Menzies, Who Was Involved with the Enigma Project in England, From

Total Page:16

File Type:pdf, Size:1020Kb

Menzies, Who Was Involved with the Enigma Project in England, From Menzies, who was involved with the Enigma project in England, from General Eisenhower, asking him to thank Sir Edward Travis and the people in Bletchley Park for all the work they had done in regards to the Enigma. There was no mention of the Polish anywhere in the short letter. 22 The British finally managed to break the Enigma code during the Battle of France. 23 Now, here, finally, are the reasons why the Polish should be the ones who receive the credit for breaking the Enigma code. The Polish actually broke the German Enigma codes before the war started. The Enigma codes for German High Command communications were broken “during the buildup to war”. 24 One participant of the Polish codebreakers retells how the Polish confirmed the Germans were using Enigma to send codes. At the end of 1927, or possibly at the beginning of 1928, a parcel containing radio equipment, according to the declaration, arrived from Germany at the customs house in Warsaw. Because the parcel had been sent erroneously in place of other equipment, a representative of a German firm very insistently demanded the return of the parcel to the German government before it was cleared through customs. His demands were so urgent that they awakened the suspicions of the customs officers, who informed the Cipher Bureau of the Second Department of the General Staff, an institution interested in every kind of innovation in the area of radio equipment. Since it happened to be Saturday afternoon, the employees delegated by the bureau had time to study the matter at leisure. The box was carefully opened, and it was determined that indeed it did not contain radio equipment; it contained a cipher machine. 25 Based on what they saw in the box, the Polish realized that the Germans had sent a commercial version of the Enigma machine through Polish customs. This whole thing started as a collaboration with the French intelligence community in 1928. The Polish then proceeded to break the German naval codes in 1932 and the next year broke the codes for the German High Command and Foreign Ministry. 26 The most impressive f eat is the fact that the P olish were able to decipher over 100,000 German messages by the year 1939. 27The f irst transmissions tha t were shared with the Allied forces were the messages about the remilitarization of Germany in 1936, the joining of Austria and Germany in 1938 and the message about G ermany taking the Sudetenland from Czechoslovakia, only after the action was approved by the Polish General Staff. The reason was the messages started to show that Hitler was planning on attacking Poland. As noted before, the As inllie B ritain and France did not receive their Enigma machines until July 1939. 28 After the machines were sent to the British and French, Poland was taken over by the Germans in September of 1939. So the Polish government fled to Romania and France and 22 Winterbotham, 2. 23 Gordon Welchman, The Hut Six Story: Breaking the Enigma Codes, 96. 24 Rodney P. Carlisle and Gail H. Nelson, Poland: ENIGMA codebreakers, Encyclopedia of Intelligence and Counterintelligence, Vol. 2, (Armonk, NY: Sharpe Reference, 2005), 501. 25 Marian Rejewski, How Polish Mathematicians Deciphered the Enigma, (Annals of the History of Computing, 1981), 213. 26 Carlisle and Nelson, 501. 27 Carlisle and Nelson, 501. 28 Carlisle and Nelson, 501. 39.
Recommended publications
  • How I Learned to Stop Worrying and Love the Bombe: Machine Research and Development and Bletchley Park
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CURVE/open How I learned to stop worrying and love the Bombe: Machine Research and Development and Bletchley Park Smith, C Author post-print (accepted) deposited by Coventry University’s Repository Original citation & hyperlink: Smith, C 2014, 'How I learned to stop worrying and love the Bombe: Machine Research and Development and Bletchley Park' History of Science, vol 52, no. 2, pp. 200-222 https://dx.doi.org/10.1177/0073275314529861 DOI 10.1177/0073275314529861 ISSN 0073-2753 ESSN 1753-8564 Publisher: Sage Publications Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it. Mechanising the Information War – Machine Research and Development and Bletchley Park Christopher Smith Abstract The Bombe machine was a key device in the cryptanalysis of the ciphers created by the machine system widely employed by the Axis powers during the Second World War – Enigma.
    [Show full text]
  • Stdin (Ditroff)
    Notes to accompany four Alan Turing videos 1. General The recent (mid-November 2014) release of The Imitation Game movie has caused the com- prehensive Alan Hodges biography of Turing to be reprinted in a new edition [1]. This biog- raphy was the basis of the screenplay for the movie. A more recent biography, by Jack Copeland [2], containing some new items of information, appeared in 2012. A more techni- cal work [3], also by Jack Copeland but with contributed chapters from other people, appeared in 2004. 2. The Princeton Years 1936–38. Alan Turing spent the years from 1936–38 at Princeton University studying mathematical logic with Prof. Alonzo Church. During that time Church persuaded Turing to extend the Turing Machine ideas in the 1936 paper and to write the results up as a Princeton PhD. You can now obtaing a copy of that thesis very easily [4] and this published volume contains extra chapters by Andrew Appel and Solomon Feferman, setting Turing’s work in context. (Andrew Appel is currently Chair of the Computer Science Dept. at Princeton) 3. Cryptography and Bletchley park There are many texts available on cryptography in general and Bletchley Park in particu- lar. A good introductory text for the entire subject is “The Code Book” by Simon Singh [5] 3.1. Turing’s Enigma Problem There are now a large number of books about the deciphering of Enigma codes, both in Hut 6 and Hut 8. A general overview is given by “Station X” by Michael Smith [6] while a more detailed treatment, with several useful appendices, can be found in the book by Hugh Sebag-Montefiore [7].
    [Show full text]
  • Polish Mathematicians Finding Patterns in Enigma Messages
    Fall 2006 Chris Christensen MAT/CSC 483 Machine Ciphers Polyalphabetic ciphers are good ways to destroy the usefulness of frequency analysis. Implementation can be a problem, however. The key to a polyalphabetic cipher specifies the order of the ciphers that will be used during encryption. Ideally there would be as many ciphers as there are letters in the plaintext message and the ordering of the ciphers would be random – an one-time pad. More commonly, some rotation among a small number of ciphers is prescribed. But, rotating among a small number of ciphers leads to a period, which a cryptanalyst can exploit. Rotating among a “large” number of ciphers might work, but that is hard to do by hand – there is a high probability of encryption errors. Maybe, a machine. During World War II, all the Allied and Axis countries used machine ciphers. The United States had SIGABA, Britain had TypeX, Japan had “Purple,” and Germany (and Italy) had Enigma. SIGABA http://en.wikipedia.org/wiki/SIGABA 1 A TypeX machine at Bletchley Park. 2 From the 1920s until the 1970s, cryptology was dominated by machine ciphers. What the machine ciphers typically did was provide a mechanical way to rotate among a large number of ciphers. The rotation was not random, but the large number of ciphers that were available could prevent depth from occurring within messages and (if the machines were used properly) among messages. We will examine Enigma, which was broken by Polish mathematicians in the 1930s and by the British during World War II. The Japanese Purple machine, which was used to transmit diplomatic messages, was broken by William Friedman’s cryptanalysts.
    [Show full text]
  • Two Influential British World War 2 Technologies Aram Soultanian
    Two Influential British World War 2 Technologies Aram Soultanian London HUA 2900 Dr. David Spanagel & Esther Boucher-Yip 6/20/18 1 Soultanian Introduction When fighting a war, technology can provide one of the greatest advantages the military can possess. A country’s ability to produce more advanced technologies and determine whether or not their technologies have been compromised is probably the difference between winning and losing. Every year, the United States spends billions of dollars developing and building stealth technologies used in state-of-the-art fighter jets and helicopters. The fifth generation F-35 Lightning II and F-22 Raptor have the RADAR Cross Section comparable in size to a golf ball and bumble bee respectively.1 This makes these fighter jets virtually impossible to detect until it is far too late, and the plane has passed with its payload dropped. The concept of stealth planes came from the development of RADAR systems in World War II. Today, not a single F-35 or F-22 has been shot down in combat or in air-to-air exercise and will likely not for another 5-10 years.2 Additionally, the paranoia surrounding encryption began after Alan Turing and a group of codebreakers developed a machine to discover the exact setup of Enigma machines used by the German Navy. Military and private companies alike are prioritizing data security to ensure their data is only accessible to those authorized. The ability to know precisely when an enemy will attack allows preemptive safety measures such as evacuation and coordination of counter attacks, thus reducing the number of casualties.
    [Show full text]
  • History Today 12 June 2018: Back to Basics
    Back to Basics June 12 The CCH has seen a few instances recently where published histories on the outside that deal with World War II cryptology have used WW II cryptologic terminology incorrectly or made other erroneous statements about the wartime effort. We decided it would be a good idea to lay out some terminology and basic facts for reference. If all this sounds like a primer, well, yes, it is. But we hope it is also an interesting primer. Both the United States and Great Britain had intensive cryptanalytic efforts before World War II, and both enjoyed a measure of success. Although both countries worked a variety of targets, the British concentrated on German cryptosystems, and the U.S. on Japanese systems. Each gave a covername to the systems they sought to solve, and, when successful against an adversary’s system, they applied a different covername to the results of the cryptanalysis. The Americans and British began cautious sharing in early 1941 of what the British called Signals Intelligence (SIGINT) and U.S. officials called Communications Intelligence (COMINT). Over the course of the war, just as the two nations grew closer in military operations, their cryptologic organizations greatly increased cooperation. Both countries had a covername that was applied to the information derived from exploiting a foreign cryptosystem. This had a double purpose; it would help keep the intelligence information within carefully controlled distribution system, and it would alert the reader to the fact that the intelligence had been obtained through an extremely fragile process and could only be discussed with others who held the proper clearances for that kind of intelligence.
    [Show full text]
  • Gordon Welchman: Bletchley Parks Architect of Ultra Intelligence Pdf, Epub, Ebook
    GORDON WELCHMAN: BLETCHLEY PARKS ARCHITECT OF ULTRA INTELLIGENCE PDF, EPUB, EBOOK Joel Greenberg | 288 pages | 02 Feb 2016 | Pen & Sword Books Ltd | 9781848327528 | English | Barnsley, United Kingdom Gordon Welchman: Bletchley Parks Architect of Ultra Intelligence PDF Book Book Description Frontline, London, McMillan , Hardcover 5. Replies 1 Views He began to ask for advice about publishing a more complete account and sought access to GCHQ documents. Media Test New media New comments Search media. This machine was developed in order to produce a systematic analysis of decrypted messages. These cookies are used to make advertising messages more relevant to you. Brand new Book. His book, The Hut Six Story, was the first to reveal not only how they broke the codes, but how it was done on an industrial scale. Search forums. New Posts. Gordon Welchman: Bletchley Park? In a personal paper titled A Personal Record , written shortly before his death in , Welchman stated:. Latest: Cregg Bristle 3 minutes ago. Gordon Welchman was one of the Park's most important figures. The book has a good selection of well reproduced black and white photographs. Book Description Frontline, London, Like Turing, his pioneering work was fundamental to the success of Bletchley Park and helped pave the way for the birth of the digital age. It will require some mathematical back ground to understand this part of the book. The intercepted German army and air force messages were decrypted in Huts 6 and 3; the navy messages which were encrypted with a different Enigma machine in Huts 8 and 4. Author copepod Creation date 9 Apr Tags bletchley park code breaking gordon welchman.
