AA53CH16-Frebel ARI 29 July 2015 12:54 Near-Field Cosmology with Extremely Metal-Poor Stars Anna Frebel1 and John E. Norris2 1Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; email:
[email protected] 2Research School of Astronomy & Astrophysics, The Australian National University, Mount Stromlo Observatory, Weston, Australian Capital Territory 2611, Australia; email:
[email protected] Annu. Rev. Astron. Astrophys. 2015. 53:631–88 Keywords The Annual Review of Astronomy and Astrophysics is stellar abundances, stellar evolution, stellar populations, Population II, online at astro.annualreviews.org Galactic halo, metal-poor stars, carbon-enhanced metal-poor stars, dwarf This article’s doi: galaxies, Population III, first stars, galaxy formation, early Universe, 10.1146/annurev-astro-082214-122423 cosmology Copyright c 2015 by Annual Reviews. All rights reserved Abstract The oldest, most metal-poor stars in the Galactic halo and satellite dwarf galaxies present an opportunity to explore the chemical and physical condi- tions of the earliest star-forming environments in the Universe. We review Access provided by California Institute of Technology on 01/11/17. For personal use only. the fields of stellar archaeology and dwarf galaxy archaeology by examin- Annu. Rev. Astron. Astrophys. 2015.53:631-688. Downloaded from www.annualreviews.org ing the chemical abundance measurements of various elements in extremely metal-poor stars. Focus on the carbon-rich and carbon-normal halo star populations illustrates how these provide insight into the Population III star progenitors responsible for the first metal enrichment events. We extend the discussion to near-field cosmology, which is concerned with the forma- tion of the first stars and galaxies, and how metal-poor stars can be used to constrain these processes.