Low Level of Map44, an Inhibitor of the Lectin

Total Page:16

File Type:pdf, Size:1020Kb

Low Level of Map44, an Inhibitor of the Lectin Smedbråten et al. BMC Nephrology (2016) 17:148 DOI 10.1186/s12882-016-0373-9 RESEARCHARTICLE Open Access Low level of MAp44, an inhibitor of the lectin complement pathway, and long-term graft and patient survival; a cohort study of 382 kidney recipients Julia Smedbråten1,2* , Geir Mjøen3, Anders Hartmann2,3, Anders Åsberg3,4,5, Halvor Rollag2,6, Tom Eirik Mollnes2,7,8,9, Leiv Sandvik10, Morten W. Fagerland10, Steffen Thiel11 and Solbjørg Sagedal1 Abstract Background: Higher incidence of malignancy and infectious diseases in kidney transplant recipients is related to immunosuppressive treatment after transplantation and the recipient’s native immune system. The complement system is an essential component of the innate immunity. The aim of the present study was to investigate the association of effector molecules of the lectin complement pathway with graft and patient survival after kidney transplantation. Methods: Two mannan-binding lectin (MBL) associated proteases, MASP-2 and MASP-3 (activators of the lectin pathway) and two MBL-associated proteins, MAp44 and MAp19 (inhibitors of the lectin pathway) were measured at the time of transplantation in 382 patients (≥17 years old) transplanted in 2000–2001. The cohort was followed until December 31, 2014. Data on patient and graft survival were obtained from the Norwegian Renal Registry. Cox proportional hazard regression models were performed for survival analyses. Results: Low MAp44 level (1st versus 2–4 quartile) was significantly associated with overall mortality; HR 1.52, 95 % CI 1.08–2.14, p = 0.017. In the sub analyses in groups below and above median age (51.7 years), low MAp44 as a predictor of overall mortality was statistically significant only in recipients of ≤51.7 years; HR 2.57, 95 % CI 1.42–4.66, p =0.002. Furthermore, low MAp44 was associated with mortality due to infectious diseases; HR 2.22, 95 % CI 1.11–4.41, p =0.023. There was no association between MASP-2, MASP-3 or MAp19 levels and patient mortality. No association between any measured biomarkers and death censored graft loss was found. Conclusions: Low MAp44 level at the time of transplantation was associated with increased overall mortality in kidney recipients of median age of 51.7 years or below and with mortality due to infectious diseases in the whole patient cohort after nearly 14-years of follow up after transplantation. No associations between other effector molecules; MASP-2, MASP-3 or MAp19 and recipient mortality were found, as well as no association of any biomarker with death censored graft loss. Keywords: Kidney transplantation, Complement, Recipient survival * Correspondence: [email protected] 1Department of Nephrology, Ullevål Oslo University Hospital, Postbox 4950Nydalen, 0424 Oslo, Norway 2Faculty of Medicine, University of Oslo, Oslo, Norway Full list of author information is available at the end of the article © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Smedbråten et al. BMC Nephrology (2016) 17:148 Page 2 of 9 Background at the time of transplantation were available in 382 of Kidney transplantation is the treatment of choice for the patients, who were included in the present study. In end-stage kidney disease, providing patients with a bet- the present study the follow up period was extended ter quality of life and reducing overall morbidity. Despite until December 31, 2014. Data on patient survival was this, kidney transplant recipients have higher mortality obtained from the Norwegian Renal Registry. Prophylaxis compared to the general population. The effectiveness of with trimethoprim-sulfamethoxazole against Pneumocystis the adaptive immune system begins to diminish already jiroveci was routinely used for 6 months after transplant- with progression of chronic kidney disease. An observed ation. No patients received prophylaxis against cytomegalo- increased incidence of malignancy [1] and infectious virus (CMV) but were treated with valganciclovir at first diseases [2] after transplantation could be related both positive CMV antigen test. to immunosuppressive treatment after transplantation and to the state of the recipient’s immune system. Immunosuppressive treatment The complement system is an essential component of The immunosuppressive regimen was routinely based on the innate immune system. It plays an important role in a calcineurin inhibitor, except for five patients with anti-microbial defense processes such as immunological haemolytic uraemic syndrome who received sirolimus. response to pathogens, but it is also involved in At that time the induction