author: Emiliano Mori ([email protected]) Academic editor: Günter Gollmann ♦ Received 7 February 2019 ♦ Accepted 30 March 2019 ♦ Published 13 May 2019 Abstract The common chameleon Chamaeleo chamaeleon is a Mediterranean lizard which has been introduced in many islands and its native origin in European countries is debated. Chameleons have been introduced in southern Italy, possibly from the Middle East and Tunisia. We conducted genetic analyses on mitochondrial DNA 16S gene on a larger sample. We observed a multiple origin for the Salento (Apulia, southern Italy) population, with individuals phylogenetically related to populations of North Africa and two areas in the Middle East. Some individuals may have been released before the 1950s and some others in the 1980s, improving the estab- lishment success of this species. Key Words 16S rRNA gene, Chamaeleo chamaeleon, Mediterranean countries, paleo-introduction, population origin Introduction 2018), which may help researchers to predict alien spe- cies’ spread and inform authorities how to prevent further Genetics can play a crucial role in describing biological invasions (Ciosi et al. 2010; Mazzamuto et al. 2016). invasions, which are one of the major threats to global Chameleons (Squamata, Chamaeleonidae) include over biodiversity (Vitousek et al. 1996; Schmitz and Simber- 210 lizard species grouped in 12 genera (Tilbury 2018). loff 1997; Courchamp et al. 2017; Crooks et al. 2017). Among those, the genus Chamaeleo is the only one natu- Accordingly, genetic variation can reveal taxonomic dif- rally present in Mediterranean countries, North Africa and ferences (Panzeri et al. 2014; Comtet et al. 2015; Mori et the Middle East (www.iucnredlist.org. Downloaded on 29 al. 2017; for a review, see Lawson Handley et al. 2011). April 2018). Traditional taxonomy identified four subspe- A high genetic variability of the founders often results in cies of the common chameleon Chamaeleo chamaeleon a high colonization/invasion success (Mori et al. 2014; (Yaacov et al. 2012; Andreone et al. 2016; Tilbury 2018), Jackson et al. 2015; Paulauskas et al. 2016). Genetics has which live in allopatry in its natural range. As to Europe, been widely used to infer source populations and invasion populations in the Iberian Peninsula seem to have been in- paths (Stevenson-Holt and Sinclair 2015; Daane et al. troduced from Maghreb, with multiple introduction events Copyright Roberto Basso et al. This is an open access article distributed under the terms of the Creative Commons Attribution Li- cense (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 12 Roberto Basso et al.: Origins of chameleons in southern Italy (Paulo et al. 2002). Common chameleons currently pres- Molecular analyses ent in Cyprus and in Greek islands (e.g. Samos, Chios and Crete) share mitochondrial haplotypes with the Turkish We extracted the DNA from tissue samples (i.e. tongue) population (Macey et al. 2008; Andreone et al. 2016). At of 18 museum specimens of the common chameleon col- least two subspecies of the common chameleon have been lected by one of the authors (RB) between 1951 and 2017 introduced to Malta (Dimaki et al. 2008; Andreone et al. (Appendix 1) from throughout the Salento peninsula, and 2016), one from Maghreb and the other from the Near East. stored in 95% ethanol at the Museo Civico di Storia Natu- As for southern Italy, chameleons in Calabria (province of rale di Jesolo (province of Venice, NE Italy). Individuals Reggio Calabria) were possibly introduced from Tunisia stored at the museum were found dead on paved road, (Andreone et al. 2016). Conversely, Andreone et al. (2016) road killed or preyed upon by domestic cats. Moreover, showed that the population of the common chameleon in three of these samples belong to chameleons most likely Salento (Apulia) may originate from the Middle East, shar- poisoned by pesticides in olive groves (RB, unpublished). ing mitochondrial sequences with Eastern Mediterranean We used the PureLink DNA Mini Kit (Invitrogen, by countries (northern Israel). In southern Italy, long-lasting Thermo Fisher Scientific) and we followed the manufac- observational data and records of young individuals pro- turer’s instructions. The reliability of DNA extraction was vide strong evidence of reproduction and naturalization controlled through a negative control (no tissue added) (Marzano and Scarafino 2010; Pellegrino et al. 2016). Oth- and the DNA content determined through an Eppendorf er observations from