    [Show full text]
  • Breaking Enigma Samantha Briasco-Stewart, Kathryn Hendrickson, and Jeremy Wright
    Breaking Enigma Samantha Briasco-Stewart, Kathryn Hendrickson, and Jeremy Wright 1 Introduction 2 2 The Enigma Machine 2 2.1 Encryption and Decryption Process 3 2.2 Enigma Weaknesses 4 2.2.1 Encrypting the Key Twice 4 2.2.2 Cillies 5 2.2.3 The Enigma Machine Itself 5 3 Zygalski Sheets 6 3.1 Using Zygalski Sheets 6 3.2 Programmatic Replication 7 3.3 Weaknesses/Problems 7 4 The Bombe 8 4.1 The Bombe In Code 10 4.1.1 Making Menus 10 4.1.2 Running Menus through the Bombe 10 4.1.3 Checking Stops 11 4.1.4 Creating Messages 11 4.1.5 Automating the Process 11 5 Conclusion 13 References 14 1 Introduction To keep radio communications secure during World War II, forces on both sides of the war relied on encryption. The main encryption scheme used by the German military for most of World War II employed the use of an Enigma machine. As such, Britain employed a large number of codebreakers and analysts to work towards breaking the Enigma-created codes, using many different methods. In this paper, we lay out information we learned while researching these methods, as well as describe our attempts at programatically recreating two methods: Zygalski sheets and the Bombe. 2 The Enigma Machine The Enigma machine was invented at the end of World War I, by a German engineer named Arthur Scherbius. It was commercially available in the 1920s before being adopted by the German military, among others, around the beginning of World War II.
    [Show full text]
  • Bletchley Park and the Development of the Rockex Cipher Systems: Building a Technocratic Culture, 1941–1945
    Bletchley Park and the Development of the Rockex Cipher Systems: Building a Technocratic Culture, 1941–1945 Smith, C Author post-print (accepted) deposited by Coventry University’s Repository Original citation & hyperlink: Smith, C 2017, 'Bletchley Park and the Development of the Rockex Cipher Systems: Building a Technocratic Culture, 1941–1945' War in History, vol 24, no. 2, pp. 176-194 https://dx.doi.org/10.1177/0968344515613539 DOI 10.1177/0968344515613539 ISSN 0968-3445 ESSN 1477-0385 Publisher: Sage Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it. 1 Bletchley Park and the Development of the Rockex Cipher Systems: Building a Technocratic Culture, 1941–1945 The Government Code and Cypher School (GC&CS), housed at Bletchley Park during the Second World War, has widely been acknowledged to have been a major hub of wartime technological research. Despite its reputation for technocracy, until relatively late in the war the design and construction of technology by the agency was conducted in an ad hoc and piecemeal fashion to address specific problems.
    [Show full text]
  • Turing-Welchman Bombe Brochure
    Turing Welshman bombe at the Heroes of the Bombe story When and where to see the Bombe Alan Turing was a leading young The Bombe is housed at The National Museum of Cambridge University mathematician Computing. when he was recruited to work as a codebreaker. After he was told about Volunteer guides are available to explain and the Poles’ success against Enigma, he demonstrate in more detail how the Bombe works. realised that if you could guess some For safety reasons, access to the gallery has to be part of a message, known as a “crib”, limited when maintenance is being carried out, he could design a machine to search for potential normally on Mondays. Enigma key settings. He called the machine the “Bombe”, similar to the name (Bomba) used by Group and corporate visits can be arranged. Turing-Welchman the Poles in an earlier attempt to decrypt Enigma Contact [email protected] for details. messages. Unfortunately Turing's original design Bombe needed many 'loops' in a menu to avoid far too many Fancy becoming a codebreaker? Exclusive invalid stops. This made it difficult to find a viable Masterclasses are available, subject to availability. menu, and the original Bombe would not have Please contact [email protected] or call us on sufficient throughput for the codebreakers' needs. 01908 374708. Gordon Welchman was also a Details of museum events can be found on: mathematician and codebreaker www.tnmoc.org/events who worked on Enigma. He spotted that the Enigma had a weakness which could be used to eliminate most of the Bombe’s possible but irrelevant key settings.