therapy was not included in inflammatory processes such as ischemia reperfusion the standard immunosuppression protocol. Calcineurin injury, transplant immunity, auto-immune diseases, co- inhibitors were combined with either mycophenolate agulation [3–5] and probably in development of diabetic mofetil (MMF) or with induction therapy. Altogether angiopathy [6]. The complement system can be activated 161 patients (42 %) received induction with basiliximab through the classical, the lectin and the alternative path- (Simulect®), and in one patient anti-thymocyte globulin ways, which are described in details elsewhere [7]. The was used as induction therapy. The remaining 220 lectin pathway of the complement system is activated patients (58 %) received MMF. Only 13 patients received when pattern recognition molecules (PRMs), including quadruple immunosuppression with basiliximab, calcine- the two collectins (mannan-binding lectin (MBL) and urin inhibitors, MMF and steroids. Azathioprine in collectin-LK (CL-LK)) and the three ficolins (ficolin-1, combination with cyclosporine and steroids was given ficolin-2 and ficolin-3) bind to a fitting pattern on only to three patients. Except for ten patients who microorganisms or on altered tissues. When this occurs participated in the ATLAS trial and followed a steroid three MBL-associated proteases (MASP-1, MASP-2 and free protocol [11], all patients received steroids. MASP-3) provide activation of the complement system and two MBL-associated proteins (MAp44 and MAp19) Biochemical assays serve as natural endogenous competitive inhibitors [7, 8]. MASP-2. The MASP-2 assay was previously described in MASP-1, MASP-3 and MAp44 arise from the MASP1 detail [12]. Microtiter wells were coated with 0.5 μg gene by mutually exclusive splicing [9]. In a similar man- anti-MASP-2 antibody (MAb clone 8B5) in 100 μl PBS ner MASP-2 and MAp19 arise from the MASP2 gene [7]. overnight at 4 °C. The wells were blocked and washed Our hypothesis is that the activity of the native with buffer. The samples were diluted 75-fold in 1 M immune system plays an important role in the transplant NaCl, 10 mM Tris–HCl, 10 mM EDTA, 15 mM NaN3, population given the reduced activity in the adaptive 0.05 % (v/v) Tween 20, pH 7.4, containing 0.01 % (w/v) immune system due to immunosuppressive treatment. heat aggregated human IgG (Beriglobin, incubated The aim of this study was to investigate whether the sta- 30 min at 63 °C and centrifuged 10 min at 3000 g to tus of the lectin pathway at the time of transplantation remove large aggregates). The heat aggregated human may influence long term kidney graft and patient sur- IgG is included to inhibit the influence of possible vival. The lectin pathway was investigated by measuring rheumatoid factors in sandwich type immuno assays. A levels of activators like MASP-2 and MASP-3 and of the pool of plasma was used as a standard and three differ- regulatory molecules MAp44 and MAp19, and by evalu- ent plasma samples were used as internal controls and ating a possible correlation between levels of MASP-3 included on each microtiter plate used. Following and MAp44 or between MASP-2 and MAp19. incubation overnight at 4 °C, the wells were washed and incubated for 1.5 h at room temperature with 0.1 μg Methods biotinylated anti-MASP-2 antibody (MAb 6G12), in Study population 100 μl of TBS/Tw/CaCl2 (10 mM Tris–HCl, 145 mM A cohort of 402 adult kidney graft recipients (≥17 years), NaCl, 5 mM CaCl2, 15 mM NaN3, 0.05 % (v/v) Tween transplanted in 2000 and 2001 at Oslo University 20, pH 7.4) containing 0.01 % (w/v) heat aggregated Hospital Rikshospitalet, was included in the original human IgG and 1 % (v/v) bovine serum. The wells were study previously described in detail [10]. Blood samples washed followed by incubation with 10 ng europium- Smedbråten et al. BMC Nephrology (2016) 17:148 Page 3 of 9 labelled streptavidin (Perkin Elmer) in 100 μl of TBS/ acetate buffer (50 mM Na-acetate, 145 mM NaCl, Tw, 25 μM EDTA for 1 h at room temperature. After pH 4.5) o.n. at 4 °C. The wells were then blocked with wash bound europium was detected by time-resolved HSA, 1 mg/ml TBS, washed thrice with TBS/Tw, and fluorometry after the addition of an enhancement incubated o.n. at m temperature with serum samples solution (Perkin Elmer). diluted 20-fold in MAp19 buffer (10 mM Tris–HCl, 1 M MASP-3. The MASP-3 assay we used was described in NaCl, 10 mM EDTA, 0.05 % Tween 20) containing details by Degn et al. [9]. Microtiter wells were coated 100 μg heat-aggregated hIgG per ml, and 100 μg normal with 0.2 μg antibody reacting with MASP-3 (MAb 5F5) rat IgG per ml. After washing the wells, biotinylated in 100 μl PBS overnight at 4 °C.