the rest of Italy (Sicily, Sardinia, La- Ultraviolet Spectrophotometer (AG Eppendorf). Mito- tium, Liguria, Emilia Romagna and Friuli Venezia-Giulia) chondrial DNA (mtDNA) genes, and particularly the 16 refer to single individuals (Bruno 1986; Andreone et al. Svedberg rRNA gene (hereafter, 16S), show significant 2016) and, for most of them, no photos or tissue samples divergence among the four taxonomical subspecies of the or museum specimens exist (Andreone et al. 2016). common chameleon (Yaacov et al. 2012; Andreone et al. Andreone et al. (2016) analyzed three individuals 2016), thus allowing researchers to infer the geographical from Salento, collected in the same year (2015), from origin of populations of this species. the same study site (i.e., Nardò). According to published We used species-specific primers to sequence a frag- works, the first record of the common chameleon in ment of the mtDNA 16S gene, specifically designed on a Salento in the wild dates back to 1987 and, since then, consensus sequence using all the 16S sequences already records have increased (Basso and Calasso 1991; Marza- present on GenBank, to increase the amplification suc- no and Scarafino 2010). Andreone et al. (2016) and Mar- cess of our samples. We used the primers CAM-16S1 (5’- zano and Scarafino (2010) confirmed that most records CCT GCC CTG TGG AAC CCT A-3’) and CAM-16S2 came from the municipality of Nardò. Given that both (5’-GTT AGT CGT TGA ACA AAC GAA CCG-3’), Costa (1871) and Bruno (1986) did not report the pres- specifically designed for this work. Retrieved sequences ence of the chameleon in Salento, Andreone et al. (2016) were aligned using MUSCLE (Edgar 2004). Conserved claimed that the presence of the chameleon in this area regions at both ends were used to design custom prim- might be the result of a recent introduction (e.g. early ers (Bio-Fab Research – Rome, Italy) with high melting 1980s: see Scalera 2001). Conversely, Basso and Calas- temperature (above 60 °C) following Nerva et al. (2016). so (1991) already reported that the distribution of this PCR reactions were run through a 2720 Thermal Cy- small lizard could be even wider and possibly date back cler (Applied Biosystems), following this profile: 3 min prior to 1980. In this work, we aimed at (i) mapping the 94 °C, 30 cycles of 35 s at 94 °C, 45 s at 62 °C and 3 min local distribution of the common chameleon in Salento at 72 °C, followed by 7 min at 72 °C. PCR reactions were which underwent a range expansion, (ii) to identify the prepared following Mori et al. (2018), and using about subspecies and (iii) to infer the origin of common cha- 35 ng/ml of each DNA template. The electrophoresis was meleon established in this area. run for 45 min. on a 1.5% agarose gel. Pairwise alignments of 16S sequences were performed using ClustalW (Higgins and Sharp 1988). The best fitting Materials and methods evolutionary model for further phylogenetic analysis was selected using the algorithm implemented in MEGA7 (Ku- mar et al. 2016). Tamura-Nei model with Invariant sites Redefinition of the distribution of the (TN93+I) resulted in the best model for the considered data. common chameleon in Salento Evolutionary relationships were inferred with MEGA7 (Kumar et al. 2016), using the Neighbor-Joining and the We collected all the available information on the presence Maximum Likelihood (1000 bootstrap replicates) methods of the common chameleon through field investigations, based on the Tamura-Nei model (Tamura and Nei 1993). involving local rangers and human populations, as well We retrieved another 34 sequences of 16S rRNA gene as searching for grey literature, photos and other un- of the common chameleon from GenBank (Table S2 in equivocal presence signs of the common chameleon (e.g. Appendix 1), which were used to compare ours. Subspe- individuals illegally collected by agricultural pruners of cies distribution was drawn by using our sequences (N = olive-trees) in Salento. 18) and those reported in the phylogenetic tree by Andre- herpetozoa.pensoft.net Herpetozoa 32: 11–19 (2019) 13 one et al. (2016) (N = 34 from throughout the known ex- tent of occurrence of this species). The veiled chameleon Chamaeleon calyptratus was used as the outgroup. Results Distribution of the common chameleon in Salento (Apulia) Local interviews and field-searches revealed that the current distribution of the common chameleon in Salen- to (Apulia) ranges between the municipalities of Nardò and Castrignano del Capo (Fig.
