Fast Reactors and Related Fuel Cycles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nuclear Proliferation in Plain Sight: Japan’S Plutonium Fuel Cycle–A Technical and Economic Failure but a Strategic Success
Volume 14 | Issue 5 | Number 2 | Article ID 4860 | Mar 01, 2016 The Asia-Pacific Journal | Japan Focus Nuclear Proliferation in Plain Sight: Japan’s Plutonium Fuel Cycle–A Technical and Economic Failure But a Strategic Success Shaun Burnie, Frank Barnaby, with Tom Clements, Aileen Mioko Smith and Kendra Ulrich Précis escalate in East Asia, Japan's stockpiling of thousands of kilograms of weapons usable th Five years after the March 11 2011 plutonium with no credible peaceful use is earthquake and tsunami destroyed fourdriving further proliferation in the region. Two reactors at the Fukushima Daiichi site, Japan's years before the extension of the U.S. Japan nuclear industry remains in crisis. Three nuclear cooperation agreement, the legal basis st reactors are operating as of February 1 2016, for the nations plutonium program, the time for a reduction of 94% of reactors since 2011. a rethink, long past, is more urgent than ever. Prospects for a restart of even half of the 54 reactors formerly operating are almost zero. Introduction For decades the center of the nations nuclear and energy policy was based on the utilization In the twilight world of Japan's nuclear of plutonium to fuel fast breeder reactors, program, where nothing is what it seems, the together with the use of plutonium MOX fuel in MONJU fast breeder reactor symbolizes a commercial power reactors. The program has nuclear policy that is based on a dangerous absorbed trillions of yen yet has utterly failed fantasy, but remains entrenched within the to deliver the energy security used to justify it. -
Assessing Potential Induced Radioactivity in Materials Processed with X-Ray Energy Above 5 Mev: Assessment Protocols and Practical Experience
FERMILAB-PUB-20-562-DI Assessing potential induced radioactivity in materials processed with X-ray energy above 5 MeV: Assessment protocols and practical experience Hervé Michel1; Thomas Kroc2; Brian J. McEvoy 3; Deepak Patil4 Pierre Reppert5; Mark A. Smith6 1Director, Radiation Technology EMEAA, STERIS, Hogenweidstrasse 6, 4658 Däniken, Switzerland, [email protected] 2Applications Physicist for Technology Development, Fermilab, Batavia, Illinois, USA, [email protected] 3Senior Director Global Technologies, STERIS, IDA Business & Technology Park, Tullamore, County Offaly, R35 X865, Ireland, [email protected] 4Senior Director, Radiation Technology, 1880 Industrial Drive, Libertyville, IL 60048 [email protected] 5Validation Manager, STERIS, Hogenweidstrasse 6, 4658 Däniken, Switzerland, [email protected] 6Managing Director, Ionaktis, LLC, PO Box 11599, Charlotte, NC 28220 USA [email protected] Abstract In accordance with ISO11137-1 section 5.1.2, ‘the potential for induced radioactivity in product shall be assessed’. This article describes how compliance to this requirement may be achieved using qualified test methods. Materials of consideration are conceptually discussed. Results of testing conducted on products processed with a 7.5 MeV X-ray irradiation process are provided. As X-ray becomes more widely used in healthcare sterilization, having standard assessment protocols for activation coupled with a shared database of material test results will benefit all healthcare product manufacturers seeking to avail of this innovative technology. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. 1. Introduction Radioactive material of natural origin is ubiquitous in nature, widely varying in type and amount. -
Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser
PHYSICAL REVIEW X 4, 031030 (2014) Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser † A. Picciotto,1,* D. Margarone,2, A. Velyhan,2 P. Bellutti,1 J. Krasa,2 A. Szydlowsky,3,4 G. Bertuccio,5 Y. Shi,5 A. Mangione,6 J. Prokupek,2,7 A. Malinowska,4 E. Krousky,8 J. Ullschmied,8 L. Laska,2 M. Kucharik,7 and G. Korn2 1Micro-Nano Facility, Fondazione Bruno Kessler, 38123 Trento, Italy 2Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague, Czech Republic 3Institute of Plasma Physics and Laser Microfusion, 01-497 Warsaw, Poland 4National Centre for Nuclear Research, 05-400 Otwock, Poland 5Politecnico di Milano, Department of Electronics Information and Bioengineering, 22100 Como, Italy 6Institute of Advanced Technologies, 91100 Trapani, Italy 7Czech Technical University in Prague, FNSPE, 115 19 Prague, Czech Republic 8Institute of Plasma Physics of the ASCR, PALS Laboratory, 182 00 Prague, Czech Republic (Received 12 January 2014; revised manuscript received 1 April 2014; published 19 August 2014) We show that a spatially well-defined layer of boron dopants in a hydrogen-enriched silicon target allows the production of a high yield of alpha particles of around 109 per steradian using a nanosecond, low-contrast laser pulse with a nominal intensity of approximately 3 × 1016 Wcm−2. This result can be ascribed to the nature of the long laser-pulse interaction with the target and with the expanding plasma, as well as to the optimal target geometry and composition. The possibility of an impact on future applications such as nuclear fusion without production of neutron-induced radioactivity and compact ion accelerators is anticipated. -
Simulation of Induced Radioactivity for a Heavy Ion Medical Machine
Chinese Physics C Vol. 38, No. 11 (2014) 118201 Simulation of induced radioactivity for a heavy ion medical machine XU Jun-Kui(Md¿)1;2 SU You-Wu(kÉ)2;1) LI Wu-Yuan(oÉ)2 MAO Wang(f!)2 XIA Jia-Wen(gZ©)2 CHEN Xi-Meng(Ú)1 YAN Wei-Wei(î)2 XU Chong(MÇ)2 1 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China 2 Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China Abstract: The radioactivity induced by carbon ions of the Heavy Ion Medical Machine (HIMM) was studied to asses its radiation protection and environmental impact. Radionuclides in the accelerator component, and in the cooling water and air at the target area, which are induced from primary beam and secondary particles, are simulated by FLUKA Monte Carlo code. It is found that radioactivity in the cooling water and air is not very important at the required beam intensity and energy that is needed for treatment, while radionuclides in the accelerator component may cause some problems for maintenance work and, therefore, a suitable cooling time is needed after the machine is shut down. Key words: radioactivity, HIMM, heavy ion PACS: 07.89.+b, 28.41.Qb DOI: 10.1088/1674-1137/38/11/118201 1 Introduction back to the early period when Curie and Joliot found the activation reaction in 1934 [4]. In recent years, improve- Nowadays, radiation therapy is an important means ments of the accelerator have meant that more kinds of tumor treatment. More than 50% of all patients with of particles, of a higher energy can be accelerated and, localized malignant tumors are treated with radiation [1]. -
Political Economy of the Fukushima Nuclear Catastrophe
J-Economy, J-Corporation and J-Power since 1990 From Mutual Gain to Neoliberal Redistribution Enno Berndt 3 J-Power: Political Economy of the Fukushima Nuclear Catastrophe Summary 3.1 Personal Blind Spot. – 3.1.1 Earthquakes and Nuclear Power Plants in Japan. – 3.1.2 The ‘Nuclear Earthquake Disaster’ of March 2011. – 3.1.3 Historical Parallels. – 3.2 Cui Bono? Interests, Power and Nuclear Power Generation in Japan. – 3.2.1 Ownership and Business Model of the Electric Power Industry in Japan. – 3.2.2 State Political Interests: Hidden Military Budget? – 3.2.3 Industrial Policy Interests: Infrastructure Export. – 3.3 Fundamental Problems of a NPP-Centred Electricity Industry. – 3.3.1 Inflexible and Costly Control of Power Supply. – 3.3.2 Nuclear Fuel Cycle Unclosed. – 3.3.3 Actual Costs of Nuclear Power Generation: Complex, Hidden and High. – 3.3.4 Liberalising Japan’s Electricity Market: Making Nuclear Power a Defensive Wall. – 3.3.5. Nuclear Power as a Rescue from Global Warming? – 3.4 Future Scenarios: Politics, Market and Technology. 3.1 Personal Blind Spot In hindsight one knows better, as the saying goes. But when trying to understand something that has already happened, practical science aims primarily to discover new contexts, reveal still unseen consequences and outline alternatives for acting. The objects of such science are contested terrain since the search for how and why something happened is pervaded by interests. And the searchers themselves are involved in power relations and conflicts. Ignoring and obscuring critical events help to protect pre- dominant actors and their interest. -
