Near-Field Cosmology with Extremely Metal-Poor Stars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Two Stellar Components in the Halo of the Milky Way
1 Two stellar components in the halo of the Milky Way Daniela Carollo1,2,3,5, Timothy C. Beers2,3, Young Sun Lee2,3, Masashi Chiba4, John E. Norris5 , Ronald Wilhelm6, Thirupathi Sivarani2,3, Brian Marsteller2,3, Jeffrey A. Munn7, Coryn A. L. Bailer-Jones8, Paola Re Fiorentin8,9, & Donald G. York10,11 1INAF - Osservatorio Astronomico di Torino, 10025 Pino Torinese, Italy, 2Department of Physics & Astronomy, Center for the Study of Cosmic Evolution, 3Joint Institute for Nuclear Astrophysics, Michigan State University, E. Lansing, MI 48824, USA, 4Astronomical Institute, Tohoku University, Sendai 980-8578, Japan, 5Research School of Astronomy & Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Australian Capital Territory 2611, Australia, 6Department of Physics, Texas Tech University, Lubbock, TX 79409, USA, 7US Naval Observatory, P.O. Box 1149, Flagstaff, AZ 86002, USA, 8Max-Planck-Institute für Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany, 9Department of Physics, University of Ljubljana, Jadronska 19, 1000, Ljubljana, Slovenia, 10Department of Astronomy and Astrophysics, Center, 11The Enrico Fermi Institute, University of Chicago, Chicago, IL, 60637, USA The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, which can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for is dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components -- an inner and an outer halo – that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium). -
Dwarf Galaxies 1 Planck “Merger Tree” Hierarchical Structure Formation
04.04.2019 Grebel: Dwarf Galaxies 1 Planck “Merger Tree” Hierarchical Structure Formation q Larger structures form q through successive Illustris q mergers of smaller simulation q structures. q If baryons are Time q involved: Observable q signatures of past merger q events may be retained. ➙ Dwarf galaxies as building blocks of massive galaxies. Potentially traceable; esp. in galactic halos. Fundamental scenario: q Surviving dwarfs: Fossils of galaxy formation q and evolution. Large structures form through numerous mergers of smaller ones. 04.04.2019 Grebel: Dwarf Galaxies 2 Satellite Disruption and Accretion Satellite disruption: q may lead to tidal q stripping (up to 90% q of the satellite’s original q stellar mass may be lost, q but remnant may survive), or q to complete disruption and q ultimately satellite accretion. Harding q More massive satellites experience Stellar tidal streams r r q higher dynamical friction dV M ρ V from different dwarf ∝ − r 3 galaxy accretion q and sink more rapidly. dt V events lead to ➙ Due to the mass-metallicity relation, expect a highly sub- q more metal-rich stars to end up at smaller radii. structured halo. 04.04.2019 € Grebel: Dwarf Galaxies Johnston 3 De Lucia & Helmi 2008; Cooper et al. 2010 accreted stars (ex situ) in-situ stars Stellar Halo Origins q Stellar halos composed in part of q accreted stars and in part of stars q formed in situ. Rodriguez- q Halos grow from “from inside out”. Gomez et al. 2016 q Wide variety of satellite accretion histories from smooth growth to discrete events. -
Astro2020 Science White Paper the Multidimensional Milky Way
Astro2020 Science White Paper The Multidimensional Milky Way Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects 3Cosmology and Fundamental Physics 3Stars and Stellar Evolution 3Resolved Stellar Populations and their Environments 3Galaxy Evolution Multi-Messenger Astronomy and Astrophysics Principal Author: Name: Robyn Sanderson Institution: University of Pennsylvania / Flatiron Institute Email: [email protected] Co-authors (affiliations after text): Jeffrey L. Carlin1, Emily C. Cunningham2, Nicolas Garavito-Camargo3, Puragra Guhathakurta2, Kathryn V. Johnston4,5, Chervin