Recommended publications
  • New Data on the Distribution and Population Density of the African Chameleon Chamaeleo Africanus and the Common Chameleon Chamae
    VOL. 2015., No.1, Str. 36- 43 Original Scientific Paper Hyla Dimaki et al. 2015 ISSN: 1848-2007 New data on the distribution and population density of the African Chameleon, Chamaeleo africanus and the Common Chameleon, Chamaeleo chamaeleon in Greece Novi podatci o distribuciji i populacijskoj gustoći afričkog kamelenona, Chamaeleo africanus i običnog kameleona, Chamaeleo chamaeleo u Grčkoj 1 2 3 4 MARIA DIMAKI *, BASIL CHONDROPOULOS , ANASTASIOS LEGAKIS , EFSTRATIOS VALAKOS , MARIOS 1 VERGETOPOULOS 1Goulandris Natural History Museum, 100 Othonos St., 145 62 Kifissia, Greece, [email protected] 2Section of Animal Biology, Dept. of Biology, Univ. of Patra, Greece. 3Zoological Museum, Dept. of Biology, Univ. of Athens, Greece. 4Section of Animal & Human Physiology, Dept. of Biology, Univ. of Athens, Greece. Abstract New data on the distribution and the population density of the Common Chameleon Chamaeleo chamaeleon (Linnaeus, 1758) and the African Chameleon Chamaeleo africanus Laurenti, 1768 are reported from Greece. The data for the Common Chameleon was collected from Samos Island (Aegean Sea) and for the African Chameleon from the SW Peloponnese. The period of the data collection is from 1998 till 2014. The African Chameleon is an allochthonous species for Greece and its presence in the area of Gialova Pylos is likely due to its introduction in historical times, because chameleons were often used in the past as pets by people and kings (Bodson, 1984). Some months ago a new population of the Common Chameleon was discovered in Attica. The distribution of the African Chameleon has expanded in the western Peloponnese with at least two new populations. This expansion is due to the local translocation of the species by humans.
    [Show full text]
  • New Species of Choleoeimeria (Apicomplexa: Eimeriidae) from The
    FOLIA PARASITOLOGICA 53: 91–97, 2006 New species of Choleoeimeria (Apicomplexa: Eimeriidae) from the veiled chameleon, Chamaeleo calyptratus (Sauria: Chamaeleonidae), with taxonomic revision of eimerian coccidia from chameleons Michal Sloboda1 and David Modrý1,2 1Department of Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1–3, 612 42 Brno, Czech Republic; 2Institute of Parasitology, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic Key words: Coccidia, Eimeriorina, Choleoeimeria, taxonomy Abstract. Coprological examination of 71 samples from a breeding colony of veiled chameleons, Chamaeleo calyptratus Duméril et Duméril, 1851, revealed a presence of two species of coccidia. In 100% of the samples examined, oocysts of Isospora jaracimrmani Modrý et Koudela, 1995 were detected. A new coccidian species, Choleoeimeria hirbayah sp. n., was discovered in 32.4% of samples from the colony. Its oocysts are tetrasporocystic, cylindrical, 28.3 (25–30) × 14.8 (13.5–17.5) µm, with smooth, bilayered, ~1 µm thick wall. Sporocysts are dizoic, ovoidal to ellipsoidal, 10.1 (9–11) × 6.9 (6–7.5) µm, sporocyst wall is composed of two plates joined by a meridional suture. Endogenous development is confined to the epithelium of the gall blad- der, with infected cells being typically displaced from the epithelium layer towards lumen. A taxonomic revision of tetrasporo- cystic coccidia in the Chamaeleonidae is provided. In reptilian hosts, monoxenous coccidia, namely Ei- of individuals are kept in North America and Europe meria Schneider, 1875 sensu lato and Isospora Schnei- (Nečas 2004). der, 1881 represent commonly diagnosed protozoans of Until now, Isospora jaracimrmani Modrý et Kou- remarkable diversity (Barnard and Upton 1994, Greiner dela, 1995 is the only eimerian coccidium described 2003).
