The Messenger
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multi-Periodic Photospheric Pulsations and Connected Wind Structures in HD 64760
A&A 447, 325–341 (2006) Astronomy DOI: 10.1051/0004-6361:20053847 & c ESO 2006 Astrophysics Multi-periodic photospheric pulsations and connected wind structures in HD 64760 A. Kaufer1,O.Stahl2,R.K.Prinja3, and D. Witherick3, 1 European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Santiago 19, Chile e-mail: [email protected] 2 Landessternwarte Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany 3 Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK Received 18 July 2005 / Accepted 17 October 2005 ABSTRACT We report on the results of an extended optical spectroscopic monitoring campaign on the early-type B supergiant HD 64760 (B0.5 Ib) designed to probe the deep-seated origin of spatial wind structure in massive stars. This new study is based on high-resolution echelle spectra obtained with the Feros instrument at ESO La Silla. 279 spectra were collected over 10 nights between February 14 and 24, 2003. From the period analysis of the line-profile variability of the photospheric lines we identify three closely spaced periods around 4.810 h and a splitting of ±3%. The velocity – phase diagrams of the line-profile variations for the distinct periods reveal characteristic prograde non-radial pulsation patterns of high order corresponding to pulsation modes with l and m in the range 6−10. A detailed modeling of the multi-periodic non-radial pulsations with the Bruce and Kylie pulsation-model codes (Townsend 1997b, MNRAS, 284, 839) favors either three modes with l = −m and l = 8, 6, 8 or m = −6andl = 8, 6, 10 with the second case maintaining the closely spaced periods in the co-rotating frame. -
Binocular Universe: You're My Hero! December 2010
Binocular Universe: You're My Hero! December 2010 Phil Harrington on't you just love a happy ending? I know I do. Picture this. Princess Andromeda, a helpless damsel in distress, chained to a rock as a ferocious D sea monster loomed nearby. Just when all appeared lost, our hero -- Perseus! -- plunges out of the sky, kills the monster, and sweeps up our maiden in his arms. Together, they fly off into the sunset on his winged horse to live happily ever after. Such is the stuff of myths and legends. That story, the legend of Perseus and Andromeda, was recounted in last month's column when we visited some binocular targets within the constellation Cassiopeia. In mythology, Queen Cassiopeia was Andromeda's mother, and the cause for her peril in the first place. Left: Autumn star map from Star Watch by Phil Harrington Above: Finder chart for this month's Binocular Universe. Chart adapted from Touring the Universe through Binoculars Atlas (TUBA), www.philharrington.net/tuba.htm This month, we return to the scene of the rescue, to our hero, Perseus. He stands in our sky to the east of Cassiopeia and Andromeda, should the Queen's bragging get her daughter into hot water again. The constellation's brightest star, Mirfak (Alpha [α] Persei), lies about two-thirds of the way along a line that stretches from Pegasus to the bright star Capella in Auriga. Shining at magnitude +1.8, Mirfak is classified as a class F5 white supergiant. It radiates some 5,000 times the energy of our Sun and has a diameter 62 times larger. -
Luminosity | a Re-Imagining of Twilight | by Alicorn
Luminosity by Alicorn You don't have to make a hundred mistakes for everything to disintegrate around you. One will do. One wrong risk, one misplaced trust, one careless guess is enough to destroy the one thing you can least afford to lose. But I'd never had any reason to imagine that my disaster would befall me at the time when I was most unexpectedly safe. pg. 1 1. Forks 2. The Cullens 3. The Reveal 4. Matchmaking 5. Vampires 101 6. Edward 7. Souls 8. The Future 9. Witches and Werewolves 10. Coven 11. Volterra 12. Norway 13. Newborn 14. Self-Control 15. Honeymoon 16. Ambition 17. Rachel 18. Clearwater 19. Denali 20. Europe 21. Hybrid 22. Maggie 23. Sue 24. Delivery 25. Expectations 26. Little Witch 27. Scatter 28. Ashes 29. Things Left Behind pg. 2 Forks Here is how I decided to live with my father in Washington. My favorite three questions are, What do I want?, What do I have?, and How can I best use the latter to get the former? Actually, I'm also fond of What kind of person am I?, but that one isn't often directly relevant to decision making on a day-to-day basis. What did I want? I wanted my mother, Renée, to be happy. She was the most important person to me, bar none. I also wanted her around, but when I honestly evaluated my priorities, it was more important that she be happy. If, implausibly, I had to choose between Renée being happy on Mars, and Renée being miserable living with me as she always had - I wouldn't be thrilled about it. -
Variable Star Classification and Light Curves Manual
Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme. -
2005 SSM Poster Session
17th Annual SSM Poster Session — 2005 Abstracts by Number 1 Ichthyoplankton Distribution Patterns Across the Continental Shelf off Charleston, SC Ryan Yaden and Gorka Sancho, Department of Biology To compare the seasonal and spatial distribution of ichthyolplankton across the continental shelf off the coast of Charleston a transect was made across the continental shelf. The collection plankton samples took place on a 5 day cruise November 19 and 2004. Seven samples were analyzed by removing ichthyoplankton from other zooplankton. Ichthyoplankton taxa Leptocephalus, Scombridae, Ophidiidae, Pleurinectiformes, and Syngnathidae were identified picked and counted. Larval fishes that could not be classified were put into the "unknown" category. Data were compared with similar collections from May 2004. The abundance of larval fish in November was greater than the abundance in May. The greater abundance in November 2004 could be related to the spawning seasons of fishes over the continental self and Gulf Stream. 2 Lifespan of philometrid larvae (Margolisianum bulbosum) and their infectivity in the copepod Oithona colcarva under different abiotic conditions Lam C. Tsoi1, Vincent A. Conners2, and Isaure deBuron1 1Department of Biology, College of Charleston 2Department of Biology, University of South Carolina-Upstatet Margolisianum bulbosum is a philometrid nematode whose large and viviparous females are found in the buccal and gill cavities of the Southern flounder, Paralichthys lethostigma. As part of a study of the biology of this worm we determined the optimal abiotic (salinity and temperature) conditions for larval survival and infectivity in the hypothesized copepod intermediate host. Experimental infections of copepods collected in the Charleston Harbor showed that the cyclopoid Oithona colcarva was the only species to become infected. -
Jak Videohry Vyprávějí Příběhy Analýza Aktuálních Klíčových Videoher Hlavního Proudu
Masarykova univerzita Filozofická fakulta Ústav hudební vědy Teorie interaktivních médií Bc. Jaroslav Kolář Magisterská diplomová práce Jak videohry vyprávějí příběhy Analýza aktuálních klíčových videoher hlavního proudu Vedoucí práce: Mgr. Zuzana Husárová, Ph.D. 2013 1 2 Čestné prohlášení Prohlašuji, že jsem práci vypracoval samostatně. Všechny prameny a literaturu, které jsem při vypracování používal, v práci řádně uvádím. V Brně, 4. ledna 2013 3 Narativní potenciál videoher byl na konci 20. století podceňován nebo zcela přehlížen. Vzhledem k rychlému vývoji na poli videoher je nutné přezkoumat aktuální situaci. Objektem této práce jsou klíčové videohry hlavního proudu vydané mezi lety 2010-2012. Podrobným vnímáním ludické a narativní podstaty vybraných videoher hledá tato práce odpověď na otázku „Jakým způsobem videohry vyprávějí příběhy?“ a to z perspektivy nahlížení na příběhy jako na transmediální fenomény. 4 První kapitola – Úvod ............................................................................................................................. 7 Cíl této práce ....................................................................................................................................... 9 Jak budu postupovat ............................................................................................................................ 9 Druhá kapitola – Uvedení do problematiky .......................................................................................... 10 Sjednocení důležitých pojmů ........................................................................................................... -