Recommended publications
  • By Map44 Pathway Activation in a Manner Inhibitable Pattern
    Co-Complexes of MASP-1 and MASP-2 Associated with the Soluble Pattern-Recognition Molecules Drive Lectin Pathway Activation in a Manner Inhibitable This information is current as by MAp44 of September 28, 2021. Søren E. Degn, Lisbeth Jensen, Tomasz Olszowski, Jens C. Jensenius and Steffen Thiel J Immunol 2013; 191:1334-1345; Prepublished online 19 June 2013; Downloaded from doi: 10.4049/jimmunol.1300780 http://www.jimmunol.org/content/191/3/1334 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2013/06/19/jimmunol.130078 Material 0.DC1 References This article cites 43 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/191/3/1334.full#ref-list-1 Why The JI? Submit online. by guest on September 28, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Co-Complexes of MASP-1 and MASP-2 Associated with the Soluble Pattern-Recognition Molecules Drive Lectin Pathway Activation in a Manner Inhibitable by MAp44 Søren E.
    [Show full text]
  • Ncounter Human Inflammation V2 Panel Gene List
    nCounter Human Inflammation V2 Panel Gene List Official Symbol Accession Alias / Prev Symbol GO Annotation* Official Full Name Intrinsic To Plasma Membrane,Intrinsic To Membrane,Membrane Part,Membrane,Integral To Membrane,Integral To Plasma Membrane,Plasma Membrane Part,Plasma Membrane,Signal Transduction,Cell Surface Receptor Linked Signal Transduction Go 0007166,Defense Response,Inflammatory Response,Response To Stress,Response To External AGER NM_001136.3 RAGE Stimulus,Response To W advanced glycosylation end product-specific receptor Cytoplasmic Part,Membrane,Cytoplasm,Cytosol,Plasma Membrane,Regulation Of Biological Quality,Positive Regulation Of Cell Proliferation,Cell Development,Negative Regulation Of Apoptosis,Programmed Cell Death,Regulation Of Growth,Carboxylic Acid Metabolic ALOX12 NM_000697.1 12-LOX, 12S-LOX, LOG12 Process,Fatty Acid Oxidation,Negative Regulation Of Cellular Process,Regulation Of Cell arachidonate 12-lipoxygenase Defense Response,Inflammatory Response,Response To Stress,Response To External ALOX15 NM_001140.3 15-LOX-1, 15LOX-1 Stimulus,Response To Wounding,Oxidoreductase Activity arachidonate 15-lipoxygenase ALOX5 NM_000698.2 5-LO, 5-LOX, 5LPG, LOG5 Oxidoreductase Activity arachidonate 5-lipoxygenase Extracellular Region,Extracellular Region Part,Extracellular Space,Cell Cell Signaling,Cell AREG NM_001657.2 AR, CRDGF, SDGF Proliferation Go 0008283,Receptor Binding,Growth Factor Activity amphiregulin Cytoplasm,Carboxylic Acid Metabolic Process,Glutamine Family Amino Acid Metabolic Process,Amino Acid Metabolic
    [Show full text]
  • The Serine Protease Domain of MASP-3: Enzymatic Properties and Crystal Structure in Complex with Ecotin
    The serine protease domain of MASP-3: enzymatic properties and crystal structure in complex with ecotin. Christine Gaboriaud, Rajesh Kumar Gupta, Lydie Martin, Monique Lacroix, Laurence Serre, Florence Teillet, Gérard J Arlaud, Véronique Rossi, Nicole Thielens To cite this version: Christine Gaboriaud, Rajesh Kumar Gupta, Lydie Martin, Monique Lacroix, Laurence Serre, et al.. The serine protease domain of MASP-3: enzymatic properties and crystal structure in complex with ecotin.. PLoS ONE, Public Library of Science, 2013, 8 (7), pp.e67962. 10.1371/journal.pone.0067962. inserm-00868926 HAL Id: inserm-00868926 https://www.hal.inserm.fr/inserm-00868926 Submitted on 2 Oct 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Serine Protease Domain of MASP-3: Enzymatic Properties and Crystal Structure in Complex with Ecotin Christine Gaboriaud1,2,3*, Rajesh Kumar Gupta1,2,3¤a, Lydie Martin1,2,3, Monique Lacroix1,2,3, Laurence Serre3,1¤b, Florence Teillet1,2,3,Ge´rard J. Arlaud1,2,3,Ve´ronique Rossi1,2,3, Nicole M. Thielens1,2,3 1 Institut de Biologie Structurale (IBS), Direction des Sciences du Vivant, Commissariat a` l’Energie Atomique et aux Energies Alternatives, Grenoble, France, 2 IBS, Centre National de la Recherche Scientifique, Grenoble, France, 3 IBS, Universite´ Grenoble Alpes, Grenoble, France Abstract Mannan-binding lectin (MBL), ficolins and collectin-11 are known to associate with three homologous modular proteases, the MBL-Associated Serine Proteases (MASPs).
    [Show full text]
  • On the Value of Therapeutic Interventions Targeting the Complement System in Acute Myocardial Infarction