    [Show full text]
  • Dimakifeedecol.Pdf
    FEEDING ECOLOGY OF THE COMMON CHAMELEON Chamaeleo chamaeleon (Linnaeus, 1758) AND THE AFRICAN CHAMELEON Chamaeleo africanus Laurenti, 1768. DIMAKI M.1, LEGAKIS A.², CHONDROPOULOS B.³ & VALAKOS E.D. 4 1. The Goulandris Natural History Museum, 13, Levidou St., 145 62 Kifissia, Greece. 2. Zoological Museum, Dept. of Biology, Univ. of Athens, 157 84 Athens, Greece. 3. Section of Animal Biology, Dept. of Biology, Univ. of Patra, 260 01 Patra, Greece 4. Section of Animal & Human Physiology, Dept. of Biology, Univ. of Athens, 157 84 Athens, Greece. INTRODUCTION In this work the results of the comparative food analysis of the Common Chameleon Chamaeleo chamaeleon (Linnaeus, 1758) and the African Chameleon Chamaeleo africanus Laurenti, 1768 are presented. This is the first time that information on the diet of Greek specimens of the Common Chameleon are presented. The distribution of the Common Chameleon in RESULTS Greece includes the Aegean islands of Samos, Chios, and Crete. The African Chameleon is found in Greece only at Gialova near Pylos (Böhme et al., 1998; Dimaki et al., 2001). A comparison of the two species, among seasons and between sexes is presented, also a comparison Comparison between seasons of our results with those on the literature is made. Chamaeleo africanus Chamaeleo chamaeleon N spring=13 N spring=13 N summer=31 N summer=31 N autumn=21 N autumn=21 N autumn=19 N autumn=19 45 18 28 24 40 16 24 20 35 14 20 30 12 16 16 25 10 12 12 C. africanus 20 8 8 15 6 8 F 10 F 4 % N % 4 4 % N % 5 2 0 0 0 0 crabs snails crabs snails hairs
    [Show full text]
  • A Revision of the Chameleon Species Chamaeleo Pfeili Schleich
    A revision of the chameleon species Chamaeleo pfeili Schleich (Squamata; Chamaeleonidae) with description of a new material of chamaeleonids from the Miocene deposits of southern Germany ANDREJ ÈERÒANSKÝ A revision of Chamaeleo pfeili Schleich is presented. The comparisons of the holotypic incomplete right maxilla with those of new specimens described here from the locality Langenau (MN 4b) and of the Recent species of Chamaeleo, Furcifer and Calumma is carried out. It is shown that the type material of C. pfeili and the material described here lack autapomorphic features. Schleich based his new species on the weak radial striations on the apical parts of bigger teeth. However, this character is seen in many species of extant chameleons, e.g. Calumma globifer, Furcifer pardalis and C. chamaeleon. For this reason, the name C. pfeili is considered a nomen dubium. This paper provides detailed descrip- tions and taxonomy of unpublished material from Petersbuch 2 (MN 4a) and Wannenwaldtobel (MN 5/6) in Germany. The material is only fragmentary and includes jaw bits. The morphology of the Petersbuch 2 material is very similar to that of the chameleons described from the Czech Republic. • Key words: Chamaeleo pfeili, nomen dubium, morphology, Wannenwaldtobel, Petersbuch 2, Langenau, Neogene. ČERŇANSKÝ, A. 2011. A revision of the chameleon species Chamaeleo pfeili Schleich (Squamata; Chamaeleonidae) with description of a new material of chamaeleonids from the Miocene deposits of southern Germany. Bulletin of Geosciences 86(2), 275–282 (6 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received Feb- ruary 11, 2011; accepted in revised form March 21, 2011; published online April 20, 2011; issued June 20, 2011.