    [Show full text]
  • British Codebreaking Operations: 1938-43 Andrew J
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2015 All the King’s Men: British Codebreaking Operations: 1938-43 Andrew J. Avery East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the History Commons Recommended Citation Avery, Andrew J., "All the King’s Men: British Codebreaking Operations: 1938-43" (2015). Electronic Theses and Dissertations. Paper 2475. https://dc.etsu.edu/etd/2475 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. All the King’s Men: British Codebreaking Operations: 1938-43 _____________________ A thesis presented to the faculty of the Department of History East Tennessee State University In partial fulfillment of the requirements for the degree Master of Arts in History _____________________ by Andrew J. Avery May 2015 _____________________ Dr. Stephen G. Fritz, Chair Dr. Andrew L. Slap Dr. John Rankin Keywords: World War II, Alan Turing, Bletchley Park, Code-breaking, Room 40, Gordon Welchman, GC&CS ABSTRACT All the King’s Men: British Codebreaking Operations: 1938-43 by Andrew J. Avery The Enigma code was one of the most dangerous and effective weapons the Germans wielded at the outbreak of the Second World War. The Enigma machine was capable of encrypting radio messages that seemed virtually unbreakable.
    [Show full text]
  • A Life Computed
    BOOKS & ARTS COMMENT MATHEMATICS In a nearby gallery, a twisted white metal fuselage serves as a poignant reminder of the part Turing’s ideas played in develop- ing safer air travel after the war. In 1954, the A life computed world’s first commercial jet airliner, the de Havilland Comet registered ‘Yoke Peter’, exploded in mid-air, killing everyone on James Poskett navigates a sophisticated account of board — and prompted the Royal Aircraft Alan Turing’s extraordinarily varied intellectual world. Establishment at Farnborough, UK, to find the cause. By this time, Turing’s abstract idea of a lan Turing did not invent the com- and abstracted it, Codebreaker — universal computing machine had become a puter. During the 1930s, well before imagining a universal Alan Turing’s life reality. The National Physical Laboratory in the Manchester ‘Baby’, Pilot ACE computing machine and legacy Teddington, UK, had in 1950 completed the The Science Museum, Aor EDVAC machines, thousands were in that could take on Pilot ACE, an electronic computer designed London operation all across Britain. These ‘com- all of the individual (21 June 2012– to one of Turing’s first practical specifica- puters’ were women, working in teams and tasks allocated to the 31 July 2013) tions. For a short time, this computer was each performing a discrete step of a complex women in the SCS. the fastest in the world. The huge rack of mathematical operation. This was merely a thought experiment for wires, relays and coloured transistors is dis- Employed by the Scientific Comput- him at first — an aid for approaching David played alongside the Yoke Peter wreckage.
    [Show full text]
  • Facts and Myths of Enigma: Breaking Stereotypes
    Facts and Myths of Enigma: Breaking Stereotypes Kris Gaj1 and Arkadiusz Oráowski2 1 George Mason University, Electrical and Computer Engineering 4400 University Drive, Fairfax, VA 22030, U.S.A. [email protected] 2 Institute of Physics, Polish Academy of Sciences Aleja Lotników 32/46, 02-668 Warszawa, Poland [email protected] Abstract. In spite of a relatively large number of publications about breaking Enigma by the Allies before and during the World War II, this subject remains relatively unknown not only to the general public, but also to people professionally involved in cryptological research. For example, the story of Enigma is rarely a part of a modern textbook on cryptology or a modern course on cryptography and network security. There exist multiple reasons for this situation. First, there are still a few unresolved issues, resulting from conflicting reports, the lack of reliable sources, and a long period required for declassifying documents related to any cryptological activity during the World War II. Secondly, the issue is highly political, and there is little consensus in weighing the contribution of all involved countries. Thirdly, many contemporary cryptologists honestly believe that there is little to learn from the analysis of old cryptosystems, because of the tremendous progress in theory and practice of cryptography and a little similarity between old and modern ciphers. In this paper we confront these opinions by presenting a look at the current state of knowledge about cryptological methods and devices used to break Enigma. We introduce all major players involved in these activities, and we make an effort to weigh their original contributions.
    [Show full text]