<<

T>KASO JlaSU DANMARKS OG GR0NLANDS GEOLOG I SK'E UNDERS0GELSE RAPPORT 1998/14

Mellem - 0vre Jura i Rolen

EFP-1995 projekt: Det polske Mellem-0vre Jura Epikratoniske Bassin, Stratigrafi, Facies og Bassin Historie. Program 0steuropa.

Poulsen, N. E., Bojesen-KoefoedJ., Drewniak, A., Glowniak, E., Ineson.J., Matyja, B.A, Merta,T., and Wierzbowski, A.

r-i

NO? 3 0 1998 OS Tl

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF ENVIRONMENT AND ENERGY G E U S DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. DANMARKS OG GR0NLANDS GEOLOGISKE UNDERS0GELSE RAPPORT 1998/14

Mellem - 0vre Jura i Rolen

EFP-1995 projekt: Det polske Mellem-0vre Jura Epikratoniske Bassin, Stratigrafi, Facies og Bassin Historie. Program Osteuropa.

Poulsen, N. E., Bojesen-Koefoed, J., Drewniak,A, Glowniak, E., Ineson.J., Matyja, BA, Merta,T., and Wierzbowski.A

Final rapporter Bojesen-Koefoed, J„ 1996: EFP-95 ProjeccThe Polish Middle to Late epicratonic basin, stratigraphy and basin history. Organic geochemical screening analysis of outcrop samples. GEUS report 1996/81,30 pp.

Bronislaw Andrzej Matyja & Andrzej Wierzbowski, 1997: The quest for a unified - boundary: implication of the ammonite succession at the turn of the Bimammatum Zone and Planula Zones in the Wielun Upland (Central ). Agta Geologica Polonfeca 47 (1-2): 77-105.

Kutek,J.,and Zeiss, A, 1997. The highest Kimmeridgian and the Lower Volgian in Central Poland: their ammonites and ". Acta Geologica Polonica 47 (3-4), 107-198.

Poulsen, N. E., Drewniak, A, Glowniak, E., Ineson.J., Matyja, B.A, Merta,T„ and Wierzbowski.A, 1995: The Polish Middle to Epicratonic Basin, stratigraphy, facies and basin history. Geological Survey of Denmark, Datadokumentation 14-1995,26 pp.

6 GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF ENVIRONMENT AND ENERGY GEUS

Forord

Projektet omfattede en unders0gelse af Mellem Jura (Bajocien - Bathonien) organisk rige lerstens aflejringer og den overlej'rende Sen Jurassiske karbonat sekvens i Rolen. Sekven- sen blev underscgt med henblik pa at etablere en detaljeret h0j optoselig stratigrafisk korre- lation (kronostratigrafisk og dinoflagellat cyst zonering) af den polske submediterrane provins (nordlige Tethys Rige) og den subboreale provins (Nords 0omradet), samt vurdere polske Mellem Jurassiske bjergarter olie og gas potentiate, samt 0vre Jurassiske kalksten som reservoir mulighed i forbindelse med saltstrukturer. I studiet indgik ammonit biostratigrafi, palynologi, sedimentologi, og organisk geokemisk faciesbeskrivelse (modenheds analyse).

Den Mellem Jurasiske ammonit stratigrafi for Polen er et forskningsfelt, der ikke har dyrket de sidste knap 25 ar. Der er under projektet opstillet en tidssvarende zonering for det pol ­ ske omrade. Den 0vre Jurassiske ammonit zonering for det polske omrade har vaeret in- tensivt studeret gennem de sidste mange ar. Under projektet har der specielt vaeret arbej- det med den Mellem - 0vre Oxfordien lagserien. Der er opstillet nye subzoner inden for denne sekvens. Detaljeret korrelations studier af Oxfordien - Kimmeridgien graensen fra Tethys Riget til Det Boreale Rige har forbedret forstaelsen af den diakrone definition af denne graense i de to riger. Endvidere studieme af Kimmeridgien - Volgien ammonit strati- grafien f0rt til korrelation af de Boreale Klimovi - Sokolovi Zoner med Tethys Hybonotum Zone. De 0vre Jurassiske ammonit studier er blevet udf0rt i taet samarbejde med arbejds- gruppeme for denne periode under Den Internationale Subkommission for Jurassisk Strati­ grafi (ISJS).

Projektets resultater er blevet prsesenteret ved nationale (danske og polske) og Internatio­ nale m0der. Hovedparten af projektets resultater er under publicering. Enkelte er allerede publiceret.

Projektet er blevet udf0rt under EFP-1995 programme!, programomrade 0steuropa. Pro ­ jektet havde to samarbejdspartnere, Geologisk Institut, Warszawa’s Universitet (Wydzial Geologii, Uniwersytet Warszawski) og Danmarks og Grenlands Geologiske Unders0gelse (GEUS).

GEUS 3 GEUS 4 Indhold

Rapporten er opdelt i en dansk del, der giver et generelt overblik over projektets resultater, samt seks delrapporter, der giver en gennemgang af specifikke discipliner i projektet.

Forord 3

Indhold 5

Resultater 9 Biostratigrafi...... 10 0verste Bajocien - Bathonien ammonit biostratigrafi i Czestochowa - Wielun omradet .10 Mellem Oxfordien ammonit biostratigrafi i Krakow - Wielun omradet...... 11 Ammonit stratigrafien ved Oxfordien - Kimmeridgien grsensen i Wielun omradet ...... 11 0verste Kimmeridgien - Nedre Volgien ammonit biostratigrafi ...... 12 Dinoflagellat cyst zoneringen...... 12 Sedimentologi og kildebjergartsundersagelser...... 13 Lithologi og aflejringsmilj 0 for Bathonien leraflejringeme...... 13 Arkitektur og udvikling af svampe bioherm komplekser i Oxfordien i det nordvestlige Polen ...... 13 Source rock data...... 14 Palasogeografisk udvikling for Mellem - 0vre Jura i Polen ...... 14

Formidling af projektets resultater 17 Publikationer ...... 17 Manuskripter, som forventes publiceret...... 18 Moder, postere og foredrag ...... 18 Oxfordien (Jura) M0de i Polen, 26-28 maj 1997 ...... 18 Halvdag DGF temam0de 20 oktober 1997 ...... 19 Rapporter ...... 20 Udnyttelse af resultateme og eventuelle nye aktiviteter...... 20 Publicering ...... 20 Kongresbidrag ...... 20 Tiltag som f0lge af dette projekt ...... 21

Konklusion 23

Lithology and depositionai environment of the clays 25 Introduction ...... 25 The black clays within the Czestochowa area...... 25 Lithology...... 25 Sedimentary structures and bioturbation ...... 27 Sedimentary environment...... 28

Ammonite biostratigraphy of the Uppermost and Bathonian in the Czesto ­ chowa-Wielun area 43 Introduction ...... 43 Ammonite stratigraphy of the uppermost Bajocian and Bathonian in Poland...... 44