    [Show full text]
  • Pdf 584.52 K
    3 Egyptian J. Desert Res., 66, No. 1, 35-55 (2016) THE VERTEBRATE FAUNA RECORDED FROM NORTHEASTERN SINAI, EGYPT Soliman, Sohail1 and Eman M.E. Mohallal2* 1Department of Zoology, Faculty of Science, Ain Shams University, El-Abbaseya, Cairo, Egypt 2Department of Animal and Poultry Physiology, Desert Research Center, El Matareya, Cairo, Egypt *E-mail: [email protected] he vertebrate fauna was surveyed in ten major localities of northeastern Sinai over a period of 18 months (From T September 2003 to February 2005, inclusive). A total of 27 species of reptiles, birds and mammals were recorded. Reptiles are represented by five species of lizards: Savigny's Agama, Trapelus savignii; Nidua Lizard, Acanthodactylus scutellatus; the Sandfish, Scincus scincus; the Desert Monitor, Varanus griseus; and the Common Chamaeleon, Chamaeleo chamaeleon and one species of vipers: the Sand Viper, Cerastes vipera. Six species of birds were identified during casual field observations: The Common Kestrel, Falco tinnunculus; Pied Avocet, Recurvirostra avocetta; Kentish Plover, Charadrius alexandrines; Slender-billed Gull, Larus genei; Little Owl, Athene noctua and Southern Grey Shrike, Lanius meridionalis. Mammals are represented by 15 species; Eleven rodent species and subspecies: Flower's Gerbil, Gerbillus floweri; Lesser Gerbil, G. gerbillus, Aderson's Gerbil, G. andersoni (represented by two subspecies), Wagner’s Dipodil, Dipodillus dasyurus; Pigmy Dipodil, Dipodillus henleyi; Sundevall's Jird, Meriones crassus; Negev Jird, Meriones sacramenti; Tristram’s Jird, Meriones tristrami; Fat Sand-rat, Psammomys obesus; House Mouse, Mus musculus and Lesser Jerboa, Jaculus jaculus. Three carnivores: Red Fox, Vulpes vulpes; Marbled Polecat, Vormela peregosna and Common Badger, Meles meles and one gazelle: Arabian Gazelle, Gazella gazella.
    [Show full text]
  • 2011: Alfaxalone Anesthesia in Veiled Chameleon
    ALFAXALONE ANESTHESIA IN VEILED CHAMELEON, Chamaeleo calyptratus Zdenek Knotek, DVM, PhD,1,2* Anna Hrda, DVM,1 Nils Kley, DVM,2 Zora Knotkova, DVM, PhD1 1Avian and Exotic Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic; 2Clinic for Avian, Reptile and Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria ABSTRACT: After premedication by butorphanol (2 mg/kg) and meloxicam (1 mg/kg) alfaxalone (5 mg/kg IV) was administered to 30 adult veiled chameleons (Chamaeleo calyptratus). The induction time was 36.27 ± 19.83 s, a surgical plane of anesthesia was achieved after 2 minutes (121.67 ± 18.80 s) and lasted for 5 - 10 minutes. Full activity was restored 20.30 ± 5.10 minutes after the initial alfaxalone injection. Alfaxalone proved to be suitable form of short anesthesia in veiled chameleons. KEY WORDS: reptile anesthesia, lizards, sedation INTRODUCTION Alfaxalone (3-α-hydroxy-5-α-pregnane-11,20-dione) represents a veterinary alternative of drugs used for controlled sedation or anesthesia (Leece et al., 2009). To date, alfaxalone has been tested mainly in mammals where the administration of high doses can be associated with certain complications. Adverse effects of alfaxalone include temporary hypotension, while higher doses may result in prolonged apnea. Only a few clinical studies on the use of alfaxalone in reptiles have been published (Carmel, 2002; Simpson, 2004; Scheelings et al., 2010). These studies vary both in the amount of recommended dose and the description of clinical signs observed in reptiles. The aim of this project was to evaluate short-term intravenous anesthesia with alfaxalone in healthy veiled chameleons kept experimentally.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Lizards & Snakes: Alive!