PDF Version in Chronological Order (Updated May 17, 2013)
Complete Bibliography for Ritter Observatory May 17, 2013 The following papers are based in whole or in part on observations made at Ritter Observatory. External collaborators are listed in parentheses unless the research was done while they were University of Toledo students. Refereed or invited: 1. A. H. Delsemme and J. L. Moreau 1973, Astrophys. Lett., 14, 181–185, “Brightness Profiles in the Neutral Coma of Comet Bennett (1970 II)” 2. B. W. Bopp and F. Fekel Jr. 1976, A. J., 81, 771–773, “HR 1099: A New Bright RS CVn Variable” 3. A. H. Delsemme and M. R. Combi 1976, Ap. J. (Letters), 209, L149–L151, “The Production Rate and Possible Origin of O(1D) in Comet Bennett 1970 II” 4. A. H. Delsemme and M. R. Combi 1976, Ap. J. (Letters), 209, L153–L156, “Production + Rate and Origin of H2O in Comet Bennett 1970 II” 5. D. W. Willmarth 1976, Pub. A. S. P., 88, 86–87, “The Orbit of 71 Draconis” 6. W. F. Rush and R. W. Thompson 1977, Ap. J., 211, 184–188, “Rapid Variations of Emission-Line Profiles in Nova Cygni 1975” 7. S. E. Smith and B. W. Bopp 1980, Pub. A. S. P., 92, 225–232, “A Microcomputer-Based System for the Automated Reduction of Astronomical Spectra” 8. B. W. Bopp and P. V. Noah 1980, Pub. A. S. P., 92, 333–337, “Spectroscopic Observations of the Surface-Activity Binary II Pegasi (HD 224085)” 9. M. R. Combi and A. H. Delsemme 1980, Ap. J., 237, 641–645, “Neutral Cometary Atmospheres. II. -
Gaia Data Release 2 Special Issue
A&A 623, A110 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833304 & © ESO 2019 Astrophysics Gaia Data Release 2 Special issue Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram?,?? Gaia Collaboration, L. Eyer1, L. Rimoldini2, M. Audard1, R. I. Anderson3,1, K. Nienartowicz2, F. Glass1, O. Marchal4, M. Grenon1, N. Mowlavi1, B. Holl1, G. Clementini5, C. Aerts6,7, T. Mazeh8, D. W. Evans9, L. Szabados10, A. G. A. Brown11, A. Vallenari12, T. Prusti13, J. H. J. de Bruijne13, C. Babusiaux4,14, C. A. L. Bailer-Jones15, M. Biermann16, F. Jansen17, C. Jordi18, S. A. Klioner19, U. Lammers20, L. Lindegren21, X. Luri18, F. Mignard22, C. Panem23, D. Pourbaix24,25, S. Randich26, P. Sartoretti4, H. I. Siddiqui27, C. Soubiran28, F. van Leeuwen9, N. A. Walton9, F. Arenou4, U. Bastian16, M. Cropper29, R. Drimmel30, D. Katz4, M. G. Lattanzi30, J. Bakker20, C. Cacciari5, J. Castañeda18, L. Chaoul23, N. Cheek31, F. De Angeli9, C. Fabricius18, R. Guerra20, E. Masana18, R. Messineo32, P. Panuzzo4, J. Portell18, M. Riello9, G. M. Seabroke29, P. Tanga22, F. Thévenin22, G. Gracia-Abril33,16, G. Comoretto27, M. Garcia-Reinaldos20, D. Teyssier27, M. Altmann16,34, R. Andrae15, I. Bellas-Velidis35, K. Benson29, J. Berthier36, R. Blomme37, P. Burgess9, G. Busso9, B. Carry22,36, A. Cellino30, M. Clotet18, O. Creevey22, M. Davidson38, J. De Ridder6, L. Delchambre39, A. Dell’Oro26, C. Ducourant28, J. Fernández-Hernández40, M. Fouesneau15, Y. Frémat37, L. Galluccio22, M. García-Torres41, J. González-Núñez31,42, J. J. González-Vidal18, E. Gosset39,25, L. P. Guy2,43, J.-L. Halbwachs44, N. C. Hambly38, D. -
Many New Variable Stars Discovered in the Core of the Globular Cluster NGC 6715 (M 54) with EMCCD Observations DOI: 10.1051/0004-6361/201628864