GEUS 5 Ammonite succession in the sections studied...... 44 Uppermost Bajocian ...... 44 Lower Bathonian...... 45 Middle Bathonian...... 45 Upper Bathonian ...... 46

Bajocian to Oxfordian palynology of the Polish Jurassic 55 Abstract...... 55 Introduction ...... 55 Investigated exposures ...... 57 Stratigraphical background...... 58 Dinoflagellate cyst stratigraphy ...... 59 Conclusions ...... 66 Acknowledgements ...... 67

Ammonite successions of the Plicatilis and the Transversarium Zone in the Sub­ mediterranean Middle Oxfordian of Poland 73 Introduction ...... 73 Ammonite successions in described sections ...... 73 Ogrodzieniec composite section ...... 73 Sections Wysoka ...... 75 Zawodzie composite sections from „satum” quarries ...... 84 Section Niegowonice I...... 85 Subdivision of the Middle Oxfordian ...... 86 Ouatius Subzone ...... 87 Arkelli Subzone ...... 87 Transversarium Zone (Oppel 1863) ...... 88 Buckmani Subzone...... 88 Elisabethae Subzone...... 89 Bifurcatus Zone (Petitclerc 1922)...... 90 Wartae Subzone...... 90 Stenocycloides Subzone (pars)...... 90

Architecture and evolution of a sponge bioherm complex in the Oxfordian (Upper Jurassic) of north-west Poland 101 Abstract...... 101 Introduction ...... 102 Geological setting and stratigraphy ...... 102 Palaeogeographic evolution...... 102 Geological and stratigraphic setting ...... 103 Lithofacies...... 104 Lithofacies 1: Marlstones and sponge wackstones/packstones ...... 104 Lithofacies 2: Sponge-microbial boundstones...... 105 Lithofacies 3: Interbedded packstones, grainstones and floatstones/wackestones ...... 105 Lithofacies 4: Marly skeletal wackestones/packstones ...... 106 Lithofacies 5: Interbedded lime mudstones and marlstones ...... 106 Lithofacies 6: Graded grainstones-packstones ...... 107 Lithofacies 7: Limestone breccia beds...... 107 Bioherm flank architecture...... 108

6 GEUS Core-flank relationships: general description ...... 108 Transect 1: eastern Bielawy...... 109 Transect 2: south-east Wapienno...... 110 Discussion ...... 113 Bioherm growth style, sedimentary processes ...... 113 Evolution of the bioherm complex: some general comments ...... 114 Acknowledgements ...... 115

Palaeogeographic evolution of the Middle-Upper Jurassic of Poland 161 Introduction ...... 161 Middle-Late Jurassic palaeogeography of epicratonic Poland Marine transgression. ..161 Starved basin and extensional regime (Fig. 2)...... 162 Beginning of sponge megafacies (Fig. 3)...... 162 Intensive development of carbonate platform (Figs 4 and 5)...... 162 Sinking of the carbonate platforms...... 163 Isolated basin with evaporites ...... 163

Referencer 181

Appendix 1 187

Appendix 2 201

G BUS 7 8 G EU S Resultater

Oversigt over faglige resultater 1995-1997 • Der er under projektet opstillet en revideret ammonitstratigrafi for det polske Mellem Jura Den 0vre Jurassiske ammonitstratigrafi er blevet forbedret under projektet Der er under projektet opstillet en ny dinoflagellat cyststratigrafi for det polske Mellem Jura Den 0vre Jurassiske dinoflagellat cyststratigrafi er blevet yderligere belyst under projek­ tet Der er blevet udfart lermineralogisk studie af Bajocien - Bathonien (Mellem Jura) ler- stens aflejringeme Der er udfort organisk geokemisk faciesbeskrivelse, herunder modenheds analyse af Bajocien - Bathonien (Mellem Jura) lerstens Oxfordien (Sen Jura) karbonatsekvens i Barcin omradet er blevet tolket Der er udarbejdet en palaeogeografisk beskrivelse af den Mellem - 0vre Jurassiske udvikling af Rolen Der bar vaeret afholdt offentlig presentation ved mcder i Danmark og Polen Der er udarbejdet bade interne rapporter og manuskripter til Internationale tidsskriftartik- ler, samt der foreligger allerede trykte publikationer vedrarende projektets resultater

Opfyldelse af projektets forventninger • Projektets mal med etablering af en haj oplaselig biostratigrafi og korrelation af denne med det submediterrane (nordlige Tethys) og det subboreale omrade (Nordsa omradet) er opfyldt. Der foreligger rapporter, manuskripter og publikationer, der daekker dette mal • Bassin historian er beskrevet i form af palasogeografiske kort. der beskriver bassinet udvik­ ling i en raekke facies udbredelseskort • Beskrivelse af lersedimentologien foreligger som delrapport e En detaljeret tolkning af bioherm struktureme i Barcin omradets foreligger som delrap­ port og er underforberedelse som manuskript til publicering i Acta Geologica Polonica e En geokemisk beskrivelse af organiske facies, modenhed og oliepotentiale foreligger som rapport (Bojesen-Koefoed, 1996). Yderligere data indgar i denne rapport. • De foreliggende resultater peger ikke pa tilstedevaerelse af noget betydende kildebjer- gartspotentiale i de undersagte bjergartsenheder, hvorfor der ikke er opstillet modeller for de regionale muligheder for Jurassiske kildebjergarter og karbonat reservoirer i relation til salt strukturer (f. eks. bioherm struktureme fra i Barcin omradet).

GEUS 9 Biostratigrafi

Hovedvsegten af de biostratigrafiske undersogelser baseres pa ammonit stratigrafi. De indsamlede ammoniter opbevares pa Geologisk Institut, Warszawa’s Universitet (Institute of Geology, Warsaw University, Al. Zwirki i Wigury 93, 09-089 Warsaw, Poland). Ammonit unders0gelseme bar involveret et stort antal daglokaliteter samt enkelte borekemer. Disse undersogelser bar omfattet lagserien 0vre Bajocien - Volgien.

De palynologiske undersogelser bar primasrt vaeret koncentreret pa den Mellem Jurasiske lagserie 0vre Bajocien - Callovien. Endvidere bar et stort antal prover fra Callovien - Ox- fordien (Mellem - 0vre Jura) graensen og fra den resterende del af Oxfordien lagserien vaeret undersogt. Resultateme fra disse undersogelser opbevares i Energistyrelsens og GEUS’ fselles database SamBa. Det palynologiske provemateriale opbevares i GeuS’ mi- kropalaeontologiske samling. Afbillede dinoflagellat oyster med GEUS katalog nummer er registreret og opbevaret i GeuS’ typesamling. Endvidere vil en billedsamling (Appendix 2) repraesenterende polske jurassiske dinoflagellat oyster blive tilgaengelig pa intemettet pa GEUS websted i lobet af 1998.

0verste Bajocien - Bathonien ammonit biostratigrafi i Czestochowa - Wie- lun omradet

Det klassiske omrade for studiet af 0vre Bajocien - Bathonien ler- og siltsten ligger i Czestochowa omradet og i Wieluri omradet i Polen. Disse aflejringer blev i polsk geologisk litteratur benaevnt “lermalm” (Ore Bearing Clay) formation. Formationen blev allerede tidligt kendt for sit indhold af velbevarede ammoniter, der er behandlet i detaljerede palaeontolo- giske arbejder af Rehbinder (1913) og Premik (1934). Disse tidlige afhandlinger mangier dog praecise stratigrafiske oplysninger vedrorende beskrivelser af lokalitet og samlingen af ammoniter gik endvidere tabt under anden verdenskrig sammen med oplosninger om de- res praecise stratigrafiske indplacering. Nyindsamlingen af ammoniter af Rozycki indehol­ der praecise stratigrafiske oplysninger (Rozycki 1953). Efterfolgende undersogelser af ammonitstratigrafien af “lermalm” formationen bar vaeret koncentreret pa fragmentarisk materiale fra borehuls kemer. Den eneste efterfolgende studie er af Kopik (1974) omhand- lede ammonit slaegten Cadomttes.

Materialet, der er behandlet i naervaerende EFP-1995 projekt, er fra lergravene (se lokali- tetskortene Fig. 2-3 i Matyja og Wierzbowski, denne rapport side 43) i den sydvestlige del af det polske bassin med sort lerfacies (se Fig. 1 i Matyja og Wierzbowski, denne rapport side 43). Denne facies er tolket som horende til den aksiale del af bassinet i Bathonien. Lateral!, dvs. marginal! i bassinet er den sorte lerfacies aflost af siltet ler og silt facies. I Hellig Korsbjergene (Gor Swietokrzyskich), i Miechdw Synklinen og i Krakow omradet er Bathonien aflejringeme meget tynde palimpsest-type aflejringer. I det nordlige og nordostli- ge Polen forekommer der samtidige terrestriske aflejringer.

10 GEUS Der blev under feltarbejdet til dette projekt fundet godt 200 ammoniter. Bevaringstilstanden var generelt god for ammoniteme fundet i siderit konkretioner, mens dem fundet i leraflej- ringeme var staerkt sammenpressede, dog med velbevarede skaller. baseret pa de fundne ammoniter er der etableret en stratigrafisk inddeling i zoner og subzoner med korrelation til bade Den submediterrane Provins og Den nordvest europaeiske Provins. Den detaljerede zoneinddeling er angivet pa Fig. 4 (denne rapport, side Matyja og Wierzbowski, denne rap­ port side 43).

Mellem Oxfordien ammonit biostratigrafi i Krakow - Wielun omradet

Fundet af nye ammonit selskaber i aflejringeme fra Krakow - Wielun omradet bar f0rt til en modifikation af den stratigrafiske inddeling af zoneringen for Mellem Oxfordien. Materialet, der er behandlet, er fra den centrale del af Krakow - Wielun omradet, i Czestochowa omra­ det (se Fig. 1 i Matyja & Glowniak, denne rapport side 73) og bestar lagdelte kalkstenbaen- ke med en rig svampefauna, og af cyanobakterie og svampe bioherm komplekser. Begge type aflejringer henfores til de Sen Jurassiske svampe megafacies, som var udbredt over store dele af den europaeiske Tethys shelf (Matyja & Wierzbowski 1995). Sektioner „Wysoka (l-VII)” og „Niegowonice I” h@rer til bioherm kompleks typen mens „Ogrodzieniec ” og „Zawodzie ” sektioneme repraesenterer lagdelt, bassin aksial facies (se Matyja & Glow­ niak, denne rapport side 73)

Den stratigrafiske inddeling baseret pa perisphinctide ammoniter fra Czestochowa omradet henf0res til Plicatilis Zone, Transversarium Zone og Bifurcatus Zone. Graenseme for disse zoner er blevet omdefineret baseret pa de traditionelle index fossiler for disse zoner. End- videre er en ny underinddeling af disse zoner foreslaet, baseret pa det fylogenetiske for- hold mellem microconcher af: Otosphinctes - Dichotomosphinctes - Dichotomoceras. Plicatilis Zone er opdelt i tre subzoner, dvs. Paturattensis Subzone, Ouatius Subzone og Arkelli Subzone. Transversarium Zone er opdelt i to subzoner, dvs. Buckami Subzone og Elisabethae Subzone. Endelig er to subzoner, Wartae Subzone og Ste- nocycloides Subzone, defineret for den nedre del af Bifurcatus Zone. Den nye indde­ ling af mellem Oxfordien afspejler en selvstaendig morfoklin af perisphinctide ammoniter (bade mikro- og makroconcher). Den stratigrafiske udbredelse af ammonit faunaen er vist pa Fig. 5 i Matyja & Glowniak (denne rapport side 73).

Ammonit stratigrafien ved Oxfordien - Kimmeridgien graensen i Wielun omradet

Oxfordien ammonit faunaen fra Wielun omradet repraesenterer en detaljeret biostratigrafisk lagfolge, der kan henfores til det submediterrane 0vre Oxfordien zonering med fern am­ monit horisonter: Litocerum Horisont og Broilii Horisont (Hauffianum Subzone, overste Bi- mammatum Zone), og Minutum Horisont, Proteron Horisont samt Planula Horisont (Planula Zone). Det tidligere beskrevne lag (Matyja & Wierzbowski, 1988) er nu hen- f0rt til Litocerum Horisont (Matyja & Wierzbowski, 1997). Laget repraesenterer en kortvarig

G EU S 11 invasion af boreale og subboreale ammoniter ind i den Submediteranne provins (Matyja & Wierzbowski, 1997). Pa grundlag af tilstedevaerelsen af Amoeboceras (PJasmatites) bauhini (OPPEL), A. (P.) praebauhini (SALFELD), A. (P.) lineatum (QUENSTEDT), Pictonia densicostata BUCKMAN og Prorasenia bowerbanki SPATH, henfores laget til den basale del af Baylei Zone (nederste Subboreale Kimmeridgien) (Matyja & Wierzbowski, 1997). Disse index fossiler bekraefter den diakroniske placering af Oxfordien/Kimmeridgien graen- sen i disse to bioprovinser i Europa (Matyja & Wierzbowski, 1997). Den boreale Oxfordi ­ en/Kimmeridgien graense skal saledes korreleres med Litocerum Horisont eller maske til underliggende lag omtrent mellem 0vre Bimammatum Subzone og nedre Hauffianum Subzone (Bimammatum Zone) (Matyja & Wierzbowski, 1997). Modsat viser korreiation af den Nedre Kimmeridgien graense (Platynota Zone) til de Boreale sektioner at denne graen ­ se skal henf0res til naer basis af Kitchini Zone (Matyja & Wierzbowski, 1997).

0verste Kimmeridgien - Nedre Volgien ammonit biostratigrafi

Paluki Formation, der bestar af lerrig kalk og mergel, er undersagt i flere kontinuerte sekti­ oner (Kutek and Zeiss, 1997). Lagserien spaender over den @vre del af Eudoxus Zone og Autissiodorensis Zone inklusive Fallax Subzone 0verst i Kimmeridgien delen af formatio- nen. Volgien delen af formationen spaender over Klimovi, Sokolovi, Pseudoscythicus, og Tenuicostata Zoneme (Kutek and Zeiss, 1997). Adskillige ammonit arter er registreret for f0rste gang i Polen i det undersogte materielle. Hovedparten af ammoniteme er af boreal affinitet, herudover forekommer der enkelte ammoniter af Mediterran/Submediterran affini- tet (Kutek and Zeiss, 1997). Resultateme af unders0gelseme (Kutek and Zeiss, 1997) viser tre biostratigrafiske begivenheden udviklingen (artsdannelsen) fra Discosphinctoides til Virgataxioceratoides fallax (ILOV.), udd0en af slaegten Aulacostephanus, udviklingen (artsdannelsen) fra V. fallax til llowaiskya klimovi (ILOV.). Som f0lge heraf kan den 2-3 m tykke Fallax Subzone udskilles som den overste del af Autissiodorensis Zone, idet Aulaco ­ stephanus forekommer i subzonen. Den 0vre graense af Fallax Subzone er sammenfal- dende med den nedre graense af Klimovi Zone (basis af Volgien). Ingen microconcher af perisphinctide ammoniter med lappeter eller ventrale horn er registreret i nederste Volgien i Polen eller pa den russiske platform, hvilket indikerer at Subplanites og Pectinatites ikke var tilstede i disse regioner. Det er derfor ikke muligt at korrelere Nedre Volgien fra disse regioner praecist til de tilsvarende lag i nordvest Europa.

Dinoflagellat cyst zoneringen

En rig dinoflagellat flora blev fundet i 0vre Bajocien - Bathonien lersten sekvensen og i de sandede - mergel- og silika-rige aflejringer (“gaze ”) fra Nedre Callovien i det sydlige cen­ tral Polen. Floraen er oftest domineret af ctenidodinioide arter, fprst og fremmest Ctenido- dinium combazii og Dichadogonyaulax sellwoodii samt Korystocysta spp. Andre slaegter, der er rigt repraesenteret, er f. eks. Atopodinium, Lifhodinia og Wanaea spp. Tilstedevaerel­ sen af dinoflagellat cysterne i 0vre Bajocien - Bathonien - Nedre Callovien har givet en god korreiation mellem Den polske Submediterrane Provins og Den subboreale Provins

12 GEUS (Nordsaomradet) bade med hensyn til dinoflagellat cyst zonering og kronostratigrafi. Korrel- lationeme er konsistente med tolkningen fra ammonitstratigrafien. Dinoflagellat flora i Mel- lem Callovien - Oxfordien i det sydlige central Polen er her fattig og sa fragmentarisk, at der kun er fa forekomster af cyster, der giver mulighed for korrelationer. En langt rigere di­ noflagellat cyst flora er fundet i karbonat- og mergel aflej'ringeme fra Oxfordien i Barcin omradet i det nordlige Polen. Bajocien - Oxfordien floraen som helhed viser gode mulighe- der for korrelation til den britiske-danske dinoflagellat cyst zonering af Riding og Thomas (1992), og Poulsen og Riding (under trykning). Nogle af zone index arteme viser forskelle i den farste eller sidste forekomst i forhold til deres kendte udbredelse i Danmark eller Eng ­ land. Zoneringen er her, dog med enkelte modifikationer, pavist brugbar for de polske sek- tioner (Poulsen, denne rapport side 55).

Sedimentologi og kildebjergartsundersogelser

Lithologi og aflejringsmiljo for Bathonien leraflejringerne

Undersagelsen af Bajocien - Bathonien aflejringeme i Polen omfattede dels gamle data, kort, og publikationer, dels information fra nutidige lokaliteter og aktive lermalmsgrave (se Matyja og Wierzbowski, denne rapport side 43) el. teglvserksgrave indsamlet under feltar- bejdet til dette projekt (se Merta og Drewniak, denne rapport side 25). Omkring 180 m sort (m0rkt) ler er beskrevet fra lergravene i Czestochowa ’s sydvestlige udkant og fra Wielun omradet. De enkelte sektioner er blevet korreleret i forhold til de 0vrige sektioner baseret pa geometrien af siderit konkretions lagene. Sektioneme i Czestochowa ’s sydvestlige ud­ kant et sat ind en tredimensional model (se Fig. 4 i Merta og Drewniak, denne rapport side 25).

Det sorte ler fra Czestochowa og Wielun omradet er generelt forholdsvis monoton leraflej- ring. Der er dog enkelte lag med flaser lagdeling, gravegange af bl. a. Pascichnia typen og en del bentisk fauna og enkelte erosionsflader. Aflejringsmilj 0et er tolket som et bassin med forholdsvis stillestaende vand og langsom sedimentation, der lejlighedsvis har vaeret pavirket af storm aflejringer. Tilstedevaerelsen af sporfossiler og bentisk fauna tyder endvi- dere pa at aflejringeme kan henf0res til ilt-minimums zonen (Merta og Drewniak, denne rapport side 25).

Arkitektur og udvikling af svampe bioherm komplekser i Oxfordien i det nordvestlige Polen

Isolerede svampe biohermer (banker) voksede i et siliciklastisk domineret facies system i det nordvestlige Polen i Mellem - Sen Oxfordien adskilt fra den vidt udbredte svampe me­ gafacies, der dominerede i det sydlige central Polen. Biohermeme voksede pa Jurassiske strukturelle saltdomer. Komplekseme af biohermer kendes primaert fra undergrunden, men

GEUS 13 store brud pa den sydvestlige flanke af Zalesie strukturen viser eksempler pa bade kemen og fiankeme af disse svampe biohermer. Facies og arkitektur (geometri) undersagelser af biohermeme bar vist forskellige former for udvikling. Gennem Mellem - Sen Oxfordien ud- bygges biohermeme med en relativ svagt hseldende marginale skraent. Overgangen fra massive bioherm “boundstone ” til “skeletal packstones ” og “grainstones ” til merglet “wackestones ” og “floatstones ” er kortlagt i et antal at bruddets sektioner og udviser typisk en svagt hseldende bioherm bankeform (5-10°). Sedimenttransporten vaek fra bankeme var hovedsagelig som separate kom, intraklaster og karbonatmudder, mens graviditets flyd- ning var mindre hyppig. I seneste Oxfordien alder viser biohermeme en anden udviklings- historie. Fiankeme pa biohermeme blev mere stejl (op til 45°) og biohermeme udviser kraf- tig nedbrydning formentlig som resultat af for kraftig hasldning af margineme. Grove bio­ herm brokker, op til blokke pa sterrelse med huse, blev transported ned ad fiankeme ved processer som skred, “debris flows ” og turbidit stremme (se Ineson et al., denne rapport side 101). Arsag til sendringen i bioherm udviklingen i seneste Oxfordien er uklar. Den kan muligvis vaere fomyet saltdiapir vaskst eller palaeogeografiske aendringer, som f@rte til bio- hermemes endeligt i udgangen af Oxfordien (se Ineson et al., denne rapport side 101).

Source rock data

Det var et af projektet mal at undersege den Mellem Jurassiske (Bajocien - Bathonien) bitumin0se (organisk rige) lersten aflejringer for kildebjergartspotentiale. Sekvensen er blevet undersagt i en raekke daglokaliteter, hvor man i forvejen viste, at sedimentemes ville vaere umodne med hensyn til olie og gas dannelse, men tilsvarende sedimenter kendes fra bade stor dybde og maegtighed i forbindelse med saltstrukturer i Polen. Teorien var, at fandt man sedimenter med et godt olie- eller gas potentiate i de overbade naare aflejringer, kunne man formode at katagenese i forbindelse med de store maegtigheder og dybder ved salthorste kunne have fert til olie - gas dannelse. Undersegelsen af i alt 144 praver fra 12 forskellige lokaliteter v.h.a. Rock-Eval/TOC screening analyse viste, at den fundne type af organisk kulstof (kerogentype) ikke peger pa tilstedevaerelse af noget betydende kildebjer­ gartspotentiale i de unders0gte sekvenser (se Bojesen-Koefoed, 1996, samt Appendix 1). Resultateme viser TOC-vaerdier mellem 0.23% og 2.59% (gennemsnit = 1.24 %), og meget lave Hydrogen Index vaerdier mellem 6 og 141. Det organiske materiale kan klassificeres som kerogen-type lll/IV. Kerogenet ma beskrives som generelt umodent med hensyn til olie - gas dannelse.

Resultateme fra source rock analyseme opbevares ved laboratorium for organisk geokemi og petrografi, GEUS.

Palaeogeografisk udvikling for Mellem - 0vre Jura i Polen

Jura bjergarteme som kendes i Polen er aflejret i flere forskellige palaeogeografiske omra- den

14 GEUS • Det epikratoniske bassin svarende til hovedparten af Polen, og som igen var delt i to sedimentaere bassiner: 0 den centrale og nordlige del, med affinitet til de nordvest europaeiske bassiner (Kutek, 1994) 0 den sydligste del svarende til det Peri-karpatiske Bassin • Det oceaniske Tethys omrade, hovedsageligt daekkende omradet udenfor Polen

Polens havaflejringers udvikling i Mellem - 0vre Jura er vist pa seks palaeogeografiske kort. • Tidlig Bathonien kortet (Fig. 1 Matyja, Wierzbowski et al., denne rapport side 161) er udarbejdet afT. Merta • Mellem - 0vre Callovien kortet (Fig. 2a og 2b, Matyja, Wierzbowski et al., denne rapport side 161) er udarbejdet af A. Drewniak • De Sen Jurassiske kort (Fig. 3-6, Matyja, Wierzbowski et al., denne rapport side 161) er udarbejdet af B. A. Matyja.

Det Mellem Jurassiske epikratoniske bassin var transgressivt fra Aalenien til Sen Bathoni ­ en (Fig. 1 i Matyja, Wierzbowski et al., denne rapport side 161). I tobet af Callovien skete der et skifte fra klastisk sedimentation til karbonat sedimentation (Fig. 2 i Matyja, Wi­ erzbowski et al., denne rapport side 161). Svampe biohermer (banker) voksede i et silicik- lastisk domineret facies system i det nordvestlige Polen i Oxfordien (Fig. 3 i Matyja, Wi­ erzbowski et al., denne rapport side 161). Denne facies udgjorde den nordlige shelf af Tethyshavets vidt udbredte svampe megafacies, der dominerede i et omrade fra Portugal til Ukraine (Matyja, Wierzbowski et al., denne rapport side 161). To lavvands karbonatplat- forme, Pomeranske og Lublinske platforme, bredte sig fra udvikledes i l0bet af Sen Jura ind mod central Polen og naede et maksimum i Tidlig Kimmeridgien (Fig. 4-5 i Matyja, Wi­ erzbowski et al., denne rapport side 161). Fra begyndelsen af Sen Kimmeridgien sendredes udviklingen og ler blev dominerende. Indsynkning af karbonatplatformene forstaerkede denne udvikling. Dybvandsler fra overgangen Kimmeridgien - Volgien aflejredes over st0r- stedelen af Polen (Fig. 6 i Matyja, Wierzbowski et al., denne rapport side 161, Kutek, 1994, Matyja og Wierzbowski, 1997). Haevning af Meta-Karpateme f0rte i Sen Volgien til et isole- ret bassin blev dannet med aflejring af gips og anhydrit. Den fortsatte haevning og sedimen­ tation ved overgangen fra Jura til Kridt veksler brakvands og ferskvandsaflejringer i det centrale Polen (Matyja, Wierzbowski etal., denne rapport side 161).

GEUS 15 GEU S 16 Formidling af projektets resultater

Introduktion Projektets resultater er blevet praesenteret dels i interne rapporter, dels ved foredrag og postere og publicering i Internationale tidsskriftartikler er i gang. En del af resultateme er allerede trykt, mens andre er afleveret til bedommelse i tidsskrifter for trykning. Endelig paregnes en del manuskripter afleveret i nser fremtid med publicering for 0je.

Resultateme af projektet bar vaeret formidlet til den Internationale Subkommission for Ju- rassisk Stratigrafi (ISJS, under ICS og IUGS) og vil indga i projektets medarbejderes videre arbejde indenfor ISJS' fremtidige korrelations studier.

M0det om Rolens Oxfordien og Oxfordien - Kimmeridgien grsense blev organiseret af Det geologiske Institut (Warszawa’s Universet) og GEUS i feellesskab. Til m0det var eksperter fra netop denne del af lags 0jlen blevet inviteret. Specielt skal naevnes, at lederen af Oxfor­ dien Arbejdsgruppe under ISJS, professor G. Melendes deltog. Melendes og projektets biostratigrafer rapporterede resultateme af m0det til ISJS (Glowniak, 1997, Glowniak, et al., 1997a, 1997b, Matyja et al., 1997, Melendes, 1997a, 1997b). M0det videnskabelige indhold var presentation af den biostratigrafiske succession i Det submediterrane Oxfordi ­ en i det centrale Rolen, fremdrift af korrelationsstudieme i Oxfordien biostratigrafi med specie! relation til korrelation af Det boreale og Det mediterrane Rige i Mellem og 0vre Oxfordien og til position af Oxfordien - Kimmeridgien graensen i disse to riger.

Ewa Glowniak ’s Ph.D. afhandling (pa polsk) “Fylogeni, taxonomi, og stratigrafisk betydning af i Mellem Oxfordien i Krakow - Czestochowa omradef (Glowniak, 1997) blev delvist udfort under dette projekt. Disputatsen blev afleveret til bed0mmelse i efteraret 1997. Ewa deltog i Oxfordien m0det med en poster, der praesenterede den Mellem - 0vre Oxfordien biostratigrafien. Arbejdet blev endvidere praesenteret ved DGF temam0det i ok- toberog erfremsendtsom manuskript til den afsluttende rapport.

Publikationer

Glowniak, E., 1997. The phytogeny, taxonomy and stratigraphical importance of Per­ isphinctidae of the Middle Oxfordian in the Krakow-Czestochowa Upland (in Polish). Unpublished Ph.D. Thesis, University of Warsaw, 330 pp., 49 pi. Kutek, J., and Zeiss, A., 1997. The highest Kimmeridgian and the Lower Volgian in Central Poland: their ammonites and biostratigraphy". Acta Geologica Polonica 47 (3-4), 107- 198. Matyja B. A. & Wierzbowski, A., 1997. The quest for a unified Oxfordian-Kimmeridgian boundary: implication of the ammonite succession at the turn of the Bimammatum Zone and Planula Zones in the Wieluri Upland (Central Poland). Acta Geologica Polo- nica 47 (1-2): 77-105.

GEUS 17 Manuskripter, som forventes publiceret

Matyja, B. A. & Glowniak, E. (under forberedelse til publicering). The ammonite succes­ sions of the Plicatilis and the Transversarium Zone in the Submediterranean Middle Oxfordian of Poland. 28 pp. Matyja, B. A. & Wierzbowski, A. (afleveret til bed0mmelse for publicering i Acta Geologica Potonica). Ammonite biostratigraphy of the Uppermost Bajocian and Bathonian in the Czestochowa - Wielun area. 11 pp. Matyja B. A. & Wierzbowski, A., with collaboration of Drewniak, A. & Merta, T., (under for ­ beredelse til publicering). Palaeogeographic evolution of the Middle-Upper Jurassic of Poland, 12 pp. Merta, T. & Drewniak, A., (under forberedelse til publicering). Lithology and depositional environment of the Bathonian clays. 13 pp. Ineson, J., Matyja, B. A., & Merta, T., (under forberedelse til publicering i Acta Geologica Polonica). Architecture and evolution of a sponge bioherm complex in the Kujawy Re­ gion, Torun District, (Oxfordian, Upper Jurassic), Piechin - Barcin, NW Poland. Poulsen, N. E. (under bedommelse for publicering i Acta Geologica Polonica, februar 1998). Bajocian to Oxfordian palynology of the Polish Jurassic. 44 pp.

Moder, postere og foredrag

Oxfordien (Jura) Mode i Polen, 26-28 maj 1997

Madet om Polens Oxfordien og Oxfordien - Kimmeridgien graense blev organiseret af Det geologiske Institut (Warszawa’s Universet) og GEUS i faellesskab. M0det foregik i samar- bejde med Oxfordien Arbejdsgruppe under Den Internationale subkommission for Jura Stratigrafi (ISJS under ICS og IUGS), samt eksperter fra netop denne del af lags0jlen. Prof. Melendes og projektets biostratigrafer (Glowniak, 1997, Glowniak, et al., 1997a, 1997b, Matyja et al., 1997, Melendes, 1997a, 1997b) indberettede resultateme af model til ISJS (se “Rapporter, ” side 20).

Aktiviteteme under Oxfordien Arbejdsgruppe (OWG) har i de sidste 5-6 ar vaeret intenst koncentreret om definitionen af GSSP af Callovien - Oxfordien graensen. Samtidig har an- dre medlemmer af OWG arbejdet med at forbedre Oxfordien ammonit biostratigrafien i forskellige regioner af Europa. Resultateme af disse studier blev diskuteret under model i Polen og sammenlignet med resultateme fra dette EFP-95 projekt.

Model blev indledt med praesentation af postere, der udmaerkede sig ved at give nye gode oplysninger om status for “state-of-work ” af Oxfordien ammonit faunaen i omrader, der indtil nu var darligt kendt, Mellem Oxfordien i Storbritannien, 0vre Oxfordien i Sydtyskland,

18 GEUS 0st Iberia, Mellem Oxfordien - 0vre Oxfordien - Nedre Kimmeridgien i Polens Jura. De polske resultater bar forbedret muligheder for korrelation af Tethys riget med Det boreale Riga. Modet fortsatte med besigtigelse og preesentation af den biostratigrafiske succession i Det submediterrane Oxfordien i det centrale Polen, fremdrift af korrelationsstudieme i Oxfordien biostratigrafi med speciel relation til korrelation af Det boreale og Det mediterra- ne Rige i Mellem og 0vre Oxfordien og til position af Oxfordien - Kimmeridgien grsensen i disse to riger.

M0det blev beskrevet af prof. Melendes som et m0de, der b0r sta som model for kom- mende m0der for god organisation, ramme og gode forhold for alle deltagere. Prof. Melen­ des takkede pa vegne af OWG arrang 0reme (herunder EFP-95) for arbejdet med at forbe- rede modet og give arbejdsgruppen mulighed for at besigtige de klassiske Oxfordien sekti- oner i Polen og det detaljerede stratigrafiske og palaeontologiske arbejde, der blev praesen- teret. Resultateme vil fa star betydning for OWGs fremtidige arbejde med korrelation mel­ lem Det boreale Rige og Tethys Riget og for arbejdet med at opstille Subetage- og Zone- stratotype sektioner, som er et af arbejdsgruppens naert forestaende arbejder.

Halvdag DGF temamade 20 oktober 1997

Temam0det om EFP-95 projektet Det polske Mellem til 0vre Jurassiske Epikratoniske Bassin, stratigrafi, facies and bassin historic, blev organiseret i af GEUS og DGF i samar- bejde. En raekke foredrag (se herunder) prsesenterede de vaesentligste resultater fra dette projekt. M0det blev afholdt pa GEUS, og var bredt annonceret af DGF, bade i DGFs m0- deorientering, ligesom det var annonceret pa DGFs webside om moder. Endvidere var Energistyrelsen inviteret, og det var annonceret i GEUS-intemt.

Foredrag: 1. Mellem - 0vre Jura i Polen - stratigrafi og palseogeografisk udvikling, ved B. A. Matyja og A. Wierzbowski. 2. Bathonien ammonit stratigrafi i Czestochowa - Wielun omradet, ved B. A. Matyja og A. Wierzbowski. 3. Lithologi og aflejringsmilj 0 for Bathonien lerserien, ved T. Merta og A. Drewniak, med bidrag fra J. A. Bojesen-Koefoed vednarende hydrocarbon dannelses potentialet 4. Mellem - 0vre Jura dinoflagellat cyst stratigrafi og korrelationer, ved N. E. Poulsen 5. Mellem Oxfordien ammonit stratigrafi og korrelationer, ved E. Glowniak og B. A. Maty­ ja. 6. 0vre Oxfordien ammonit stratigrafi og korrelationer, ved B. A. Matyja og A. Wi­ erzbowski. 7. Arkitektur og udvikling af svampe bioherm komplekser i Kujawy Regionen, Torun Distrikt, (Oxfordien, 0vre Jura), Piechin - Barcin, NV Polen, ved Jon Ineson, B. A. Matyja og T. Merta.

GEUS 19 Rapporter

Bojesen-Koefoed, J., 1996: EFP-95 Project: The Polish Middle to Late Jurassic epicratonic basin, stratigraphy and basin history. Organic geochemical screening analysis of out ­ crop samples. GEUS report 1996/81, 30 pp. Glowniak, E., 1997. Middle Oxfordian ammonites. JMG Newsletter 6.12-13. Glowniak, E., Matyja, B. A., Poulsen, N. E., and Wierzbowski, A., 1997a. Oxfordian (Jurassic) Meeting in Poland, 26-28 May 1997. JMG Newsletter 6.12. Glowniak, E., Matyja, B. A., Poulsen, N. E., and Wierzbowski, A., 1997b. Oxfordian (Jurassic) Meeting in Poland, 26-28 May 1997. International Subcommission on Jurassic Stratigraphy, Newsletter 25. 44- 46. Matyja B. A., Poulsen N. E., and Wierzbowski 1 A., 1997. Upper Oxfordian Palaeontology. JMG Newsletter 6.13-15. Melendes, G., 1997a. Report on Oxfordian Working Group. JMG Newsletter 6.10-12. Melendes, G., 1997b. Report on - Oxfordian Boundary Working Group. Interna­ tional Subcommission on Jurassic Stratigraphy, Newsletter 25.43- 44. Poulsen, N. E., Drewniak, A., Glowniak, E., Ineson, J., Matyja, B. A., Merta, T., and Wier­ zbowski, A., 1995: The Polish Middle to Late Jurassic Epicratonic Basin, stratigra ­ phy, facies and basin history. Geological Survey of Denmark, Datadokumentation 14-1995, 26 pp.

Udnyttelse af resultaterne og eventuelle nye aktiviteter

Publicering

Hovedparten af resultaterne fra projektet er under forberedelse til at blive trykt (enkelte dele er allerede tryk) i Acta Geologica Polonica. Endvidere er der planlagt en faslles afhandling til DGF Bulletin omhandlende en oversigt projektets resultater.

Kongresbidrag

Et bidrag er planlagt til presentation ved Dino 6, Trondheim 7-12 Juni 1998 • Niels E. Poulsen: Bajocian to Volgian (Jurassic) palynology of the Polish Jurassic

Tre bidrag er planlagt til presentation ved "International Symposium on the Jurassic Sys­ tem", Vancouver 17-20/8 1998. • Ewa Glowniak: On the perisphinctid stratigraphy of the Middle Oxfordian • B. A. Matyja & A. Wierzbowski: On the correlations around the Oxfordian-Kimmeridgian boundary • Niels E. Poulsen: Bajocian to Oxfordian palynology of the Polish Jurassic

20 GEUS Tiltag som f0lge af dette projekt

De gode palynologiske resultater fra dette projekt har fart til, at et biostratigrafisk Ph.D. projekt baseret pa dinoflagelat oyster fra polske Mellem Jurassiske borehul kemer er startet ved Geologisk Institut, Warszawa’s Universitet. Niels E. Poulsen fungerer som medvejleder pa dette projekt.

GEUS 21 G EU S 22 Konklusion

Resultateme af dette projekt har bidraget til genetableringen af forskningen indenfor Mel- lem Jurassisk ammonit stratigrafi. Projektets resultater indenfor dette felt har tilvejebragt ny viden om denne del af stratigrafien.

0vre Jura ammonit stratigrafi har vseret et meget aktivt forskningsomrade ved Geologisk Institut (Warszawa’s Universitet). Under dette projekt har oplaseligheden af ammonit stra­ tigrafien og precision af korrelationer mellem Tethys Riget og Det boreale Rige blevet yderligere forbedret. Et af de mest spaendende resultater er den forbedrede korrelation af Oxfordien/Kimmeridgien graensen imellem disse to riger.

Dinoflagellat cyst stratigrafien i Mellem - 0vre Jura har bidraget til forbedring af dinoflagel- lat cyst zoneringen og til uddybning af korrelationeme i Mellem Jura. Korrelationen af Tethys Riget og Det boreale Rige ved hjaelp af bade ammoniter og dinoflagellat oyster sy- nes at vaere et meget attraktiv prospekt og det anbefales at forskning indsatsen herindefor fortsaettes.

Kildebjergartsforskningen har bidraget med analyser af die- eller gas potentiate i de over­ bade naere aflejringer i det centrale Polen. Den tilsigtede modeludvikling omkring katage- nese af Mellem Jurassiske leraflejringer i forbindelse med salthorste kunne ikke udfcres ud fra de fundne lave TOC-vaerdier og meget lave Hydrogen Index vaerdier mellem 6 og 141. Det organiske materiale kan klassificeres som kerogen-type lll/IV. Kerogenet ma beskrives som generelt umodent med hensyn til olie - gas dannelse. Det anbefales at yderligere forskning indenfor dette felt koncentreres om andre relevante regioner i Polen.

De detaljerede studier af blottede Oxfordien svampe biohermer i det nordvestlige Polen har resulteret i en bedre forstaelse af disse biohermers arkitektur og udviklingshistorie.

Med baggrund i dette projekt har Warszawa's Universitet opnaet erfaring indenfor admini­ stration af og forskning i malrettet kontraktforskning. Det kan anbefales at Danmark fortsat deltager i samarbejde med Warszawa’s Universitet og andre polske forskningsinstitutioner i forskningsprojekter med en tilsvarende konstruktion.

G EUS 23 GEUS 24 Lithology and depositional environment of the Ba- thonian clays

by Tadeusz Merta and Arkadiusz Drewniak

Introduction

The clays are one of the most interesting sediments because of their very often enigmatic depositional genesis and postdepositional history. The clays are "typical" facies for various sedimentary environments both for marine and terrestrial aquatic ones (Hakanson, Jansson 1983). Clay facies always evidence the special stages of the sedimentary basin history with slow or even extremely slow rate of deposition. The most typical facies of the Bathonian in Poland are black clays.

The Bathonian sediments in Poland generally consist of two megafacies: I - marine mega­ facies and II - terrestrial one. First of them is aged mainly by biostratigraphical data, whereas the stratigraphical position of the second megafacies is deduced by stratigraphy of overlying deposits (Dayczak-Calikowska 1965, Dadlez et a/. 1970). The Bathonian sedi­ ments in Poland mainly occur under the cover of younger deposits. Only in the southern part, near Czestochowa, and from place to place within the Mesozoic margin of the Holy Cross Mountains deposits of the Bathonian age may be investigated in the several dozen outcrops. Therefore, the knowledge of palaeography, lithology and regional extend of men­ tioned sediments is based upon the borehole data, both from core samples and geophysi­ cal-log interpretations (cf. Daniec 1963,1970, Dadlez, Kopik 1970, Dayczak-Calikowska, Kopik 1970,).

The marine Bathonian sediments in Poland are represent by three main facies types of deposits, i.e. black clays, clayey-silty sediments and arenaceaous ones (Fig. 1). The black clays occupied the central and NW part of Poland, gradually passing into the more coarser facies, i.e. clayey-silty one to arenaceaous deposits and elastics (sandstones and conglom­ erates). Southernmost and SW extends of the Bathonian deposits are limited by post- Jurassic erosional processes.

The black clays within the Czestochowa area

Lithology

Within the Czestochowa region the Bathonian black clays are exploited as a raw material for several brickyards. The sedimentological field study began in summer time of 1995. Starting to the field observations, we had no biostratigraphical position of investigated de­ posits precisely. Hence, a computer palinspastic reconstruction of sediments was created to construct the summarised sequence through an analysis of the data from boreholes and intersection analysis of geological maps. The reconstruction (FIG. 2) is based upon the relation between a given clay-pit sequence position and the top surface layer of the Ko- scieliskie sandstones (underlying investigated clays). Because the Bajocian - Bathonian

GEUS 25 deposits in the Czestochowa area are slightly tectonized, the top surface of the mentioned sandstones was rotated to the horizontal level and the distance between the top layer of the Koscieliskie sandstones and the surface of a given clay-pit was approximately calculated. The comparison of these distances in all clay-pit sequences, allows to see hypsometric relationship between them. It must be concluded that the final effect of such method based on geometrical criteria just resulted in success, and the vertical succession of the clay-pit sequences, so outlined, is correct, verified later more precisely by biostratigraphical data. However, each new clay-pit that will be opened on the area of reconstruction (which has occurred quite frequently in the last few years) may still initially be located in the scheme, so that it could indicate most of the prospective new outcrops for the future research. The sequences of black clays have been investigated in claypits. These sequences are located within the area of western suburb of Czestochowa (Fig. 2).

Described clays are black only when they are moistured. Dry clays are rather grey. These mentioned deposits are differentiated, changing from nearly pure clays (rather rare) to clayey siltstones. Generally, the clays consist mainly of illite, enriched by subordinate ele­ ments as fine sized grains of quartz, scales of muscovite and organic shale detritus (Fig. 3). Properties of the clays and subordinate elements are different. Such criteria allow to divide the sequence onto series of clays, slightly differ one from another. Very important component of black clays is dispersed very fine grained pyrite. This mineral is a main pig ­ ment, giving the greyish-black colour of clays. Specific elements of the black clays se­ quences are concretions or layers of siderite. In the first case the concretions are situated along the same surfaces, which was the basis for an attempt to make correlation, that, however, turned out to be false, between several outcrops and old iron mine shafts (closed 40 years ago). It should be emphasised, however, that the successive horizons of siderite are not parallel to each other. Moreover, fortunately exhumed top surface of one such hori­ zon shows that the siderite-bearing levels are horizontally developed differently; partially as a siderite layer, partially as a typical sideritic concretion horizon. Thus, the same sideritic level is frequently detected both as the layer in one clay-pit or as the horizon of concretions in the other one (FIG. 3). Therefore, all the old reports, where correlation was based on the siderite, are doubtful.

The nature of the sideritic concretions seems to be very early diagenetic. In some of these bodies we can notice burrows that are completely not changed through compassion inside the sideritic intercalation, whereas outside the same burrows are strongly pressed by weight of clays. It seems that thickness of clays above the arising sideritic concretions was not greater than few meters. Some of the sideritic layers or concretions are ammonite fauna -bearing ones. Within the clays the ammonite specimens - lying horizontally - are commonly deformed by compassion processes. But within the concretions ammonite specimens are not deformed and their orientation not prefer the natural, i.e. horizontal posi­ tions. Such "abnormal" orientation suggests postdepositional (but before segmentation) reorientation of ammonite shells. This problem is yet unsolved. Characteristic is preserva­ tions of inside siderite. As for the large fossils, their skeletons are distended, and thus, crushed by the power of growing of the sideritic colloidal bodies, which was created inside the shell, whereas small skeletons or the rest of shells are dislocated only. Later de­ hydration of the gel is responsible for frequent occurrence of separation concretions. With­ out doubt, each horizon indicates special geochemical surface, where even small differ­ ences between clays limit circulation of the solution and enable, through the change of pH and He, an increase in colloidal gel of decos. So it is very likely that the siderite horizons consist the boundary between the clay series.

It may be emphasised, that the occurrence of layer with mixed (redeposited) benthic fauna shells were reported from Kawodrza clay-pit. Such concentration suggests occurrence of lag deposits as a result of erosion processes. The conceivable erosion surfaces are, how­ ever, very difficult to observe within the monotonously developed clays. Hence, it is not

26 GEUS excluded that at least some of siderite horizons indicate the erosion surfaces. Such idea is illustrated on Fig. 6. Two non-depositional surfaces (and two no-depositional events, re­ spectively) were recognised in black clays of the Bathonian age; two horizons of bored (Chondrites type) concretions were found within the Faustianka section.

Sedimentary structures and bioturbation

At the first sight the black clays are monotonous and structureless deposits. In all investi­ gated profiles were noted only several cases of indistinct current structures similar to lenses with “ghost ” of cross-bedding. May be these forms represent incomplete current ripple marks. From place to place very indistinct flaser bedding were observed. Generally, the investigated Bathonian black clays are devoid of dynamic sedimentary structures. But such situation probably is not primary one.

Forbearing observations allow to state occurrence many burrows within the clays. Traces of fauna life activity, i.e. burrows are visible in special weather conditions in cross-sections as an oval forms or spots up to 1.5 to 2 mm in diameter, slightly deformed by compaction process. If such burrows occur, the sediment is disturbed totally, giving the picture like felt or matted straw. It may be necessary to say that these trails represent the endofaunal Pas- cichnia ethological type (cf. Martinsson, 1970, also Seilacher 1962), produced by life activity of soft body , penetrating horizontally near bottom sediments. Thus, these burrows appear to be of early postdepositional origin.

Trace fossils have considerable value as a means of determining the ancient character of bottom sediments, relative content of oxygen and organic matter. Abundance of burrows also allows to evaluate relative rate of deposition. Therefore, mentioned above assemblage of structures is the one of the most important factor for interpretation and reconstruction of sedimentary environment of the Bathonian period.

The internal bioturbations of clays inform about soft consistence of bottom sediments dur­ ing the sedimentation. Trace fossils also indicate that during the sedimentation the near­ bottom sediments were nutrient-rich ones. They also inform that those sediments were enriched in oxygen. Additionally, bioturbation processes result the secondary features of clays, giving structureless deposits (primarily probable thin-laminated ones). But it has to emphasised that the colour contrast between the background and filler of burrows is hardly perceptible. It is the problem, because even inconsiderable change of the moisture of clays makes, that the mentioned structures are invisible at all. The best occasion for making ob­ servations was the relative short time after several rainy days, when blocks of clays, sepa­ rated from the wall, had been drying. