Screening and Identification of Novel Ochratoxin A-Producing Fungi From

Total Page:16

File Type:pdf, Size:1020Kb

Screening and Identification of Novel Ochratoxin A-Producing Fungi From toxins Article Screening and Identification of Novel Ochratoxin A-Producing Fungi from Grapes Xiaoyun Zhang 1,†, Yulin Li 2,†, Haiying Wang 1, Xiangyu Gu 3, Xiangfeng Zheng 1, Yun Wang 1, Junwei Diao 1, Yaping Peng 1 and Hongyin Zhang 1,* 1 School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; [email protected] (X.Z.); [email protected] (H.W.); [email protected] (X.Z.); [email protected] (Y.W.); [email protected] (J.D.); [email protected] (Y.P.) 2 Hubei Key Laboratory, Edible Wild Plants Conservation and Utilization, 11 Cihu Road, Huangshi 435002, China; [email protected] 3 School of Grain Science and Technology, Jiangsu University of Science and Technology, 2 Mengxi Road, Zhenjiang 212003, China; [email protected] * Correspondence: [email protected]; Tel.: +86-511-8878-0174 † These authors contributed equally to this work. Academic Editor: Richard A. Manderville Received: 27 September 2016; Accepted: 8 November 2016; Published: 12 November 2016 Abstract: Ochratoxin A (OTA) contamination has been established as a world-wide problem. In this study, the strains with the ability of OTA production were screened by analyzing the green fluorescence of the isolates colonies from the grapes in Zhenjiang with 365 nm UV light and confirmed by HPLC with fluorescent detection (HPLC-FLD). The results showed that seven isolates acquired the characteristic of the fluorescence, of which only five showed the ability of OTA production as confirmed by HPLC-FLD analysis. The five OTA-producing strains were identified based on comparative sequence analysis of three conserved genes (ITS, BenA and RPB2) of the strains, and they are Talaromyces rugulosus (O1 and Q3), Penicillium commune (V5-1), Penicillium rubens (MQ-5) and Aspergillus aculeatus (MB1-1). There are two Penicillium species of the five OTA-producing strains and our study is the first to report that P. rubens, T. rugulosus and A. aculeatus can produce OTA. This work would contribute to comprehensively understanding the fungi with an OTA-producing ability in grapes before harvest and then take effective measures to prevent OTA production. Keywords: screening; identification; ochratoxin A (OTA); fungi; grapes 1. Introduction Many fungi produce mycotoxins that can cause acute or chronic intoxication and damage to humans and animals after ingestion of contaminated food and feed [1]. Among the mycotoxins, aflatoxins and ochratoxin A (OTA) occupy special places due to their high occurrence, widespread distribution and acute toxicity. As one of the first group of secondary metabolites of fungi that are toxic to animals, OTA, like aflatoxins started the distinctive science of mycotoxicology in the 1960s [2,3]. OTA is the most toxic member of the Ochratoxin group that includes OTA, its methyl ester, its ethyl ester (OTC), 4-hydroxyochratoxin A (4-OH OTA), ochratoxin B (OTB) and its methyl and ethyl esters and ochratoxin α (OTα). OTA is nephrotoxic, hepatotoxic, teratogenic and immunotoxic to animals and has been associated with fatal endemic human nephropathies [4,5]. Toxicity studies have revealed that OTA mainly affects the kidney and liver, after absorption from the gut and circulation via the portal vein, inducing hepatotoxicity in rats and hepatocellular carcinomas in mice [6]. The European Commission has established maximum allowable limits for this toxin in some food products. A tolerable daily intake (TDI) of no more than 5 ng OTA/kg bw/day is recommended [7]. Toxins 2016, 8, 333; doi:10.3390/toxins8110333 www.mdpi.com/journal/toxins Toxins 2016, 8, 333 2 of 14 The occurrence of OTA was mainly attributed to contamination by toxigenic molds with the ability of toxin production before or after harvesting. OTA is a ubiquitous mycotoxin produced by Aspergillus