    LIZARDSLIZARDS && SNAKES:SNAKES: ALIVE!ALIVE! EDUCATOR’SEDUCATOR’S GUIDEGUIDE www.sdnhm.org/exhibits/lizardsandsnakeswww.sdnhm.org/exhibits/lizardsandsnakes Inside: • Suggestions to Help You Come Prepared • Must-Read Key Concepts and Background Information • Strategies for Teaching in the Exhibition • Activities to Extend Learning Back in the Classroom • Map of the Exhibition to Guide Your Visit • Correlations to California State Standards Special thanks to the Ellen Browning Scripps Foundation and the Nordson Corporation Foundation for providing underwriting support of the Teacher’s Guide KEYKEY CONCEPTSCONCEPTS Squamates—legged and legless lizards, including snakes—are among the most successful vertebrates on Earth. Found everywhere but the coldest and highest places on the planet, 8,000 species make squamates more diverse than mammals. Remarkable adaptations in behavior, shape, movement, and feeding contribute to the success of this huge and ancient group. BEHAVIOR Over 45O species of snakes (yet only two species of lizards) An animal’s ability to sense and respond to its environment is are considered to be dangerously venomous. Snake venom is a crucial for survival. Some squamates, like iguanas, rely heavily poisonous “soup” of enzymes with harmful effects—including on vision to locate food, and use their pliable tongues to grab nervous system failure and tissue damage—that subdue prey. it. Other squamates, like snakes, evolved effective chemore- The venom also begins to break down the prey from the inside ception and use their smooth hard tongues to transfer before the snake starts to eat it. Venom is delivered through a molecular clues from the environment to sensory organs in wide array of teeth.
    [Show full text]
  • Variation in Body Temperatures of the African Chameleon Chamaeleo Africanus Laurenti, 1768 and the Common Chameleon Chamaeleo Chamaeleon (Linnaeus, 1758)
    Belg. J. Zool., 130 (Supplement): 89-93 December 2000 Variation in body temperatures of the African Chameleon Chamaeleo africanus Laurenti, 1768 and the Common Chameleon Chamaeleo chamaeleon (Linnaeus, 1758) Maria Dimaki 1, Efstratios D. Valakos 2 and Anastasios Legakis 3 1 The Goulandris Natural History Museum, 13, Levidou St., GR-145 62 Kifissia, Greece 2 Section of Animal & Human Physiology, Dept. of Biology, Univ. of Athens, GR-157 84 Athens, Greece 3 Zoological Museum, Dept. of Biology, Univ. of Athens, GR-157 84 Athens, Greece ABSTRACT. Data on the thermal ecology of the African Chameleon Chamaeleo africanus Laurenti, 1768 and the Common Chameleon Chamaeleo chamaeleon (Linnaeus, 1758) are reported from Greece. In the field the Tb values ranged from 10.4°C to 31.6°C for C. africanus and 23.5°C to 31°C for C. chamaeleon. There was a significant correlation between Tb and Ta in spring and summer for both species. There was also a signifi- cant correlation between Tb and Ts only in the spring and only for C. africanus. Cloacal temperatures differed significantly between spring and summer and so did substrate temperatures and air temperatures. As the months became hotter the animals reached higher temperatures. In a laboratory temperature gradient, the pre- ferred body temperatures of C. africanus and C. chamaeleon were measured and compared with field body temperatures. The preferred body temperature in the laboratory gradient ranged from 26.0°C to 36.0°C for C. chamaeleon and from 25.0°C to 35.0°C for C. africanus. The mean Tb for C.
    [Show full text]
  • Companion Reptile Care SERIES the Veiled Chameleon
    cham.qxd 8/10/2007 3:43 PM Page 1 VEILED Most Common Disorders The veiled chameleon of Veiled Chameleons (Chamaeleo calyptratus) is a •Dystocia (egg-binding) large, colorful, and robust lizard •Metabolic bone disease indigenous to coastal regions of CHAMELEON •Toenail loss / foot infections Yemen and Saudi Arabia. Now well •Intestinal parasites established in captivity, it is one •Respiratory / sinus / ocular infections of the most popular and widely •Stomatitis / periodontal disease recommended chameleons for •Abscesses / cellulitis / osteomyelitis the novice reptile keeper. •Loss of tongue function •Kidney disease A characteristic feature of this •Hemipene prolapse species is the impressively high •Dehydration casque on the head. Adult males have a higher casque than females. Having your veiled chameleon examined on a regular basis Some authorities have suggested that by an exotic animal veterinarian who is familiar with the casque may serve to collect reptiles can prevent many of the common disorders above. and channel water, such as morning dewdrops or fog, into the mouth. Others believe that it functions to dissipate heat. A more recent hypothesis suggests that it may amplify a low frequency “buzzing” used by this species to communicate with one another. Veiled chameleons also possess prehensile tails, long whip-like tongues, independently moving eyes, zygodactyl feet, and a spectacular array of changing colors. Zoological Education Network provides educational ©2007 Zoological Education Network materials about exotic companion animals. 800-946-4782 561-641-6745 www.exoticdvm.com CompanionC Reptile Care SERIES cham.qxd 8/10/2007 3:43 PM Page 2 What Your Veterinarian Looks for in a Healthy Veiled Chameleon Active and alert What to Expect from Your Veiled Chameleon Eyes open and clear attitude hameleons are unique, attractive and fascinating 24 hours before feeding them out.
