Comparison of Sediment-Hosted Cu Mineralization Lisbon and Moab Fault Systems, Utah

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Sediment-Hosted Cu Mineralization Lisbon and Moab Fault Systems, Utah Comparison of Sediment-Hosted Cu Mineralization Lisbon and Moab Fault Systems, Utah Item Type text; Electronic Thesis Authors Whitehead, Alex Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 10/10/2021 19:58:20 Link to Item http://hdl.handle.net/10150/634336 COMPARISON OF SEDIMENT-HOSTED CU MINERALIZATION LISBON AND MOAB FAULT SYSTEMS, UTAH by Alex Whitehead ____________________________ Copyright © Alex Whitehead 2019 A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of PROFESSIONAL SCIENCE MASTERS ECONOMIC GEOLOGY In the Graduate College THE UNIVERSITY OF ARIZONA 2019 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Master’s Committee, we certify that we have read the thesis prepared by Alex Whitehead, titled Comparison of sediment-hosted Cu mineralization Lisbon and Moab fault systems, Utah and recommend that it be accepted as fulfilling the thesis requirement for the Professional Science Masters in Economic Geology Degree. Date: 08/16/2019 Mark D. Barton Date: 08/16/2019 Peter Reiners Date: 08/16/2019 Isabel F. Barton Date: 08/16/2019 Robert Krantz Final approval and acceptance of this thesis is contingent upon the candidate’s submission of the final copies of the thesis to the Graduate College. I hereby certify that I have read this thesis prepared under my direction and recommend that it be accepted as fulfilling Professional Science Masters in Economic Geology Degree requirement. Date: 08/16/2019 Mark D. Barton PSM Thesis Committee Chair Department of Geosciences 2 ACKNOWLEDGEMENTS Financial support for this study was provided by the Lowell Institute for Mineral Resources at the University of Arizona and the W.M. Keck Foundation (grant 929941). William (Billy) Fitzpatrick and Matthew Gabriel assisted with data collection, mapping and core logging. Daniel Favorito assisted with drafting help and Roy Greig, Claire Getz, Michael Kassela are thanked for their geologic insights. Lantz Indergaard, Brian Sparks and the people at the Lisbon Valley mine are also thanked for their knowledge of the Lisbon Valley mine and permitting access to their core samples and geology. 3 TABLE OF CONTENTS LIST OF FIGURES………………….………………………………………...………. 6 LIST OF TABLES……………………………………………………………………... 10 ABSTRACT…………………………………………………….…………...…………. 11 INTRODUCTION……………………………………………………………………... 14 GEOLOGIC SETTING………………………………………………………………… 15 DISTRICT GEOLOGY………………………………………………………………… 17 Lisbon Valley………………………………………………………………….... 17 Northern Moab Fault……………………………………………………………. 18 METHODS....................................................................................................................... 19 DISTRIBUTION OF ALTERATION AND MINERALIZATION…………………..... 20 Lisbon Valley....................................................................................................... 20 Geology and Distribution of Alteration and Mineralization..................... 20 Petrographic Observations........................................................................ 22 Paragenesis............................................................................................... 23 Northern Moab Fault............................................................................................ 24 Geologic patterns along the northern Moab Fault.................................... 24 Geology and Distribution of Alteration and Mineralization.................... 24 Petrographic Observartions...................................................................... 30 4 Mineralogy and Paragenesis.................................................................... 31 Comparing Lisbon Valley and the northern Moab Fault..................................... 31 DISCUSSION.................................................................................................................. 32 Relationship Between Bleaching and Mineralization......................................... 32 Comparative Geologic Histories of Copper Mineralization................................ 33 CONCLUSIONS............................................................................................................. 35 FIGURES........................................................................................................................ 37 TABLE 1......................................................................................................................... 58 TABLE 2......................................................................................................................... 59 REFERENCES CITED.................................................................................................. 60 5 LIST OF FIGURES Figure 1. Location map of study areas (red boxes) showing salt walls (blue polygons), copper occurrences (green circles, uranium occurrences (gray circles), faults in the region (thin black lines), extent of paradox salt (dashed line), and the town of Moab (red star). Black rectangle in map of Utah represents figure area. Figure adapted from Ge et al., (2008). Figure 2. Stratigraphic column of units in the northern Paradox Basin showing copper and uranium occurrences, possible sources of metals, thickness variations, and simplified lithology log (after Doelling & Ross, 1998; Doelling, 2001; Trugdill, 2010). Figure 3. Geologic Map of Lisbon Valley area. Black rectangle represents study area and outline for figure 4. Based on previous work by Doelling (2004). Figure 4. Geologic map and cross sections of Lisbon Valley mine area. Shows the complex nature of various normal faults and the relay of the Lisbon Valley fault into the GTO fault. Red circles represent open pit mining in the area. Geologic cross- section A-A’ represents a faulted synclinal structure within the lower Lisbon Valley area. Red box indicates area where cross-section completed by author using drill hole data. Cross-section completed by Lisbon Valley mine geologists and map adapted from Deolling (2004). Figure 5. Northern Moab fault splays. This is a relay zone of the Moab fault and is where field mapping and analysis was completed. Rectangles represent areas in figures 6 below. Geology and structure adapted from Doelling (2002). Figure 6. Geologic map of the northern Moab fault splays. Red normal faults represent faulting due to increased deformation bands. Blue represents faults due to joints and fractures. Black rectangles represent field areas and representative figures. Geology adapted from Davatzes (2005). Figure 7. Photograph looking West displaying the different units of the Entrada Formation. Moab tongue is on top, followed by the Curtis formation and the Slick Rock member. Figure 8. Thin section photographs of samples taken from the Lisbon Valley mine area. A: Disseminated malachite in Burro Canyon sandstone between detridal quartz grains (UT18LVM-GTO230-686, 20x). B: Disseminated pyrite and chalcopyrite veins in Burro Canyon sandstone (UT18LVM-GTO224, 5x). C: Disseminated chalcocite and chalcopyrite in lower Burro Canyon Sandstone from Centennial drill core (UT18LVM-CMW09). D: Carbonate cement in between sand grains in lower Burro Canyon sandstone from the Centennial pit at Lisbon Valley Mine (UT18LVM- 07). Figure 9. Paragenetic sequence of various minerals within both field areas. A. Paragenetic sequence of select minerals in the Burro Canyon Formation at Lisbon Valley, based on Barton, I. (2018), Altinok (1998), Hahn and Thorson (2005). B. Paragenetic sequence for Moab Tongue member of the Entrada Sandstone based on Garden (2001) and this study. Figure 10. Cross sections based on drill hole logging of six GTO core holes. Cretaceous rocks are broken down into separated beds to show varied lithology. A. Sandstone 7 and shales make up most of the rocks and Beds 3-15 represent various units within the Burro Canyon Formation. Red stars are hand sample locations. B. Carbonate cement dominate the shales while copper grades are higher in fluvial sandstones of the lower Burro Canyon Formation. Pyrite primarily occurs in areas absent of higher- grade copper concentrations. C. Copper is found in the form of chalcocite and malachite. Higher grade appears to be within proximity to the various faults. D. Carbonate cement lies within shales of the Mancos Formation and thin slices within the Burro Canyon Formation. E. Clays were analyzed using short wave infared (SWIR). The dominant clay was kaolinite which was also observed by Jacobs and Kerr (1965) in other areas where the Lisbon Valley fault outcrops. The stars represent individual scans and show the dominant clay within the sample. Bed thicknesses and total copper content were provided by Hahn and Thorson (2006) and Lisbon Valley mine geologists. Figure 11. Anaconda mapping method used to show lithology, mineralization, alteration, and structure inside the Centennial pit at Lisbon Valley mine. Note the varied lithologies in the cretaceous rocks on the left. Method based on Brimhall (2005). Figure 12. West side of Mill Canyon showing geology and alteration. A. Geology and structure based on Eichhubl (2009). B. Alteration map showing oxidized copper and carbonate cement. Partial bleaching of the slick rock member of the Entrada sandstone is also represented. C. Mn-Cu nodules
Recommended publications
  • Geology and Mineral Resources of Sierra Nacimiento and Vicinity, New
    iv Contents ABSTRACT 7 TERTIARY-QUATERNARY 47 INTRODUCTION 7 QUATERNARY 48 LOCATION 7 Bandelier Tuff 48 PHYSIOGRAPHY 9 Surficial deposits 48 PREVIOUS WORK 9 PALEOTECTONIC SETTING 48 ROCKS AND FORMATIONS 9 REGIONAL TECTONIC SETTING 49 PRECAMBRIAN 9 STRUCTURE 49 Northern Nacimiento area 9 NACIMIENTO UPLIFT 49 Southern Nacimiento area 15 Nacimiento fault 51 CAMBRIAN-ORDOVICIAN (?) 20 Pajarito fault 52 MISSISSIPPIAN 20 Synthetic reverse faults 52 Arroyo Peñasco Formation 20 Eastward-trending faults 53 Log Springs Formation 21 Trail Creek fault 53 PENNSYLVANIAN 21 Antithetic reverse faults 53 Osha Canyon Formation 23 Normal faults 53 Sandia Formation 23 Folds 54 Madera Formation 23 SAN JUAN BASIN 55 Paleotectonic interpretation 25 En echelon folds 55 PERMIAN 25 Northeast-trending faults 55 Abo Formation 25 Synclinal bend 56 Yeso Formation 27 Northerly trending normal faults 56 Glorieta Sandstone 30 Antithetic reverse faults 56 Bernal Formation 30 GALLINA-ARCHULETA ARCH 56 TRIASSIC 30 CHAMA BASIN 57 Chinle Formation 30 RIΟ GRANDE RIFT 57 JURASSIC 34 JEMEZ VOLCANIC FIELD 59 Entrada Sandstone 34 TECTONIC EVOLUTION 60 Todilto Formation 34 MINERAL AND ENERGY RESOURCES 63 Morrison Formation 34 COPPER 63 Depositional environments 37 Mineralization 63 CRETACEOUS 37 Origin 67 Dakota Formation 37 AGGREGATE 69 Mancos Shale 39 TRAVERTINE 70 Mesaverde Group 40 GYPSUM 70 Lewis Shale 41 COAL 70 Pictured Cliffs Sandstone 41 ΗUMΑTE 70 Fruitland Formation and Kirtland Shale URANIUM 70 undivided 42 GEOTHERMAL ENERGY 72 TERTIARY 42 OIL AND GAS 72 Ojo Alamo Sandstone
    [Show full text]
  • Geology and Stratigraphy Column
    Capitol Reef National Park National Park Service U.S. Department of the Interior Geology “Geology knows no such word as forever.” —Wallace Stegner Capitol Reef National Park’s geologic story reveals a nearly complete set of Mesozoic-era sedimentary layers. For 200 million years, rock layers formed at or near sea level. About 75-35 million years ago tectonic forces uplifted them, forming the Waterpocket Fold. Forces of erosion have been sculpting this spectacular landscape ever since. Deposition If you could travel in time and visit Capitol Visiting Capitol Reef 180 million years ago, Reef 245 million years ago, you would not when the Navajo Sandstone was deposited, recognize the landscape. Imagine a coastal you would have been surrounded by a giant park, with beaches and tidal flats; the water sand sea, the largest in Earth’s history. In this moves in and out gently, shaping ripple marks hot, dry climate, wind blew over sand dunes, in the wet sand. This is the environment creating large, sweeping crossbeds now in which the sediments of the Moenkopi preserved in the sandstone of Capitol Dome Formation were deposited. and Fern’s Nipple. Now jump ahead 20 million years, to 225 All the sedimentary rock layers were laid million years ago. The tidal flats are gone and down at or near sea level. Younger layers were the climate supports a tropical jungle, filled deposited on top of older layers. The Moenkopi with swamps, primitive trees, and giant ferns. is the oldest layer visible from the visitor center, The water is stagnant and a humid breeze with the younger Chinle Formation above it.
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • Stratigraphic Correlation Chart for Western Colorado and Northwestern New Mexico
    New Mexico Geological Society Guidebook, 32nd Field Conference, Western Slope Colorado, 1981 75 STRATIGRAPHIC CORRELATION CHART FOR WESTERN COLORADO AND NORTHWESTERN NEW MEXICO M. E. MacLACHLAN U.S. Geological Survey Denver, Colorado 80225 INTRODUCTION De Chelly Sandstone (or De Chelly Sandstone Member of the The stratigraphic nomenclature applied in various parts of west- Cutler Formation) of the west side of the basin is thought to ern Colorado, northwestern New Mexico, and a small part of east- correlate with the Glorieta Sandstone of the south side of the central Utah is summarized in the accompanying chart (fig. 1). The basin. locations of the areas, indicated by letters, are shown on the index map (fig. 2). Sources of information used in compiling the chart are Cols. B.-C. shown by numbers in brackets beneath the headings for the col- Age determinations on the Hinsdale Formation in parts of the umns. The numbers are keyed to references in an accompanying volcanic field range from 4.7 to 23.4 m.y. on basalts and 4.8 to list. Ages where known are shown by numbers in parentheses in 22.4 m.y. on rhyolites (Lipman, 1975, p. 6, p. 90-100). millions of years after the rock name or in parentheses on the line The early intermediate-composition volcanics and related rocks separating two chronostratigraphic units. include several named units of limited areal extent, but of simi- No Quaternary rocks nor small igneous bodies, such as dikes, lar age and petrology—the West Elk Breccia at Powderhorn; the have been included on this chart.
    [Show full text]
  • Oil and Gas Plays Ute Moutnain Ute Reservation, Colorado and New Mexico
    Ute Mountain Ute Indian Reservation Cortez R18W Karle Key Xu R17W T General Setting Mine Xu Xcu 36 Can y on N Xcu McElmo WIND RIVER 32 INDIAN MABEL The Ute Mountain Ute Reservation is located in the northwest RESERVATION MOUNTAIN FT HALL IND RES Little Moude Mine Xcu T N ern portion of New Mexico and the southwestern corner of Colorado UTE PEAK 35 N R16W (Fig. UM-1). The reservation consists of 553,008 acres in Montezu BLACK 666 T W Y O M I N G MOUNTAIN 35 R20W SLEEPING UTE MOUNTAIN N ma and La Plata Counties, Colorado, and San Juan County, New R19W Coche T Mexico. All of these lands belong to the tribe but are held in trust by NORTHWESTERN 34 SHOSHONI HERMANO the U.S. Government. Individually owned lands, or allotments, are IND RES Desert Canyon PEAK N MESA VERDE R14W NATIONAL GREAT SALT LAKE W Marble SENTINEL located at Allen Canyon and White Mesa, San Juan County, Utah, Wash Towaoc PARK PEAK T and cover 8,499 acres. Tribal lands held in trust within this area cov Towaoc River M E S A 33 1/2 N er 3,597 acres. An additional forty acres are defined as U.S. Govern THE MOUND R15W SKULL VALLEY ment lands in San Juan County, Utah, and are utilized for school pur TEXAS PACIFIC 6-INCH OIL PIPELINE IND RES UNITAH AND OURAY INDIAN RESERVATION Navajo poses. W Ramona GOSHUTE 789 The Allen Canyon allotments are located twelve miles west of IND RES T UTAH 33 Blanding, Utah, and adjacent to the Manti-La Sal National Forest.
    [Show full text]
  • Lithology and Subdivisions of the Jurassic Stump Formation in Southeastern Idaho and Adjoining Areas
    Lithology and Subdivisions of the, . „ - nj,Jurassic ~ - -' - - - - Stump- - - - JL": •-Formation - - - - - in Southeastern Idaho and dning iGEOLOGlCAL SURVEY PROFESSIONAL PAPER 1035-C Lithology and Subdivisions of the Jurassic Stump Formation in Southeastern Idaho and Adjoining Areas By GEORGE N. PIPIRINGOS and RALPH W. IMLAY UNCONFORMITIES, CORRELATION, AND NOMENCLATURE OF SOME TRIASSIC AND JURASSIC ROCKS, WESTERN INTERIOR UNITED STATES GEOLOGICAL SURVEY PROFESSIONAL PAPER 1035-C Marked rapid lateral changes in lithology, fossil content, and thickness of the Stump Formation are due principally to erosion associated with the Cretaceous (K) and Jurassic (]-4) unconformities UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1979 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Pipiringos, George Nicholas, 1918- Lithology and subdivisions of the Jurassic stump formation in southeastern Idaho and adjoining areas. (Unconformities, correlation, and nomenclature of some Triassic and Jurassic rocks, western interior United States) (Geological Survey Professional Paper 1035-C) Bibliography: p. 25 1. Geology, Stratigraphic Jurassic. 2. Geology Idaho. 3. Geology The West. 4. Petrology Idaho. 5. Petrology-The West. I. Imlay, Ralph Willard, 1908-joint author. II. Title. HI. Series. IV. Series: United States Geological Survey Professional Paper 1035-C. QE681.P49 551.7'6 78-1687 For sale by the Superintendent of Documents, U.S. Government
    [Show full text]
  • Front Cover.Pub
    PENNSYLVANIAN-PERMIAN VEGETATIONAL CHANGES IN TROPICAL EURAMERICA William A. DiMichele, C. Blaine Cecil, Dan S. Chaney, Scott D. Elrick, Spencer G. Lucas, Richard Lupia, W. John Nelson, and Neil J. Tabor INTRODUCTION Vegetational changes across the Pennsylvanian-Permian boundary are recorded in several largely terrestrial basins across the Euramerican portions of equatorial Pangea. For the purposes of this paper, these include the Bursum-Abo Formation transition and its equivalents in several small basins in New Mexico, the Halgaito Formation of southeastern Utah, Markley Formation of the eastern shelf of the Midland Basin in north-central Texas, Council Grove Group of northern Oklahoma and southern Kansas, and Dunkard Group of the central Appalachian Basin. This transition also is recorded in numerous basins in Europe, reviewed by Roscher and Schneider (2006), based on paleoclimate indicators preserved in those regions. Collectively, these deposits form a west-to-east transect across the Pangean paleotropics and thus provide a paleogeographic setting for examination of both temporal and spatial changes in vegetation across the Pennsylvanian-Permian boundary (Figures 1 and 2). The Pennsylvanian-Permian transition records the change from wetland vegetation as the predominant assemblages found in the plant fossil record, to seasonally dry vegetation. This has often been called the “Paleophytic-Mesophytic” transition, a concept that is flawed Figure 1. Continental configuration at the Pennsylvanian-Permian boundary. Yellow ovals indicate the principal areas discussed herein: Left – New Mexico and Utah, Center – Texas and Oklahoma, Right – Central Appalachians/Dunkard. Map courtesy of Ron Blakey, Northern Arizona University. DiMichele, W. A., Cecil, C. B., Chaney, D. S., Elrich, S.
    [Show full text]
  • Geology of the Northern Portion of the Fish Lake Plateau, Utah
    GEOLOGY OF THE NORTHERN PORTION OF THE FISH LAKE PLATEAU, UTAH DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State - University By DONALD PAUL MCGOOKEY, B.S., M.A* The Ohio State University 1958 Approved by Edmund M." Spieker Adviser Department of Geology CONTENTS Page INTRODUCTION. ................................ 1 Locations and accessibility ........ 2 Physical features ......... _ ................... 5 Previous w o r k ......... 10 Field work and the geologic map ........ 12 Acknowledgements.................... 13 STRATIGRAPHY........................................ 15 General features................................ 15 Jurassic system......................... 16 Arapien shale .............................. 16 Twist Gulch formation...................... 13 Morrison (?) formation...................... 19 Cretaceous system .............................. 20 General character and distribution.......... 20 Indianola group ............................ 21 Mancos shale. ................... 24 Star Point sandstone................ 25 Blackhawk formation ........................ 26 Definition, lithology, and extent .... 26 Stratigraphic relations . ............ 23 Age . .............................. 23 Price River formation...................... 31 Definition, lithology, and extent .... 31 Stratigraphic relations ................ 34 A g e .................................... 37 Cretaceous and Tertiary systems . ............ 37 North Horn formation. ..........
    [Show full text]
  • 020 Metals in the Moenkopi Formation.Pdf
    \ Geochemical Distribution of Some Metals in the Moenkopi Formation and Related Strata, Colorado Plateau Region By ROBERT A. CADIGAN GEOLOGICAL SURVEY BULLETIN 1344 A study of the concentrations of metals, their covariance, and geochemical associations in members and sedimentary rock facies of the Moenkofli Formation and related lithologic units UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 197 1 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY W. A. Radlinski, Acting Director Library of Congress CatalOg-Card No. 74-179646 For sale by the Superintendent of Documents, U.S. Government Printing OWce Washington, D.C. 20402 - Price 35 cents (paper cover) Stock Number 2401-1197 CONTENTS Page Abstract ................................................................................................................ 1 Introduction ............................................................................................................ 2 Purpose and scope of investigation.......................................................... 2 Geographic and geologic setting.............................................................. 3 Previous work .............................................................................................. 4 Acknowledgments ........................................................................................ 4 !* Stratigraphy ........................................................................................................ 4 Petrology .............................................................................................................
    [Show full text]
  • Revisions of Middle Jurassic Nomenclature in the Southeastern San Juan Basin, New Mexico
    Revisions of Middle Jurassic Nomenclature in the Southeastern San Juan Basin, New Mexico Eolian and Noneolian Facies of the Lower Permian Cedar Mesa Sandstone Member of the Cutler Formation, Southeastern Utah U.S. GEOLOGICAL SURVEY BULLETIN 1808-E,F ^ AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur­ rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur­ vey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month­ ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in­ Books of the U.S.
    [Show full text]
  • Italic Page Numbers Indicate Major References]
    Index [Italic page numbers indicate major references] Abbott Formation, 411 379 Bear River Formation, 163 Abo Formation, 281, 282, 286, 302 seismicity, 22 Bear Springs Formation, 315 Absaroka Mountains, 111 Appalachian Orogen, 5, 9, 13, 28 Bearpaw cyclothem, 80 Absaroka sequence, 37, 44, 50, 186, Appalachian Plateau, 9, 427 Bearpaw Mountains, 111 191,233,251, 275, 377, 378, Appalachian Province, 28 Beartooth Mountains, 201, 203 383, 409 Appalachian Ridge, 427 Beartooth shelf, 92, 94 Absaroka thrust fault, 158, 159 Appalachian Shelf, 32 Beartooth uplift, 92, 110, 114 Acadian orogen, 403, 452 Appalachian Trough, 460 Beaver Creek thrust fault, 157 Adaville Formation, 164 Appalachian Valley, 427 Beaver Island, 366 Adirondack Mountains, 6, 433 Araby Formation, 435 Beaverhead Group, 101, 104 Admire Group, 325 Arapahoe Formation, 189 Bedford Shale, 376 Agate Creek fault, 123, 182 Arapien Shale, 71, 73, 74 Beekmantown Group, 440, 445 Alabama, 36, 427,471 Arbuckle anticline, 327, 329, 331 Belden Shale, 57, 123, 127 Alacran Mountain Formation, 283 Arbuckle Group, 186, 269 Bell Canyon Formation, 287 Alamosa Formation, 169, 170 Arbuckle Mountains, 309, 310, 312, Bell Creek oil field, Montana, 81 Alaska Bench Limestone, 93 328 Bell Ranch Formation, 72, 73 Alberta shelf, 92, 94 Arbuckle Uplift, 11, 37, 318, 324 Bell Shale, 375 Albion-Scioio oil field, Michigan, Archean rocks, 5, 49, 225 Belle Fourche River, 207 373 Archeolithoporella, 283 Belt Island complex, 97, 98 Albuquerque Basin, 111, 165, 167, Ardmore Basin, 11, 37, 307, 308, Belt Supergroup, 28, 53 168, 169 309, 317, 318, 326, 347 Bend Arch, 262, 275, 277, 290, 346, Algonquin Arch, 361 Arikaree Formation, 165, 190 347 Alibates Bed, 326 Arizona, 19, 43, 44, S3, 67.
    [Show full text]
  • Paleontology of the Bears Ears National Monument
    Paleontology of Bears Ears National Monument (Utah, USA): history of exploration, study, and designation 1,2 3 4 5 Jessica Uglesich ,​ Robert J. Gay *,​ M. Allison Stegner ,​ Adam K. Huttenlocker ,​ Randall B. ​ ​ ​ ​ Irmis6 ​ 1 Friends​ of Cedar Mesa, Bluff, Utah 84512 U.S.A. 2 University​ of Texas at San Antonio, Department of Geosciences, San Antonio, Texas 78249 U.S.A. 3 Colorado​ Canyons Association, Grand Junction, Colorado 81501 U.S.A. 4 Department​ of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706 U.S.A. 5 University​ of Southern California, Los Angeles, California 90007 U.S.A. 6 Natural​ History Museum of Utah and Department of Geology & Geophysics, University of Utah, 301 Wakara Way, Salt Lake City, Utah 84108-1214 U.S.A. *Corresponding author: [email protected] or [email protected] ​ ​ ​ Submitted September 2018 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3442v2 | CC BY 4.0 Open Access | rec: 23 Sep 2018, publ: 23 Sep 2018 ABSTRACT Bears Ears National Monument (BENM) is a new, landscape-scale national monument jointly administered by the Bureau of Land Management and the Forest Service in southeastern Utah as part of the National Conservation Lands system. As initially designated in 2016, BENM encompassed 1.3 million acres of land with exceptionally fossiliferous rock units. Subsequently, in December 2017, presidential action reduced BENM to two smaller management units (Indian Creek and Shash Jáá). Although the paleontological resources of BENM are extensive and abundant, they have historically been under-studied. Here, we summarize prior paleontological work within the original BENM boundaries in order to provide a complete picture of the paleontological resources, and synthesize the data which were used to support paleontological resource protection.
    [Show full text]