and Penicillium species that can be detected in a wide variety of agricultural commodities, livestock productsToxins 2016, 8, and333 processed food [7]. OTA was firstly described as a secondary2 metabolite of 14 of Aspergillus ochraceus from laboratory experiments [2]. In addition, there have been reports about the [6]. The European Commission has established maximum allowable limits for this toxin in some productionfood of OTAproducts. by otherA tolerable strains, daily mainly intake (TDI)Aspergillus of no more carbonarius than 5 ng OTA/kgand a bw/day small percentageis recommended of isolates of the closely[7]. related species Aspergillus niger [8–14]. Soon after the isolation of OTA from A. ochraceus, the formationThe of OTAoccurrence by Penicilliumof OTA was mainly viridicatum attributedwas to reportedcontamination [3]. by The toxigenic species molds was with later the correctly identified asabilityPenicillium of toxin production verrucosum before[15 or–17 after]. In harvesting. fact, the OTA natural is a ubiquitous occurrence mycotoxin and practical produced importance by of Aspergillus and Penicillium species that can be detected in a wide variety of agricultural commodities, OTA was firstlylivestock linked products to andPenicillium processedspecies food [7]. [OTA18,19 was]. Afterwards, firstly described some as a secondary other OTA-producing metabolite of strains of PenicilliumAspergillusgenus ochraceus were isolatedfrom laboratory and all experiments the OTA-producing [2]. In addition, strains there have were been separated reports about into the two large groups: P.production verrucosum of OTAand byPenicillium other strains, nordicum mainly Aspergillus[17,20 ].carbonarius In summary, and a smallA. ochraceuspercentage ofand isolatesP. verrucosum were the mainof the OTA closely producing related species species. Aspergillus However, niger [8–14]A. carbonarius. Soon after, as the another isolation major of OTA source from ofA. OTA, has ochraceus, the formation of OTA by Penicillium viridicatum was reported [3]. The species was later also been identifiedcorrectly identified mainly as in Penicillium grapes [verrucosum21]. [15–17]. In fact, the natural occurrence and practical Althoughimportance cereals of areOTA known was firstly to be linked particularly to Penicillium susceptible species to[18,19]. OTA Afterwards, contamination some [other22,23 ], there is an increasingOTA occurrence‐producing strains of OTA of Penicillium in a large genus variety were of isolated foods, and such all as the beer OTA [‐24producing,25] and strains milk were [26]. OTA has also been recentlyseparated reported into two large in grapes groups: and P. verrucosum grape juices and [ 27Penicillium–30]. The nordicum occurrence [17,20]. ofIn OTAsummary, in wine A. is linked ochraceus and P. verrucosum were the main OTA producing species. However, A. carbonarius, as to the presenceanother of major molds source on of grapes. OTA, has Previous also been studiesidentified have mainly shown in grapes that [21]. the occurrence of OTA is likely due to environmentalAlthough cereals conditions are known (climate) to be particularly and badly susceptible controlled to OTA harvesting contamination procedures, [22,23], there poor drying and inadequateis an increasing storage occurrence conditions of [OTA31,32 in]. a large variety of foods, such as beer [24,25] and milk [26]. The objectivesOTA has also of been this studyrecently were reported to screen in grapes the and natural grape juices OTA-producing [27–30]. The occurrence fungi related of OTA to in preharvest wine is linked to the presence of molds on grapes. Previous studies have shown that the occurrence decay andof OTA OTA contamination is likely due to of environmental grapes and conditions test their OTA(climate) production and badly capacitycontrolledin harvesting vitro with special attention toprocedures, those not poor reported drying and in literature.inadequate storage conditions [31,32]. The objectives of this study were to screen the natural OTA‐producing fungi related to 2. Resultspreharvest decay and OTA contamination of grapes and test their OTA production capacity in vitro with special attention to those not reported in literature. 2.1. Preliminary Screening of OTA-Producing Fungi by 365 nm Ultraviolet Light 2. Results One hundred and thirty-nine molds were isolated by macroscopic characters (colony growth 2.1. Preliminary Screening of OTA‐Producing Fungi by 365 nm Ultraviolet Light and colony morphology) and microscopic characters. The isolates were cultured for 7 or 14 days to accumulateOne metabolites hundred and in thirty the‐ solidnine molds culture were medium. isolated by Inmacroscopic 365 nm ultravioletcharacters (colony light, growth there was one and colony morphology) and microscopic characters. The isolates were cultured for 7 or 14 days to suspected accumulateAspergillus metabolitesisolate and in sixthe othersolid culture isolates medium. that produced In 365 nm green ultraviolet fluorescence light, there in was culture one medium. After fumigatingsuspected with Aspergillus 25%–28% isolate ammonia,and six other all isolates seven that of theproduced isolates green took fluorescence on enhanced in culture fluorescence intensity andmedium. were After recorded fumigating as positivewith 25%–28% strains. ammonia, The greenall seven fluorescence of the isolates of took O1, on one enhanced of the positive strains, influorescence 365 nm ultraviolet intensity and light were was recorded showed as positive in Figure strains.1a, The but green there fluorescence was no fluorescence of O1, one of the observed in positive strains, in 365 nm ultraviolet light was showed in Figure 1a, but there was no fluorescence the negativeobserved strain
Recommended publications
  • Succession and Persistence of Microbial Communities and Antimicrobial Resistance Genes Associated with International Space Stati
    Singh et al. Microbiome (2018) 6:204 https://doi.org/10.1186/s40168-018-0585-2 RESEARCH Open Access Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces Nitin Kumar Singh1, Jason M. Wood1, Fathi Karouia2,3 and Kasthuri Venkateswaran1* Abstract Background: The International Space Station (ISS) is an ideal test bed for studying the effects of microbial persistence and succession on a closed system during long space flight. Culture-based analyses, targeted gene-based amplicon sequencing (bacteriome, mycobiome, and resistome), and shotgun metagenomics approaches have previously been performed on ISS environmental sample sets using whole genome amplification (WGA). However, this is the first study reporting on the metagenomes sampled from ISS environmental surfaces without the use of WGA. Metagenome sequences generated from eight defined ISS environmental locations in three consecutive flights were analyzed to assess the succession and persistence of microbial communities, their antimicrobial resistance (AMR) profiles, and virulence properties. Metagenomic sequences were produced from the samples treated with propidium monoazide (PMA) to measure intact microorganisms. Results: The intact microbial communities detected in Flight 1 and Flight 2 samples were significantly more similar to each other than to Flight 3 samples. Among 318 microbial species detected, 46 species constituting 18 genera were common in all flight samples. Risk group or biosafety level 2 microorganisms that persisted among all three flights were Acinetobacter baumannii, Haemophilus influenzae, Klebsiella pneumoniae, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, Yersinia frederiksenii,andAspergillus lentulus.EventhoughRhodotorula and Pantoea dominated the ISS microbiome, Pantoea exhibited succession and persistence. K. pneumoniae persisted in one location (US Node 1) of all three flights and might have spread to six out of the eight locations sampled on Flight 3.
    [Show full text]
  • Penicillium Nalgiovense
    Svahn et al. Fungal Biology and Biotechnology (2015) 2:1 DOI 10.1186/s40694-014-0011-x RESEARCH Open Access Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B K Stefan Svahn1, Erja Chryssanthou2, Björn Olsen3, Lars Bohlin1 and Ulf Göransson1* Abstract Background: The need for new antibiotic drugs increases as pathogenic microorganisms continue to develop resistance against current antibiotics. We obtained samples from Antarctica as part of a search for new antimicrobial metabolites derived from filamentous fungi. This terrestrial environment near the South Pole is hostile and extreme due to a sparsely populated food web, low temperatures, and insufficient liquid water availability. We hypothesize that this environment could cause the development of fungal defense or survival mechanisms not found elsewhere. Results: We isolated a strain of Penicillium nalgiovense Laxa from a soil sample obtained from an abandoned penguin’s nest. Amphotericin B was the only metabolite secreted from Penicillium nalgiovense Laxa with noticeable antimicrobial activity, with minimum inhibitory concentration of 0.125 μg/mL against Candida albicans. This is the first time that amphotericin B has been isolated from an organism other than the bacterium Streptomyces nodosus. In terms of amphotericin B production, cultures on solid medium proved to be a more reliable and favorable choice compared to liquid medium. Conclusions: These results encourage further investigation of the many unexplored sampling sites characterized by extreme conditions, and confirm filamentous fungi as potential sources of metabolites with antimicrobial activity. Keywords: Amphotericin B, Penicillium nalgiovense Laxa, Antarctica Background for improving existing sampling and screening methods of The lack of efficient antibiotics combined with the in- filamentous fungi so as to advance the search for new creased spread of antibiotic-resistance genes characterize antimicrobial compounds [10].
    [Show full text]
  • Identification of a Sorbicillinoid-Producing Aspergillus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio della ricerca - Università degli studi di Napoli Federico II Marine Biotechnology (2018) 20:502–511 https://doi.org/10.1007/s10126-018-9821-9 ORIGINAL ARTICLE Identification of a Sorbicillinoid-Producing Aspergillus Strain with Antimicrobial Activity Against Staphylococcus aureus:aNew Polyextremophilic Marine Fungus from Barents Sea Paulina Corral1,2 & Fortunato Palma Esposito1 & Pietro Tedesco1 & Angela Falco1 & Emiliana Tortorella1 & Luciana Tartaglione3 & Carmen Festa3 & Maria Valeria D’Auria3 & Giorgio Gnavi4 & Giovanna Cristina Varese4 & Donatella de Pascale1 Received: 18 October 2017 /Accepted: 26 March 2018 /Published online: 12 April 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract The exploration of poorly studied areas of Earth can highly increase the possibility to discover novel bioactive compounds. In this study, the cultivable fraction of fungi and bacteria from Barents Sea sediments has been studied to mine new bioactive molecules with antibacterial activity against a panel of human pathogens. We isolated diverse strains of psychrophilic and halophilic bacteria and fungi from a collection of nine samples from sea sediment. Following a full bioassay-guided approach, we isolated a new promising polyextremophilic marine fungus strain 8Na, identified as Aspergillus protuberus MUT 3638, possessing the potential to produce antimicrobial agents. This fungus, isolated from cold seawater, was able to grow in a wide range of salinity, pH and temperatures. The growth conditions were optimised and scaled to fermentation, and its produced extract was subjected to chemical analysis. The active component was identified as bisvertinolone, a member of sorbicillonoid family that was found to display significant activity against Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 30 μg/mL.
    [Show full text]
  • Food Microbiology Fungal Spores: Highly Variable and Stress-Resistant Vehicles for Distribution and Spoilage
    Food Microbiology 81 (2019) 2–11 Contents lists available at ScienceDirect Food Microbiology journal homepage: www.elsevier.com/locate/fm Fungal spores: Highly variable and stress-resistant vehicles for distribution and spoilage T Jan Dijksterhuis Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, Utrecht, the Netherlands ARTICLE INFO ABSTRACT Keywords: This review highlights the variability of fungal spores with respect to cell type, mode of formation and stress Food spoilage resistance. The function of spores is to disperse fungi to new areas and to get them through difficult periods. This Spores also makes them important vehicles for food contamination. Formation of spores is a complex process that is Conidia regulated by the cooperation of different transcription factors. The discussion of the biology of spore formation, Ascospores with the genus Aspergillus as an example, points to possible novel ways to eradicate fungal spore production in Nomenclature food. Fungi can produce different types of spores, sexual and asexually, within the same colony. The absence or Development Stress resistance presence of sexual spore formation has led to a dual nomenclature for fungi. Molecular techniques have led to a Heat-resistant fungi revision of this nomenclature. A number of fungal species form sexual spores, which are exceptionally stress- resistant and survive pasteurization and other treatments. A meta-analysis is provided of numerous D-values of heat-resistant ascospores generated during the years. The relevance of fungal spores for food microbiology has been discussed. 1. The fungal kingdom molecules, often called “secondary” metabolites, but with many pri- mary functions including communication or antagonism. However, Representatives of the fungal kingdom, although less overtly visible fungi can also be superb collaborators as is illustrated by their ability to in nature than plants and animals, are nevertheless present in all ha- form close associations with members of other kingdoms.