Nuclear Energy Systems Business Operation
Nuclear Energy Systems Business Operation June 3, 2010 Akira Sawa Director, Executive Vice President, General Manager, Nuclear Energy Systems Headquarters 1 Contents 1. Highlights in Corporate News, 2009-2010 2. Results of the 2008 Business Plan 3. Overview of the 2010 Business Plan 4. Operation in Global Business 5. Operation in Domestic Light Water Reactor Business 6. Operation in Nuclear Fuel Cycle Business 7. Value Chain Innovation 2 1. Highlights in Corporate News, 2009-2010 Projects Delivered Realizing Major Projects The latest PWR power plant 3rd US-APWR selected started commercial operation Hokkaido Electric Dominion Resources Tomari unit 3 North Anna unit 3 (Dec 2009) (May 2010) Inheriting plant Plant export starts in technologies Tomari unit 3 (right) earnest Existing North Anna unit 1/2 1st plutonium thermal operation Large-scale order received started in Japan for nuclear fuel cycle Kyushu Electric Japan Nuclear Fuel Genkai unit 3 Limited (Dec 2009) Rokkasho MOX fuel Shikoku Electric fabrication plant Ikata unit 3 (June 2009) (Mar 2010) Genkai No. 3 reactor Rokkasho MOX fuel fabrication plant MOX fuel loaded (J-MOX) Nuclear Fuel Cycle Contribution to Japanese Advanced nuclear fuel cycle 3 2. Results of the 2008 Business Plan Orders, Sales and Profit Steady business mostly in domestic maintenance services, nuclear fuel cycle and components export Major Actions and Achievements Steady business promotion and construction of business foundation towards global deployment Overseas business ○Dominion selected US-APWR, a 1,700MWe class large-sized PWR, the third unit following the 2 units selected by Luminant. ○The basic design of ATMEA1, a 1,100 MWe class mid-sized PWR, completed. -
X Rays and Radioactivity : a Complete Surprise
ÏLABORATOIRE ATIONAL ATURNE 91191 Gif-$ur-Yvette Cedex France X rays and Radioactivity : a complete surprise Pierre Radvanyi (Laboratoire National Saturne, 91191 Gif-sur-Yvette Cedex) and Monique Bordry (Musée et Archives de l'Institut du Radium, 75231 Paris Cedex 05) Contribution to the Conference on LHS/FH/95-05 the "Emergence of Modem Physics" W - ™W>™ Berlin, 22-24 March 1995 Centre National de la Recherche Scientifique OGO Commissariat à l'Energie Atomique 3>HÉ * **«*«» *r ILABORATOIRE ATIONAL ATURNE 91191 Gif-sur-Yvette Cedex France X rays and Radioactivity : a complete surprise Pierre Radvanyi (Laboratoire National Saturne, 91191 Gif-sur-Yvette Cedex) and Monique Bordry (Musée et Archives de l'Institut du Radium, 75231 Paris Cedex 05) Contribution to the Conference on the "Emergence of Modem Physics" ^ - ws/ph/95-os Berlin, 22-24 March 1995 m/fi Centre National de la Recherche Scientifique 093 Commissariat à l'Energie Atomique Berin, 23 March 1995 X rays and radioactivity : a complete surprise Pierre Radvanyi Laboratoire National Saturne, 91191 Gif-sur-Yvette Cedex and Monique Bordry Musée et Archives de l'Institut du Radium, 75231 Paris Cedex 05 Abstract The discoveries of X rays and of radioactivity came as complete experimental surprises; the physicists, at that time, had no previous hint of a possible structure of atoms. It is difficult now, knowing what we know, to replace ourselves in the spirit, astonishment and questioning of these years, between 1895 and 1903. The nature of X rays was soon hypothesized, but the nature of the rays emitted by uranium, polonium and radhim was much more difficult to disentangle, as they were a mixture of different types of radiations. -
28 Neutron Activation Analysis (NAA) Predicting the Sensitivity of Neutron Activation Analysis (NAA)