    [Show full text]
  • No Longer Single! Description of Female Calumma Vatosoa (Squamata, Chamaeleonidae) Including a Review of the Species and Its Systematic Position
    Zoosyst. Evol. 92 (1) 2016, 13–21 | DOI 10.3897/zse.92.6464 museum für naturkunde No longer single! Description of female Calumma vatosoa (Squamata, Chamaeleonidae) including a review of the species and its systematic position David Prötzel1, Bernhard Ruthensteiner1, Frank Glaw1 1 Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 München, Germany http://zoobank.org/CFD64DFB-D085-4D1A-9AA9-1916DB6B4043 Corresponding author: David Prötzel ([email protected]) Abstract Received 3 September 2015 Calumma vatosoa is a Malagasy chameleon species that has until now been known only Accepted 26 November 2015 from the male holotype and a photograph of an additional male specimen. In this paper Published 8 January 2016 we describe females of the chameleon Calumma vatosoa for the first time, as well as the skull osteology of this species. The analysed females were collected many years before Academic editor: the description of C. vatosoa, and were originally described as female C. linotum. Ac- Johannes Penner cording to external morphology, osteology, and distribution these specimens are assigned to C. vatosoa. Furthermore we discuss the species group assignment of C. vatosoa and transfer it from the C. furcifer group to the C. nasutum group. A comparison of the exter- Key Words nal morphology of species of both groups revealed that C. vatosoa has a relatively shorter distance from the anterior margin of the orbit to the snout tip, more heterogeneous scala- Madagascar tion at the lower arm, a significantly lower number of supralabial and infralabial scales, chameleon and a relatively longer tail than the members of the C. furcifer group.
    [Show full text]
  • The New Mode of Thought of Vertebrates' Evolution
    etics & E en vo g lu t lo i y o h n a P r f y Journal of Phylogenetics & Kupriyanova and Ryskov, J Phylogen Evolution Biol 2014, 2:2 o B l i a o n l r o DOI: 10.4172/2329-9002.1000129 u g o y J Evolutionary Biology ISSN: 2329-9002 Short Communication Open Access The New Mode of Thought of Vertebrates’ Evolution Kupriyanova NS* and Ryskov AP The Institute of Gene Biology RAS, 34/5, Vavilov Str. Moscow, Russia Abstract Molecular phylogeny of the reptiles does not accept the basal split of squamates into Iguania and Scleroglossa that is in conflict with morphological evidence. The classical phylogeny of living reptiles places turtles at the base of the tree. Analyses of mitochondrial DNA and nuclear genes join crocodilians with turtles and places squamates at the base of the tree. Alignment of the reptiles’ ITS2s with the ITS2 of chordates has shown a high extent of their similarity in ancient conservative regions with Cephalochordate Branchiostoma floridae, and a less extent of similarity with two Tunicata, Saussurea tunicate, and Rinodina tunicate. We have performed also an alignment of ITS2 segments between the two break points coming into play in 5.8S rRNA maturation of Branchiostoma floridaein pairs with orthologs from different vertebrates where it was possible. A similarity for most taxons fluctuates between about 50 and 70%. This molecular analysis coupled with analysis of phylogenetic trees constructed on a basis of manual alignment, allows us to hypothesize that primitive chordates being the nearest relatives of simplest vertebrates represent the real base of the vertebrate phylogenetic tree.
    [Show full text]