F. P. Laporte6, Ting S. Li7,8, S. Tony Sohn9 Endorsers (affiliations after text): From the WFIRST Astrometry Working Group: Jay Anderson9, Andrea Bellini9, David P. Bennett10, Stefano Casertano9, S. Michael Fall9, Mattia Libralato9, Sangeeta Malhotra10, Leonidas A. Moustakas11, Jason Rhodes11 Other Endorsers: Lee Armus12, Yumi Choi13,14, Andres del Pino9, Elena D’Onghia15, Mark Fardal9, Karoline M. Gilbert9, Carl J. Grillmair12, Nitya Kallivayalil16, Evan N. Kirby17, Jing Li18, Jennifer L. Marshall19, Adrian M. Price-Whelan20, Elena Sacchi9, David N. Spergel5,20, Monica Valluri21, Roeland P. van der Marel9 Abstract: Studying our Galaxy, the Milky Way (MW), gives us a close-up view of the inter- play between cosmology, dark matter, and galaxy formation. In the next decade our under- standing of the MW’s dynamics, stellar populations, and structure will undergo a revolution thanks to planned and proposed astrometric, spectroscopic and photometric surveys, build- ing on recent advances by the Gaia astrometric survey. Together, these new efforts will mea- sure three-dimensional positions and velocities and numerous chemical abundances for stars arXiv:1903.07641v1 [astro-ph.GA] 18 Mar 2019 to the MW’s edge and well into the Local Group, leading to a complete multidimensional view of our Galaxy. -
Initial Li Abundances in the Protogalaxy and Globular Clusters
Draft version April 18, 2019 Typeset using LATEX preprint style in AASTeX62 Initial Li Abundances in the Protogalaxy and Globular Clusters Based upon the Chemical Separation and Hierarchical Structure Formation Motohiko Kusakabe1 and Masahiro Kawasaki2,3 1School of Physics, and International Research Center for Big-Bang Cosmology and Element Genesis, Beihang University, 37, Xueyuan Road, Haidian-qu, Beijing 100083, People’s Republic of China 2Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan 3Kavli IPMU (WPI), UTIAS, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan (Received xxx, 2018; Revised xxx, 2018; Accepted xxx, 2018) ABSTRACT The chemical separation of Li+ ions induced by a magnetic field during the hierarchical structure formation can reduce initial Li abundances in cosmic structures. It is shown that cosmological reionization of neutral Li atoms quickly completes as soon as the first star is formed. Since almost all Li is singly ionized during the main course of structure formation, it can efficiently separate from gravitationally collapsing neutral gas. The separation is more efficient in smaller structures which formed earlier. In the framework of the hierarchical structure formation, extremely metal-poor stars can have smaller Li abundances because of their earlier formations. It is found that the chemical separation by a magnetic field thus provides a reason that Li abundances in extremely metal-poor stars are lower than the Spite plateau and have a large dispersion as well as an explanation of the Spite plateau itself. In addition, the chemical separation scenario can explain Li abundances in NGC 6397 which are higher than the Spite plateau. -
Near-Field Cosmology with Metal-Poor Stars
NEAR-FIELD COSMOLOGY WITH EXTREMELY METAL-POOR STARS 1 NEAR-FIELD COSMOLOGY WITH EXTREMELY METAL-POOR STARS Anna Frebel Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; email: [email protected] John E. Norris Research School of Astronomy & Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611, Australia; email: [email protected] Key Words stars: abundances, carbon, evolution; stellar populations: Popu- arXiv:1501.06921v1 [astro-ph.SR] 27 Jan 2015 lation II, Population III; Galaxy: formation, halo; galaxies: dwarf; cosmology: early Universe, first stars Abstract The oldest, most metal-poor stars in the Galactic halo and satellite dwarf galaxies present an opportunity to explore the chemical and physical conditions of the earliest star forming environ- ments in the Universe. We review the fields of stellar archaeology and dwarf galaxy archaeology by examining the chemical abundance measurements of various elements in extremely metal- 2 FREBEL & NORRIS poor stars. Focus on the carbon-rich and carbon-normal halo star populations illustrates how these provide insight into the Population III star progenitors responsible for the first metal en- richment events. We extend the discussion to near-field cosmology, which is concerned with the formation of the first stars and galaxies and how metal-poor stars can be used to constrain these processes. Complementary abundance measurements in high-redshift gas clouds further help to establish the early chemical evolution of the Universe. The data appear consistent with the existence of two distinct channels of star formation at the earliest times. -
The Metal-Poor End of the Spite Plateau I
A&A 522, A26 (2010) Astronomy DOI: 10.1051/0004-6361/200913282 & c ESO 2010 Astrophysics The metal-poor end of the Spite plateau I. Stellar parameters, metallicities, and lithium abundances,, L. Sbordone1,2,3,P.Bonifacio1,2,4,E.Caffau2, H.-G. Ludwig1,2,5,N.T.Behara1,2,6, J. I. González Hernández1,2,7, M. Steffen8,R.Cayrel2,B.Freytag9, C. Van’t Veer2,P.Molaro4,B.Plez10, T. Sivarani11, M. Spite2, F. Spite2,T.C.Beers12, N. Christlieb5,P.François2, and V. Hill2,13 1 CIFIST Marie Curie Excellence Team, France 2 GEPI, Observatoire de Paris, CNRS, Université Paris Diderot, Place Jules Janssen, 92190 Meudon, France 3 Max-Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany e-mail: [email protected] 4 INAF – Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, 34143 Trieste, Italy 5 Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, 69117 Heidelberg, Germany 6 Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, boulevard du Triomphe, 1050 Bruxelles, Belgium 7 Dpto. de Astrofísica y Ciencias de la Atmósfera, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain 8 Astrophysikalisches Institut Potsdam An der Sternwarte 16, 14482 Potsdam, Germany 9 Centre de Recherche Astrophysique de Lyon, UMR 5574: Université de Lyon, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France 10 Université Montpellier 2, CNRS, GRAAL, 34095 Montpellier, France 11 Indian Institute of Astrophysiscs, II Block, Koramangala, Bangalore 560 034, India 12 Dept. if Physics & Astronomy, and JINA: Joint Insrtitute for Nuclear Astrophysics, Michigan State University, E. -
Arxiv:2104.09523V2 [Astro-Ph.GA] 20 Jul 2021
Accepted in The Astrophysical Journal Preprint typeset using LATEX style emulateapj v. 01/23/15 EVIDENCE OF A DWARF GALAXY STREAM POPULATING THE INNER MILKY WAY HALO Khyati Malhan1, Zhen Yuan2, Rodrigo A. Ibata2, Anke Arentsen2, Michele Bellazzini3, Nicolas F. Martin2,4 Accepted in The Astrophysical Journal ABSTRACT Stellar streams produced from dwarf galaxies provide direct evidence of the hierarchical formation of the Milky Way. Here, we present the first comprehensive study of the \LMS-1" stellar stream, that we detect by searching for wide streams in the Gaia EDR3 dataset using the STREAMFINDER algorithm. This stream was recently discovered by Yuan et al. (2020). We detect LMS-1 as a 60◦ long stream to the north of the Galactic bulge, at a distance of ∼ 20 kpc from the Sun, together with additional components that suggest that the overall stream is completely wrapped around the inner Galaxy. Using spectroscopic measurements from LAMOST, SDSS and APOGEE, we infer that the stream is very metal poor (h[Fe=H]i = −2:1) with a significant metallicity dispersion (σ[Fe=H] = 0:4), −1 and it possesses a large radial velocity dispersion (σv = 20 ± 4 km s ). These estimates together imply that LMS-1 is a dwarf galaxy stream. The orbit of LMS-1 is close to polar, with an inclination of 75◦ to the Galactic plane. Both the orbit and metallicity of LMS-1 are remarkably similar to the globular clusters NGC 5053, NGC 5024 and the stellar stream \Indus". These findings make LMS-1 an important contributor to the stellar population of the inner Milky Way halo. -