Neutron Activation and Activation Analysis 11/26/09 1 General 2 General Many nuclear reactions produce radioactive products. The most common of these reactions involve neutrons: Neutron + Target Nuclide → Activation Product 3 General Important Applications/Issues Associated with Neutron Activation 1. Neutron Activation Analysis (NAA) This is an extraordinarily powerful technique for identifying and quantifying various elements (and nuclides) in a sample. 2. Neutron Fluence Rate (Flux) Measurements Neutron fluence rates in reactors or other neutron sources can be measured by exposing targets (e.g., metal foils) to the neutrons and measuring the induced activity. 4 General Important Applications/Issues Associated with Neutron Activation 3. Dosimetry Following Criticality Accidents The induced activity in objects or individuals following a criticality accident can be used to estimate the doses to these individuals. 4. Hazards from Induced Activity Induced radioactivity in the vicinity of intense neutron sources can constitute an exposure hazard. Examples of such sources include reactors, accelerators and, of course, nuclear explosions. 5 General Neutron Capture The most important reaction is neutron capture: Thermal neutrons are most likely to be captured. The target nuclide is usually, but not necessarily stable. If the product is radioactive, it is likely a beta emitter. The gamma ray, referred to as a prompt gamma or capture gamma, is typically of high energy. 6 General Neutron Capture Example: This is an exception to the generalization that the activation product is a beta emitter. Cr-51 decayyys by electron cap ture! The major prompt gamma rays: 749 keV produced 11.0% of the time 8512.1 keV produced 6.16% of the time 8484.0 keV produced 4.54% of the time 7 General Neutron-Proton Reaction Another potentially important reaction is the n-p reaction: The n-p reaction is most likely for fast neutrons and target nuclides with low atomic numbers. -
Simulation of Induced Radioactivity for Heavy Ion Medical Machine XU Jun-Kui1,2 SU You-Wu1 LI Wu-Yuan1 MAO Wang1 XIA Jia-Wen1 CH
Submitted to ‘Chinese Physics C’ Simulation of induced radioactivity for Heavy Ion Medical Machine XU Jun-Kui1,2 SU You-Wu1 LI Wu-Yuan1 MAO Wang1 XIA Jia-Wen1 CHEN Xi-Meng2 YAN Wei-Wei 1 XU Chong1 1 Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China 2 The School of Nuclear Science and Technology Lanzhou University, Lanzhou 73000, China Abstract:For radiation protection and environmental impact assessment purpose, the radioactivity induced by carbon ion of Heavy Ion Medical Machine (HIMM) was studied. Radionuclides in accelerator component, cooling water and air at target area which are induced from primary beam and secondary particles are simulated by FLUKA Monte Carlo code. It is found that radioactivity in cooling water and air is not very important at the required beam intensity and energy which is needed for treatment, radionuclides in accelerator component may cause some problem for maintenance work, suitable cooling time is needed after the machine are shut down. Key word:radioactivity, HIMM, heavy ion 1. Introduction Nowadays radiation therapy is an important mean of treatment of tumor, more than 50% of all patients with localized malignant tumors are treated with radiation [1]. Many accelerators are built for medical purpose, in which heavy ion therapy is the most advanced treatment technology, and start at Bevalac facility at LBL in 1975 [2], and now there are 4 countries had launched the practice of heavy ion therapy. IMP (the Institute of Modern Physics, Chinese Academy of Sciences) had been started the research of biological effect of radiation with middle energy heavy ions since 1993, and start superficial tumor treatment of clinical research with 80MeV/u carbon ion beam in 2006. -
Use of Isotopes to Reduce Neutron-Induced Radioactivity and Augment Thermal Quality of the Environment of an Underground Nuclear Explosion