    UvA-DARE (Digital Academic Repository) The inflammatory response in myocarditis and acute myocardial infarction Emmens, R.W. Publication date 2016 Document Version Final published version Link to publication Citation for published version (APA): Emmens, R. W. (2016). The inflammatory response in myocarditis and acute myocardial infarction. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:02 Oct 2021 Chapter 5 On the value of therapeutic interventions targeting the complement system in acute myocardial infarction Reindert Emmens, Diana Wouters, Sacha Zeerleder, Marieke van Ham, Hans Niessen, Paul Krijnen Submitted for publication 81 SUMMARY The complement system plays an important role in the inflammatory response subsequent to acute myocardial infarction (AMI), by actively increasing cell death of cardiomyocytes beyond the primary infarcted area.
    [Show full text]
  • Human Map44 HK359
    Human MAp44 HK359 Edition 05-13 ELISA KIT PRODUCT INFORMATION & MANUAL Read carefully prior to starting procedures! For use in laboratory research only Not for clinical or diagnostic use Note that this user protocol is not lot-specific and is representative for the current specifications of this product. Please consult the vial label and the Certificate of Analysis for information on specific lots. Also note that shipping conditions may differ from storage conditions. For research use only. Not for use in or on humans or animals or for diagnostics. It is the responsibility of the user to comply with all local/state and federal rules in the use of this product. Hycult Biotech is not responsible for any patent infringements that might result from the use or derivation of this product. TABLE OF CONTENTS Page 1. Intended use ..................................................................................................................2 2. Introduction ....................................................................................................................2 3. Kit features ....................................................................................................................2 4. Protocol overview ..........................................................................................................3 5. Kit components and storage instructions .......................................................................4 Materials required but not provided 4 6. Warnings and precautions .............................................................................................5
    [Show full text]
  • Strategies of Targeting Alternative and Lectin Pathway Components in Complement- Mediated Diseases
    REVIEW published: 08 August 2018 doi: 10.3389/fimmu.2018.01851 Be on Target: Strategies of Targeting Alternative and Lectin Pathway Components in Complement- Mediated Diseases József Dobó, Andrea Kocsis and Péter Gál* Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary The complement system has moved into the focus of drug development efforts in the last decade, since its inappropriate or uncontrolled activation has been recognized in many diseases. Some of them are primarily complement-mediated rare diseases, such as paroxysmal nocturnal hemoglobinuria, C3 glomerulonephritis, and atypical hemolytic uremic syndrome. Complement also plays a role in various multifactorial diseases that affect millions of people worldwide, such as ischemia reperfusion injury (myocardial infarction, stroke), age-related macular degeneration, and several neurodegenerative disorders. In this review, we summarize the potential advantages of targeting various Edited by: complement proteins with special emphasis on the components of the lectin (LP) and Nicole Thielens, UMR5075 Institut de Biologie the alternative pathways (AP). The serine proteases (MASP-1/2/3, factor D, factor B), Structurale (IBS), France which are responsible for the activation of the cascade, are straightforward targets of Reviewed by: inhibition, but the pattern recognition molecules (mannose-binding lectin, other collectins, Cordula M. Stover, and ficolins), the regulatory components (factor H, factor I, properdin), and C3 are also University of Leicester, United Kingdom subjects of drug development. Recent discoveries about cross-talks between the LP Maciej Cedzynski, and AP offer new approaches for clinical intervention. Mannan-binding lectin-associated Institute for Medical Biology (PAN), Poland serine proteases (MASPs) are not just responsible for LP activation, but they are also Christian Drouet, indispensable for efficient AP activation.