Cosmological Lithium Problems
EPJ Web of Conferences 184, 01002 (2018) https://doi.org/10.1051/epjconf/201818401002 9th European Summer School on Experimental Nuclear Astrophysics Cosmological Lithium Problems C.A. Bertulani1,�, Shubhchintak1,��, and A.M. Mukhamedzhanov2,��� 1Department of Physics and Astronomy, Texas A&M University-Commerce, Commerce, TX 75429, USA 2Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA Abstract. We briefly describe the cosmological lithium problems followed by a summary of our recent theoretical work on the magnitude of the effects of electron screening, the possible existence of dark matter parallel universes and the use of non-extensive (Tsal- lis) statistics during big bang nucleosynthesis. Solutions within nuclear physics are also discussed and recent measurements of cross-sections based on indirect experimental tech- niques are summarized. 1 Introduction The cosmological lithium problem has become one of the most intriguing open questions in cos- mology due to inconsistencies between observation and calculations based on the standard Big Bang nucleosynthesis (BBN) for the primordial elemental abundances. The BBN model contains a few parameters such as the baryon-to-photon ratio η = nb/nγ, the neutron decay time τn, and the number of neutrino families Nν (see, for instance, Ref. [1]). The parameter η relates to the baryon density of the universe by means of Ω h2 (η/10 10)/273, with the Hubble dimensionless parameter h defined 0 � − through the relation H0 = 100h km/s/Mpc, the index ‘0’ meaning present time. The anisotropies of the cosmic microwave radiation (CMB) independently determine the value of η [2, 3] when the uni- verse was about 0.3 Myr after the Big Bang. -
Evolution of Low Mass Stars: Lithium Problem and -Enhanced Tracks and Isochrones
SISSA - International School for Advanced Studies Evolution of low mass stars: lithium problem and α-enhanced tracks and isochrones Dissertation Submitted for the Degree of “Doctor Philosophiæ” Supervisors Candidate arXiv:1702.02932v1 [astro-ph.SR] 9 Feb 2017 Prof. Alessandro Bressan Xiaoting FU Dr. Paolo Molaro Dr. Leo´ Girardi October 2016 ii We are the dust of stars. Contents Abstract iii Acronyms v 1 Introduction 1 1.1 Historic progress in understanding stars .............. 1 1.2 Modern stellar evolution models .................. 4 1.2.1 Equations of stellar structure and evolution ........ 5 1.2.2 Boundary conditions .................... 7 1.2.3 Opacity ........................... 8 1.2.4 PARSEC (PAdova and TRieste Stellar Evolution Code) .. 11 1.2.5 Other stellar models .................... 12 1.3 Solar-scaled mixture and α enhancement .............. 15 1.4 Lithium in stars, origin and problems ................ 16 1.4.1 Cosmological lithium problem ............... 17 I PARSEC tracks and isochrones with α enhancement 23 2 Input physics 27 2.1 Nuclear reaction rates ........................ 27 2.2 Equations of state .......................... 29 2.3 Solar model ............................. 30 2.4 α enhancement ........................... 34 2.5 Helium content ........................... 35 3 Calibration with 47Tuc 37 3.1 Metal mixtures ........................... 38 3.2 Isochrones fitting and Luminosity function ............. 47 3.2.1 Low main sequence to turn-off ............... 47 3.2.2 RGB bump and envelope overshooting calibration .... 49 i ii CONTENTS 3.2.3 Red Giant Branch ...................... 57 3.2.4 Horizontal Branch morphology .............. 66 4 RGB bump comparison with other GC data and models 79 4.1 Comparison with other models ................... 79 4.2 Comparison with other GC data ................. -
Lithium in Very Metal-Poor Dwarf Stars - Problems for Standard Big Bang Nucleosynthesis?
Lithium in Very Metal-poor Dwarf Stars - Problems for Standard Big Bang Nucleosynthesis? David L. Lambert The W.J. McDonald Observatory, University of Texas, Austin, Texas, USA Abstract. The standard model of primordial nucleosynthesis by the Big Bang as selected by the WMAP-based estimate of 2 7 the baryon density (Ωbh ) predicts an abundance of Li that is a factor of three greater than the generally reported abundance for stars on the Spite plateau, and an abundance of 6Li that is about a thousand times less than is found for some stars on the plateau. This review discusses and examines these two discrepancies. They can likely be resolved without major surgery on the standard model of the Big Bang. In particular, stars on the Spite plateau may have depleted their surface lithium abundance over their long lifetime from the WMAP-based predicted abundances down to presently observed abundances, and synthesis 6 7 of Li (and Li) via α · α fusion reactions may have occurred in the early Galaxy. Yet, there remain fascinating ways in which to remove the two discrepancies involving aspects of a new cosmology, particularly through the introduction of exotic particles. INTRODUCTION Observers and theoreticians have long regarded Big Bang nucleosynthesis as providing a simple testable set of reliable predictions with one free parameter to be determined by observations of the primordial relative abundances of the 1 2 3 4 7 2 light nuclides H, H, He, He, and Li. That free parameter is the baryonic density Ωbh or, equivalently, the number 2 7 1 ¢ density ratio of baryons to photons η: Ω bh 3 652 10 η where h is the Hubble constant in units of 100 km s Mpc 1. -
A Kinematically Selected, Metal-Poor Spheroid in the Outskirts of M31 S
Submitted to ApJ: A Preprint typeset using LTEX style emulateapj v. 11/26/04 A KINEMATICALLY SELECTED, METAL-POOR SPHEROID IN THE OUTSKIRTS OF M31 S. C. Chapman1, R. Ibata2, G. F. Lewis3, A. M. N. Ferguson4, M. Irwin5, A. McConnachie6, N. Tanvir7 Submitted to ApJ: ABSTRACT We present evidence for a metal-poor, [Fe/H]∼ −1.4 ± 0.2 dex, stellar component detectable at radii from 10kpc to 70kpc, in our nearest giant spiral neighbor, the Andromeda galaxy. This metal- poor sample underlies the recently-discovered extended rotating component, and has no detected metallicity gradient. This discovery uses a large sample of 9776 radial velocities of Red Giant Branch (RGB) stars obtained with the Keck-II telescope and DEIMOS spectrograph, with 827 stars isolated kinematically to lie in the spheroid component by windowing out the extended rotating component which dominates the photometric profile of Andromeda out to >50 kpc (de-projected). The stars lie in 54 spectroscopic fields spread over an 8 square degree region, and are expected to fairly sample the stellar halo region to a radius of >70 kpc. The spheroid sample shows no significant evidence for rotation. Fitting a simple model in which the velocity dispersion of the component decreases with radius, we find a central velocity dispersion of 152kms−1 decreasing by −0.90kms−1/ kpc. By fitting a cosmologically-motivated NFW halo model to the spheroid stars we constrain the virial mass of M31 11 to be greater than 9.0 × 10 M with 99% confidence. The properties of this halo component are very similar to that found in our Milky Way, revealing that these roughly equal mass galaxies may have led similar accretion and evolutionary paths in the early Universe. -
The Correlation Between Galaxy Growth and Dark Matter Halo Assembly from Z = 0 − 10
MNRAS 000, 000–000 (2019) Preprint 30 July 2019 Compiled using MNRAS LATEX style file v3.0 UNIVERSEMACHINE: The Correlation between Galaxy Growth and Dark Matter Halo Assembly from z = 0 − 10 Peter Behroozi1,? Risa H. Wechsler2;3, Andrew P. Hearin4, Charlie Conroy5 1 Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721, USA 2 Kavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stanford University, Stanford, CA 94305, USA 3 Department of Particle Physics and Astrophysics, SLAC National Accelerator Laboratory, Stanford, CA 94305, USA 4 High-Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA 5 Department of Astronomy, Harvard University, Cambridge, MA 02138, USA Released 30 July 2019 ABSTRACT We present a method to flexibly and self-consistently determine individual galaxies’ star for- mation rates (SFRs) from their host haloes’ potential well depths, assembly histories, and red- shifts. The method is constrained by galaxies’ observed stellar mass functions, SFRs (specific and cosmic), quenched fractions, UV luminosity functions, UV–stellar mass relations, IRX– UV relations, auto- and cross-correlation functions (including quenched and star-forming sub- samples), and quenching dependence on environment; each observable is reproduced over the full redshift range available, up to 0 < z < 10. Key findings include: galaxy assembly corre- lates strongly with halo assembly; quenching correlates strongly with halo mass; quenched fractions at fixed halo mass decrease with increasing redshift; massive quenched galaxies re- side in higher-mass haloes than star-forming galaxies at fixed galaxy mass; star-forming and quenched galaxies’ star formation histories at fixed mass differ most at z < 0:5; satellites have large scatter in quenching timescales after infall, and have modestly higher quenched frac- tions than central galaxies; Planck cosmologies result in up to 0:3 dex lower stellar—halo mass ratios at early times; and, nonetheless, stellar mass–halo mass ratios rise at z > 5.