Scholars' Mine Masters Theses Student Theses and Dissertations 1972 Use of isotopes to reduce neutron-induced radioactivity and augment thermal quality of the environment of an underground nuclear explosion Nathaniel Fred Colby Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Nuclear Engineering Commons Department: Recommended Citation Colby, Nathaniel Fred, "Use of isotopes to reduce neutron-induced radioactivity and augment thermal quality of the environment of an underground nuclear explosion" (1972). Masters Theses. 5056. https://scholarsmine.mst.edu/masters_theses/5056 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. USE OF ISOTOPES TO REDUCE NEUTRON-INDUCED RADIOACTIVITY AND AUGMENT THERMAL QUALITY OF THE ENVIRONMENT OF AN UNDERGROUND NUCLEAR EXPLOSION BY NATHANIEL FRED COLBY, 1936- A THESIS Presented to the Faculty of the Graduate School of the UNIVERSITY OF MISSOURI-ROLLA In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN NUCLEAR ENGINEERING 1972 T2713 43 pages c. I Approved by ~.If(~ (Advisor) ii ABSTRACT The use of isotopes to include radioactive waste pro ducts to reduce the neutron-induced activity of an under ground nuclear explosion and its application in the field of geothermal power stimulation is discussed. A shield com posed of selected isotopes surrounding a fusion device will capture excess neutrons producing isotopes with short half lives. Subsequent rapid decay will prolong the high temperature in the vicinity of the explosion and decrease the activity. -
Radioactivity Induced by Neutrons: a Thermodynamic Approach to Radiative Capture
RADIOACTIVITY INDUCED BY NEUTRONS: A THERMODYNAMIC APPROACH TO RADIATIVE CAPTURE Alberto De Gregorio* ABSTRACT œ When Enrico Fermi discovered slow neutrons, he accounted for their great efficiency in inducing radioactivity by merely mentioning the well-known scattering cross-section between neutrons and protons. He did not refer to capture cross-section, at that early stage. It is put forward that a thermodynamic approach to neutron-proton radiative capture then widely debated might underlie his early accounts. Fermi had already met with a similar approach, and repeatedly used it. In 2004, seven decades had elapsed since the artificial radioactivity was discovered. On January 15, 1934 it was announced that the activation of aluminium, boron, and magnesium by α-particles had been obtained in the Institut du Radium in Paris. Some weeks later, between the end of February and mid-March, two different laboratories in California showed that deutons and protons as well could induce radioactivity.1 On March 25, Enrico Fermi communicated that radioactivity was induced in fluorine and aluminium irradiated with neutrons. In October, a second, crucial discovery was made in the laboratories of the Regio Istituto Fisico in Rome: in many cases, neutrons might become more effective if they were slowed down through hydrogenous substances.2 That especially occurred when a nucleus œ particularly a heavy one œ became radioactive through a process known as —radiative capture“, absorbing a slowed-down neutron and promptly emitting a gamma ray. It is noteworthy that for some time Fermi, while discussing the effects of slowing down the neutrons, did not refer at all to reaction cross-section between neutrons and nuclei. -
ASTRID Project, General Overview and Status Progress F
CORE Metadata, citation and similar papers at core.ac.uk Provided by Archive Ouverte en Sciences de l'Information et de la Communication ASTRID project, general overview and status progress F. Varaine, G. Rodriguez, J.M. Hamy, S. Kubo, H. Mochida, U. Yukinori, J.P. Helle, A. Remy, T. Chauveau, J. Mazel, et al. To cite this version: F. Varaine, G. Rodriguez, J.M. Hamy, S. Kubo, H. Mochida, et al.. ASTRID project, general overview and status progress. GIF Symposium - the 4th GIF Symposium at the 8th edition of Atoms for the Future, Oct 2018, Paris, France. cea-02328962 HAL Id: cea-02328962 https://hal-cea.archives-ouvertes.fr/cea-02328962 Submitted on 25 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ASTRID Project, General Overview and status progress ____________________________________________________________________________________________________ ASTRID PROJECT, GENERAL OVERVIEW AND STATUS PROGRESS F. VARAINE(1), G. RODRIGUEZ(1), J. M. HAMY(2), S. KUBO(3), H. MOCHIDA(4), U. YUKINORI(5), J. P. HELLE(6), A. REMY(7), T. CHAUVEAU(8), J. L. MAZEL(9), M. LIBESSART(10), R. P. BENARD(11), M. FUKUIE(12), D. SETTIMO(13), V.