    [Show full text]
  • Role of Complement in Diabetes
    This is a repository copy of Role of complement in diabetes. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/151783/ Version: Accepted Version Article: Ajjan, RA and Schroeder, V (2019) Role of complement in diabetes. Molecular Immunology, 114. pp. 270-277. ISSN 0161-5890 https://doi.org/10.1016/j.molimm.2019.07.031 (c) 2019, Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Molecular Immunology, Special Issue EMCHD 2019 Review Article Role of Complement in Diabetes Ramzi A. Ajjan a, Verena Schroeder b* a Leeds Institute for Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom b Experimental Haemostasis Group, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland * Corresponding author: Verena Schroeder Experimental Haemostasis Group Department for BioMedical Research (DBMR) University of Bern Murtenstrasse 40 3008 Bern Switzerland Tel.: +41 31 632 9618 E-mail: [email protected] 1 Abstract Accumulating evidence suggests a role for the complement system in the pathogenesis of diabetes and the vascular complications that characterise this condition.
    [Show full text]
  • MASP-1 and MASP-2 Do Not Activate Pro-FD in Resting Human
    MASP-1 and MASP-2 do not activate pro-FD in resting human blood, while MASP-3 is a potential activator: kinetic analysis involving specific MASP-1 and MASP-2 inhibitors Gábor Oroszlán *, Elod Kortvely †, Dávid Szakács ‡, Andrea Kocsis *, Sascha Dammeier §, Anne Zeck ¶, Marius Ueffing †,§, Péter Závodszky *, Gábor Pál ‡ , Péter Gál *2, József Dobó *2 * Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary † Institute for Ophthalmic Research, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany ‡ Department of Biochemistry, Eötvös Loránd University, 1/C Pázmány Péter street, H-1117, Budapest, Hungary § Institute for Ophthalmic Research, Medical Proteome Center, University of Tübingen, Nägelestrasse 5, 72074 Tübingen, Germany ¶ Natural and Medical Sciences Institute at the University of Tübingen, Department of Bioanalytics, Markwiesenstrasse 55, 72770 Reutlingen, Germany 2 Address correspondence and reprint request to J. Dobó, and/or P. Gál, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H- 1117, Budapest, Hungary, e-mail: [email protected] (J.D.), or [email protected] (P.G.), phone: +36-1-3826768, fax: +36-1-3826295 Running title: Kinetics of pro-FD activation Keywords (not in the title): lectin pathway; innate immunity; mannan-binding lectin; MBL- associated serine protease; thrombin; trypsin 1 Abstract It had been thought that complement factor D (FD) is activated at the site of synthesis and only FD lacking a propeptide is present in blood. The serum of MASP-1/3(-/-) mice contains pro-FD and has markedly reduced alternative pathway activity.
    [Show full text]
  • Targeting of Liver Mannan-Binding Lectin
    Targeting of Liver Mannan-Binding Lectin−Associated Serine Protease-3 with RNA Interference Ameliorates Disease in a Mouse Model of Rheumatoid Arthritis Downloaded from Nirmal K. Banda, Dhruv Desai, Robert I. Scheinman, Rasmus Pihl, Hideharu Sekine, Teizo Fujita, Vibha Sharma, Annette G. Hansen, Peter Garred, Steffen Thiel, Anna Borodovsky and V. Michael Holers http://www.immunohorizons.org/ ImmunoHorizons 2018, 2 (8) 274-295 http://www.immunohorizons.org/ doi: https://doi.org/10.4049/immunohorizons.1800053 http://www.immunohorizons.org/content/2/8/274 This information is current as of September 25, 2021. Supplementary http://www.immunohorizons.org/content/suppl/2018/09/14/2.8.274.DCSupp Material lemental by guest on September 25, 2021 References This article cites 60 articles, 25 of which you can access for free at: by guest on September 25, 2021 http://www.immunohorizons.org/content/2/8/274.full#ref-list-1 Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://www.immunohorizons.org/alerts ImmunoHorizons is an open access journal published by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. ISSN 2573-7732. RESEARCH ARTICLE Innate Immunity Targeting of Liver Mannan-Binding Lectin–Associated Serine Protease-3 with RNA Interference Ameliorates Disease in a Mouse Model of Rheumatoid Arthritis Nirmal K. Banda,*,1 Dhruv Desai,† Robert I. Scheinman,‡ Rasmus Pihl,§ Hideharu Sekine,{ Teizo Fujita,{ Vibha Sharma,|| Downloaded from Annette
    [Show full text]
  • Essential Role for the Lectin Pathway in Collagen Antibody–Induced
    Essential Role for the Lectin Pathway in Collagen Antibody−Induced Arthritis Revealed through Use of Adenovirus Programming Complement Inhibitor MAp44 This information is current as Expression of September 26, 2021. Nirmal K. Banda, Gaurav Mehta, Troels R. Kjaer, Minoru Takahashi, Jerome Schaack, Thomas E. Morrison, Steffen Thiel, William P. Arend and V. Michael Holers J Immunol 2014; 193:2455-2468; Prepublished online 28 Downloaded from July 2014; doi: 10.4049/jimmunol.1400752 http://www.jimmunol.org/content/193/5/2455 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2014/07/26/jimmunol.140075 Material 2.DCSupplemental References This article cites 62 articles, 30 of which you can access for free at: http://www.jimmunol.org/content/193/5/2455.full#ref-list-1 by guest on September 26, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Essential Role for the Lectin Pathway in Collagen Antibody– Induced Arthritis Revealed through Use of Adenovirus Programming Complement Inhibitor MAp44 Expression Nirmal K.
    [Show full text]
  • The Evolution of the Immune System: Conservation and Diversification
    Title The Evolution of the Immune System Conservation and Diversification Page left intentionally blank The Evolution of the Immune System Conservation and Diversification Davide Malagoli Department of Life Sciences Biology Building, University of Modena and Reggio Emilia, Modena, Italy AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1800, San Diego, CA 92101-4495, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Copyright © 2016 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek per- mission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein.
    [Show full text]
  • Role of MASP-3 in the Physiological Activation of Factor D of the Alternative Complement Pathway
    Cutting Edge: Role of MASP-3 in the Physiological Activation of Factor D of the Alternative Complement Pathway This information is current as Manabu Hayashi, Takeshi Machida, Yumi Ishida, Yusuke of September 27, 2021. Ogata, Tomoko Omori, Mika Takasumi, Yuichi Endo, Toshiyuki Suzuki, Masayuki Sekimata, Yoshimi Homma, Masahito Ikawa, Hiromasa Ohira, Teizo Fujita and Hideharu Sekine J Immunol published online 9 August 2019 Downloaded from http://www.jimmunol.org/content/early/2019/08/09/jimmun ol.1900605 Supplementary http://www.jimmunol.org/content/suppl/2019/08/09/jimmunol.190060 http://www.jimmunol.org/ Material 5.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published August 9, 2019, doi:10.4049/jimmunol.1900605 Cutting Edge: Role of MASP-3 in the Physiological Activation of Factor D of the Alternative Complement Pathway Manabu Hayashi,*,† Takeshi Machida,* Yumi Ishida,* Yusuke Ogata,* Tomoko Omori,* Mika Takasumi,*,† Yuichi Endo,* Toshiyuki Suzuki,‡ ‡ x { † Masayuki Sekimata,‖ Yoshimi Homma, Masahito Ikawa, Hiromasa Ohira, Teizo Fujita, and Hideharu Sekine* The complement system, a part of the innate immune PRMs of the LP form a complex with MBL-associated serine system, can be activated via three different pathways.
    [Show full text]