    [Show full text]
  • Identification and Nomenclature of the Genus Penicillium
    Downloaded from orbit.dtu.dk on: Dec 20, 2017 Identification and nomenclature of the genus Penicillium Visagie, C.M.; Houbraken, J.; Frisvad, Jens Christian; Hong, S. B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Published in: Studies in Mycology Link to article, DOI: 10.1016/j.simyco.2014.09.001 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., ... Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343-371. DOI: 10.1016/j.simyco.2014.09.001 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M.
    [Show full text]
  • Challenges in Management of Aflatoxins and Ochratoxin a in Contaminated Raw Materials Esther García Cela
    Nom/Logotip de la Universitat on s’ha llegit la tesi Challenges in management of aflatoxins and ochratoxin A in contaminated raw materials Esther García Cela Dipòsit Legal: L.145-2015 http://hdl.handle.net/10803/285374 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996).
    [Show full text]
  • Download Full Article
    FARMACIA, 2019, Vol. 67, 5 https://doi.org/10.31925/farmacia.2019.5.5 ORIGINAL ARTICLE ISOLATION, IDENTIFICATION AND BIOACTIVITY SCREENING OF TURKISH MARINE-DERIVED FUNGI HAJAR HEYDARI 1, ASLI KOC 2, DUYGU SIMSEK3, BULENT GOZCELIOGLU 4, NURTEN ALTANLAR 3, BELMA KONUKLUGIL 1* 1Pharmacognosy Department of Ankara University, 06100 Tandoğan, Ankara, Turkey 2Biochemistry Department of Ankara University, 06100 Tandoğan, Ankara, Turkey 3Pharmaceutical Microbiology Department of Ankara University, 06100 Tandoğan, Ankara, Turkey 4Scientific and Technological Research Council of Turkey (TÜBITAK), 06420 Bakanlıklar, Ankara, Turkey *corresponding author: [email protected] Manuscript received: July 2018 Abstract Marine-derived fungi are considered as a promising source for discovering new secondary metabolites with pharmaceutical potential. In this study, 18 marine-derived fungi were isolated and identified from marine invertebrates and investigated with regard to their antioxidant, antimicrobial and cytotoxic activities. DPPH, SO, NO and ABTS assays were used for monitoring free radical scavenging activity, and MTT assay was used for cytotoxic activity. For antimicrobial activity determination minimum inhibitory concentration was calculated. As a result, six Penicillium, five Aspergillus, one Alternaria, Cladosporium, Malassezia, Mycosphaerella, Sporobolomyces, Talaromyces and Trichoderma species were isolated from the marine invertebrate. Some of these fungal extracts such as Aspergillus chevalieri has shown high antioxidant and antimicrobial activities, further Aspergillus awamori, Aspergillus niger and Penicillium brevicompactum have shown significant cytotoxic activity against HCT-116 cells. This was the first study about habitant of marine-derived fungi of Turkey’s coasts and their antioxidant, antimicrobial and cytotoxicity activities. Besides, it is also the first report about the antioxidant and cytotoxicity activities of C.
    [Show full text]
  • Characterisation of Fungal Contamination Sources for Use in Quality Management of Cheese Production Farms in Korea
    Open Access Asian-Australas J Anim Sci Vol. 33, No. 6:1002-1011 June 2020 https://doi.org/10.5713/ajas.19.0553 pISSN 1011-2367 eISSN 1976-5517 Characterisation of fungal contamination sources for use in quality management of cheese production farms in Korea Sujatha Kandasamy1,a, Won Seo Park1,a, Jayeon Yoo1, Jeonghee Yun1, Han Byul Kang1, Kuk-Hwan Seol1, Mi-Hwa Oh1, and Jun Sang Ham1,* * Corresponding Author: Jun Sang Ham Objective: This study was conducted to determine the composition and diversity of the fungal Tel: +82-63-238-7366, Fax: +82-63-238-7397, E-mail: [email protected] flora at various control points in cheese ripening rooms of 10 dairy farms from six different provinces in the Republic of Korea. 1 Animal Products Research and Development Methods: Floor, wall, cheese board, room air, cheese rind and core were sampled from cheese Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea ripening rooms of ten different dairy farms. The molds were enumerated using YM petrifilm, while isolation was done on yeast extract glucose chloramphenicol agar plates. Morphologically a Both the authors contributed equally to this work. distinct isolates were identified using sequencing of internal transcribed spacer region. ORCID Results: The fungal counts in 8 out of 10 dairy farms were out of acceptable range, as per Sujatha Kandasamy hazard analysis critical control point regulation. A total of 986 fungal isolates identified https://orcid.org/0000-0003-1460-449X and assigned to the phyla Ascomycota (14 genera) and Basidiomycota (3 genera). Of these Won Seo Park https://orcid.org/0000-0003-2229-3169 Penicillium, Aspergillus, and Cladosporium were the most diverse and predominant.
    [Show full text]
  • Diversity and Bioprospection of Fungal Community Present in Oligotrophic Soil of Continental Antarctica
    Extremophiles (2015) 19:585–596 DOI 10.1007/s00792-015-0741-6 ORIGINAL PAPER Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica Valéria M. Godinho · Vívian N. Gonçalves · Iara F. Santiago · Hebert M. Figueredo · Gislaine A. Vitoreli · Carlos E. G. R. Schaefer · Emerson C. Barbosa · Jaquelline G. Oliveira · Tânia M. A. Alves · Carlos L. Zani · Policarpo A. S. Junior · Silvane M. F. Murta · Alvaro J. Romanha · Erna Geessien Kroon · Charles L. Cantrell · David E. Wedge · Stephen O. Duke · Abbas Ali · Carlos A. Rosa · Luiz H. Rosa Received: 20 November 2014 / Accepted: 16 February 2015 / Published online: 26 March 2015 © Springer Japan 2015 Abstract We surveyed the diversity and capability of understanding eukaryotic survival in cold-arid oligotrophic producing bioactive compounds from a cultivable fungal soils. We hypothesize that detailed further investigations community isolated from oligotrophic soil of continen- may provide a greater understanding of the evolution of tal Antarctica. A total of 115 fungal isolates were obtained Antarctic fungi and their relationships with other organisms and identified in 11 taxa of Aspergillus, Debaryomyces, described in that region. Additionally, different wild pristine Cladosporium, Pseudogymnoascus, Penicillium and Hypo- bioactive fungal isolates found in continental Antarctic soil creales. The fungal community showed low diversity and may represent a unique source to discover prototype mol- richness, and high dominance indices. The extracts of ecules for use in drug and biopesticide discovery studies. Aspergillus sydowii, Penicillium allii-sativi, Penicillium brevicompactum, Penicillium chrysogenum and Penicil- Keywords Antarctica · Drug discovery · Ecology · lium rubens possess antiviral, antibacterial, antifungal, Fungi · Taxonomy antitumoral, herbicidal and antiprotozoal activities.
    [Show full text]
  • Identification and Nomenclature of the Genus Penicillium
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M. Visagie1, J. Houbraken1*, J.C. Frisvad2*, S.-B. Hong3, C.H.W. Klaassen4, G. Perrone5, K.A. Seifert6, J. Varga7, T. Yaguchi8, and R.A. Samson1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands; 2Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; 3Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, Korea; 4Medical Microbiology & Infectious Diseases, C70 Canisius Wilhelmina Hospital, 532 SZ Nijmegen, The Netherlands; 5Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; 6Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada; 7Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közep fasor 52, Hungary; 8Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan *Correspondence: J. Houbraken, [email protected]; J.C. Frisvad, [email protected] Abstract: Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens. Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept of Penicillium was re-defined to accommodate species from other genera, such as Chromocleista, Eladia, Eupenicillium, Torulomyces and Thysanophora, which together comprise a large monophyletic clade.
    [Show full text]
  • Fleming's Penicillin Producing Streain Is Not Penicillium Chrysogenum but P. Rubens
    Downloaded from orbit.dtu.dk on: Jan 11, 2021 Fleming's penicillin producing streain is not Penicillium chrysogenum but P. rubens Houbraken, Jos; Frisvad, Jens Christian; Samson, Robert A. Published in: I M A Fungus Link to article, DOI: 10.5598/imafungus.2011.02.01.12 Publication date: 2011 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Houbraken, J., Frisvad, J. C., & Samson, R. A. (2011). Fleming's penicillin producing streain is not Penicillium chrysogenum but P. rubens. I M A Fungus, 2(1), 87-95. https://doi.org/10.5598/imafungus.2011.02.01.12 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. doi:10.5598/imafungus.2011.02.01.12 IMA FUNGUS · VOLUME 2 · No 1: 87–95 Fleming’s penicillin producing strain is not Penicillium chrysogenum but ARTICLE P. rubens Jos Houbraken1, Jens C.
    [Show full text]
  • Advances in Food Mycology Advances in Experimental Medicine and Biology
    Advances in Food Mycology Advances in Experimental Medicine and Biology Editorial Board: NATHAN BACK, State University of New York at Buffalo IRUN R. COHEN, The Weizmann Institute of Science DAVID KRITCHEVSKY, Wistar Institute ABEL LAJTHA, N.S. Kline Institute for Psychiatric Research RODOLFO PAOLETTI, University of Milan Recent Volumes in this Series Volume 563 UPDATES IN PATHOLOGY Edited by David C. Chhieng and Gene P. Siegal Volume 564 GLYCOBIOLOGY AND MEDICINE: PROCEEDINGS OF THE 7TH JENNER GLYCOBIOLOGY AND MEDICINE SYMPOSIUM Edited by John S. Axford Volume 565 SLIDING FILAMENT MECHANISM IN MUSCLE CONTRACTION: FIFTY YEARS OF RESEARCH Edited by Haruo Sugi Volume 566 OXYGEN TRANSPORT TO ISSUE XXVI Edited by Paul Okunieff, Jacqueline Williams, and Yuhchyau Chen Volume 567 THE GROWTH HORMONE-INSULIN-LIKE GROWTH FACTOR AXIS DURING DEVELOPMENT Edited by Isabel Varela-Nieto and Julie A. Chowen Volume 568 HOT TOPICS IN INFECTION AND IMMUNITY IN CHILDREN II Edited by Andrew J. Pollard and Adam Finn Volume 569 EARLY NUTRITION AND ITS LATER CONSEQUENCES: NEW OPPORTUNITIES Edited by Berthold Koletzko, Peter Dodds, Hans Akerbloom, and Margaret Ashwell Volume 570 GENOME INSTABILITY IN CANCER DEVELOPMENT Edited by Erich A. Nigg Volume 571 ADVANCES IN MYCOLOGY Edited by J.I. Pitts, A.D. Hocking, and U. Thrane A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher. Advances in Food Mycology Edited by A.D. Hocking Food Science Australia North Ryde, Australia J.I. Pitt Food Science Australia North Ryde, Australia R.A.
    [Show full text]