The University of Manchester Research Many new variable stars discovered in the core of the globular cluster NGC 6715 (M 54) with EMCCD observations DOI: 10.1051/0004-6361/201628864 Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Figuera Jaimes, R., Bramich, D. M., Kains, N., Skottfelt, J., Jørgensen, U. G., Horne, K., Dominik, M., Alsubai, K. A., Bozza, V., Burgdorf, M. J., Calchi Novati, S., Ciceri, S., D'Ago, G., Evans, D. F., Galianni, P., Gu, S. H., W Harpsøe, K. B., Haugbølle, T., Hinse, T. C., ... Wertz, O. (2016). Many new variable stars discovered in the core of the globular cluster NGC 6715 (M 54) with EMCCD observations. Astronomy and Astrophysics, 592, [A120]. https://doi.org/10.1051/0004-6361/201628864 Published in: Astronomy and Astrophysics Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. -
Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis, -
The Search for the "Manchurian Candidate" the Cia and Mind Control
THE SEARCH FOR THE "MANCHURIAN CANDIDATE" THE CIA AND MIND CONTROL John Marks Allen Lane Allen Lane Penguin Books Ltd 17 Grosvenor Gardens London SW1 OBD First published in the U.S.A. by Times Books, a division of Quadrangle/The New York Times Book Co., Inc., and simultaneously in Canada by Fitzhenry & Whiteside Ltd, 1979 First published in Great Britain by Allen Lane 1979 Copyright <£> John Marks, 1979 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner ISBN 07139 12790 jj Printed in Great Britain by f Thomson Litho Ltd, East Kilbride, Scotland J For Barbara and Daniel AUTHOR'S NOTE This book has grown out of the 16,000 pages of documents that the CIA released to me under the Freedom of Information Act. Without these documents, the best investigative reporting in the world could not have produced a book, and the secrets of CIA mind-control work would have remained buried forever, as the men who knew them had always intended. From the documentary base, I was able to expand my knowledge through interviews and readings in the behavioral sciences. Neverthe- less, the final result is not the whole story of the CIA's attack on the mind. Only a few insiders could have written that, and they choose to remain silent. I have done the best I can to make the book as accurate as possible, but I have been hampered by the refusal of most of the principal characters to be interviewed and by the CIA's destruction in 1973 of many of the key docu- ments. -
Lowmetallicity Pulsating Stars in the Lamost
LOW-METALLICITY PULSATING STARS IN THE LAMOST DR1 F. Kahraman Aliçavuş Çanakkale Onsekiz Mart University [email protected] Aim Finding new low-metallicity pulsating stars in the LAMOST DR1 and uncovering their pulsation and atmospheric parameters. WHY ? They protect detailed information about the place where they were born. Alow us to understand evolution of the Galaxy, formation of stars Low-metallicity pulsating stars (taken from Jeffery (2008)) Low-metallicity pulsating stars RR Lyare stars: ● Classical radial pulsator, Pulsation period = ~0.5 days ● Exication mechanism, HeII, HeIII ionization zone ● Mass => ~0.6 ± 0.8 Msun ● Horizontal bracnh stars ● Teff => 6100 ± 7400 K (Taken from http://www.physics.usyd.edu.au/~bedding/animations/visual.html) RRab RRd RRc (Smolec et al., 2017, MNRAS, 467, 2349) Low-metallicity pulsating stars Type II Cepheids ● partial ionization zone of He ii ± Heiii and of Hi ± Hii ● Period 1 ± 5 d ==> BL Herculis ● Period 10 ± 20 d ==> W Virginis ● Period > 20 d ==> RV Tauri Taken from Aerts C., Christensen-Dalsgaard J., Kurtz D. W., 2010, Astroseismology, Springer, Berlin Low-metallicity pulsating stars Anomalous Cepheids: ● 1 ± 2 Msun ● spread between classical and type II Cepheids in the period-luminosity diagram (http://ogle.astrouw.edu.pl/atlas/anomalous_Cepheids.html) Low-metallicity pulsating stars SX Phoenix stars: ● Similar to high amplitude d Scuti star, Low- metallicity ● Mass => 0.9 ± 1.5 Msun ● Sx Phe stars are believed to be blue stragglers. ● Amplitude > 0.1 mag, Amplitude >~0.02 ± 0.03 mag Taken from Aerts C., Christensen- Dalsgaard J., Kurtz D. W., 2010, Astroseismology, Springer, Berlin Target Selection ● DR1 AFGK Stars Catalog, R=1800, SNg > 6, l = 370 ± 900 nm ● Teff ==> 6500 ± 8600 K ● log g ==> 3.8 ± 4.5 ● Fe/H ==> -2.4 ± -0.5 dex (http://dr1.lamost.org/) Target Selection ● SuperWASP Data, extra-solar planet detection programme ● Two robotic observatories, eight wide-angle cameras ● 10 objects showing light variation were found.