Solutions of Triangle
Total Page:16
File Type:pdf, Size:1020Kb
19. SOLUTIONS OF TRIANGLE 1. INTRODUCTION A In any triangle ABC, the side BC, opposite to the angle A is denoted by a; the side CA and AB, opposite to the angles B and C respectively are denoted by b and c respectively. The c b semi-perimeter of the triangle is denoted by s and its area by ∆ or S. In this chapter, we shall discuss various relations between the sides a, b, c and the angles A, B, C of ∆ ABC. B a C 2. SINE RULE Figure 19.1 The sides of a triangle (any type of triangle) are proportional to the sines of the angle opposite to them in triangle abc ABC, = = sinA sinB sinC sinA sinB sinC Note: (i) The above rule can also be written as = = abc (ii) The sine rule is a very useful tool to express the sides of a triangle in terms of sines of the angle and vice-versa abc in the following manner: = = = k( Let) ; ⇒=a k sinA, b= k sinB, c= k sinC sinA sinB sinC sinA sinB sinC Similarly, = = = λ(Let) ; ⇒=λsinA a , sinB= λ b , sinC= λ c abc 3. COSINE RULE bca222+− cab222+− abc2+− 22 In any ∆ABC , cosA = ; cosB = ; cosC = 2bc 2ac 2ab Note: In particular ∠=A 60 ⇒ b222+−= c a bc ∠=B 60 ⇒ c222+− a b = ca ∠=C 60 ⇒ a2+−= b 22 c ab Figure 19.2 4. PROJECTION FORMULAE If any ∆ABC :(i) a= bcosC + ccosB (ii) b= ccosA + acosC (iii) c= acosB + bcosA i.e. any side of a triangle is equal to the sum of the projection of the other two sides on it. 19.2 | Solutions of Triangle Case I: When ∆ABC is an acute angled triangle, BD cosB=⇒= BD AB.cosB ⇒= BD c.cosB and AB CD cosC=⇒= CD AC.cosC ⇒= CD bcosC AC then, BD+DC=BC Figure 19.3 ∴ a = c cos B + b cos C Case II: When ∆ABC is an obtuse angled triangle, CD cosC=⇒= CD AC.cosC AC BD CD= b.cosC and cos( 180−= B) ⇒ BD =− c.cosB then, AB a = BC and CD – BD ⇒ a= bcosC + ccosB Figure 19.4 Illustration 1: If A= 75ο , B= 45ο , then what is the value of b+ c2? (JEE MAIN) Sol: Here, c=−= 180ο 120 οο 60 . Therefore by using sine rule, we can solve the above problem. a= k sin 75o abc Use sine rule = = = K ⇒=b k sin 45o sin75οοο sin45 sin60 c= k sin 60o 31++ 31 consider, (b+= c 2) k( sin45ο + 2 sin600 ) =k = 2k =2k sin75ο = 2k sinA = 2a 2 22 Illustration 2: In a ∆ ABC, if B= 30ο and c= 3b , then find the value of A. (JEE MAIN) cab22+− 2 Sol: Here, by using cosine rule cosB = we can easily solve the above problem. 2ca cab222+− 33bab222+− We have cosB = ⇒= ; ⇒a22 − 3ab + 2b =⇒− 0 (a 2b)(a − b) = 0 2ca 2 2×× 3b a ⇒−=ab 0 OR a – 2b = 0 ⇒Eithera =⇒= b A 30ο or aa== 2b 2b ⇒ ⇒ a a22 ⇒ ⇒ 4b 4b 2 2⇒ = = b b 22 22 + + c c ⇒= ⇒= A A 90 90οο . Illustration 3: Prove that asin B−+ C bsin(C −+ A) csin A −= B 0 (JEE MAIN) ( ) ( ) abc Sol: By sine rule i.e. = = = k we can simply prove the above equation. sinA sinB sinC In equation asin( B−+ C) bsin(C −+ A) csin( A − B) = 0, putting a = k sin A, b = k sin B, c = k sin C = k( sinAsin( B−+ C) sinBsin( C −+ A) sinCsin( A − B)) =0 (expanding all terms gets cancelled) (Using sin (α−β ) = sin α . cos β− sin β cos α) bc22− Illustration 4: Prove that sin( B−= C) sinA (JEE MAIN) a2 Mathematics | 19.3 bc22− Sol: Given, sin(B−= C) sinA ⇒ a2 sin(B−= C)( b22 − c) sinA a2 Takin L.H.S., a2sin(B − C) = a2(sinBcosC − cosBsinC) sinA sinB sinC acb22+− 2 abc2+− 22 Now using sine rule, = = = k (say) and cosine rule, cosB = , and cosC = abc 2 ac 2 ab abc2+− 22 acb 222 +− abcacb2+−−+− 22222 =a2 kb − ×=kc ka =sinA ×−= b22 c RHS. ( ) 2 ab 2 ac 2 Illustration 5: The angles of a triangle are in 4:1:1 ratio. Find the ratio between its greater side and perimeter? (JEE ADVANCED) Sol: Here, the angles are 120ο , 30ο , 30ο . Therefore, by using sine rule, we will get the required ratio. Angles are 120ο , 30ο , 30ο . If the sides opposite to these angles are a, b and c respectively, a will be the greatest side. a bc a bc a bc Now from sine formula, = = ; ⇒==; ⇒===k (say) sin120οοο sin30 sin30 3/2 1/2 1/2 3 11 3k 3 then a= 3k , perimeter= (2+ 3k) ; ∴ Required ratio = = . (2+ 3k) 23+ CB Illustration 6: Solve bcos22+ ccos in term of k where k is perimeter of the ∆ABC . (JEE ADVANCED) 22 1+θ cos 2 Sol: We can solve the given problem simply by cos2 θ= 2 CBbc Here, bcos22+ ccos =(1 + cosC) ++ (1 cosB) [using projection formula] 2222 bc+ 1 ab ++ c C BKk = +=a ; ∴+=bcos22 ccos [where k=a+b+c, given] 22 2 2 222 AB− tan ab− 2 Illustration 7: In any triangle ABC, show that = (JEE ADVANCED) ab+ AB+ tan 2 Sol: We can derive the values of a, b and c using sine rule and putting it to L.H.S. we can prove the above problem. abc We know that, = = = k sinA sinB sinC ⇒=a k sinA , b= ksinB , c= k sinC …(i) On putting the values of a and b from (1) on L.H.S., we get AB+− AB 2cos sin a−− b k sinA k sinB sinA − sinB L.H.S. = = = = 22 a++ b k sinA k sinB sinA + sinB AB+− AB 2sin cos 22 AB− tan A+− B AB 2 = cot tan = = R.H.S. 22 AB+ tan 2 19.4 | Solutions of Triangle 5. NAPIER’S ANALOGY (LAW OF TANGENTS) BC−− bc A AB−− ab C CA−− ca B In any ∆ABC, (i) tan = cot (ii) tan = cot (iii) tan = cot 2 bc+ 2 2 ab+ 2 2 ca+ 2 bc− A k sinB− k sinc A sinB− sinc A Proof:(i) R.H.S. = cot= cot [By the sine rule] = cot bc+ 2 k sinB+ k sinc 2 sinB+ sinc 2 BC−+ B C 2sin cos 22 A = .cot[By C & D formulae] BC+− B C 2 2sin cos 22 BC−+ BC A BC− A A = tan .cot ⇒ cot = tan .tan .cot [By condition identities] 22 22 22 BC− = tan= LHS 2 Similarly, (ii) and (iii) can be proved. Illustration 8: In any triangle ABC, if A= 30ο , b=3 and c= 33, then find ∠B and ∠C . (JEE MAIN) CB−− cb A Sol: By using formula, tan = cot , we can easily obtain the values of ∠B and ∠C . 2 cb+ 2 BC+ A Here ∠=A 30ο ∴ =90ο −= 90 − 15οο = 75 … (i) 22 Since c> b ⇒∠ C >∠ B and B + C = 150ο … (ii) CB−− cb A cb − BC + C−− B 33 3 ο tan = cot= tan; ⇒=tan tan75 2 cb++ 2 cb 2 2 3( 31+ ) CB−−π cb cb − A ⇒tan =cot −= A tan 2 cb++ 2 cb 2 CB−+3( 31−−) ( 31) tan45οο tan30 [Using (1) ] ⇒tan = tan 45οο+= 30 ( ) οο 2 3( 31++) ( 31) 1− tan45 tan30 1 31− 1 + ( ) 31−+ 31 CB− ο = 3 = = ⇒=45 tan45ο = 1 1 31+ 1 31+− 31 ; 2 ; ( ) 1 − 3 ⇒−=C B 90ο … (iii) Solving (ii) and (iii), we get ∠=B 30ο and ∠=C 120ο 6. TRIGONOMETRIC RATIOS OF HALF ANGLES Sine, cosine and tangent of half the angles of any triangle are related to their sides as given below. Note that the perimeter of ∆ABC will be denoted by 2s i.e. 2s=a+b+c and the area denoted by ∆ . Mathematics | 19.5 A B C Formulae for sin, sin, sin for any ∆ABC 2 2 2 A (sbsc−−)( ) B (scsa−−)( ) C (sasb−−)( ) (i) sin= (ii) sin= (iii) sin= 2 bc 2 ac 2 ab A B C Formulae for cos, cos, cos for any ∆ABC 2 2 2 A ss( − a) B ss( − b) C ss( − c) (i) cos= (ii) cos= (iii) cos= 2 bc 2 ac 2 ab A B C Formulae for tan, tan, tan for any ∆ABC 2 2 2 A (sbsc−−)( ) B (scsa−−)( ) C (sasb−−)( ) (i) tan= (ii) tan= (iii) tan= 2 ss( − a) 2 ss( − b) 2 ss( − c) sa−−− sb sc Illustration 9: In a triangle ABC, if = = , then find the value of tan2 (A/ 2) . (JEE MAIN) 11 12 13 A (sbsc−−)( ) Sol: As we know, tan= . Therefore, by using this formula, we can solve the above problem. 2 ss( − a) −− sa−−− sb sc 3s−( a ++ b c) s 2 A (sbsc)( ) 12× 13 13 = = = = ; Now tan = = = 11 12 13 11++ 12 13 36 2 ss( − a) 36× 11 33 AB C Illustration 10: In a triangle ABC, prove that (a++ b c) tan + tan = 2ccot . (JEE MAIN) 22 2 A (sbsc−−)( ) B (scsa−−)( ) Sol: Here by using tan= and tan= we can prove the above problem. 2 ss( − a) 2 ss( − b) AB (sbsc−−)( ) ( scsa −−)( ) sc−− sb sa − L.H.S. = (a++ b c) tan + tan =2s +=2s + 22 ss−− a ss b s sa−− sb ( ) ( ) (sc− ) sbsa−+− 2ssc− ss( − c) 2c C =2s = (a++−− b c b a) = 2c = =2ccot = R.H.S. s sasb−− C 2 s−− as b s −− as b ( )( ) tan 2 ∆∆ 1 1 2∆( 2s −− a b) 2c∆2 2cs( s− c) Alternate: L.H.S. = 2s + =∆+=2 = = −− ∆ ssa( −) ssb( −) sa sb (sasb−−)( ) ( sasb −−∆)( ) ∆∆ 1 1 2∆( 2s −− a b) 2c∆2 2cs( s− c) c 2s + =∆+=2 = = = 2c.cot = R.H.S.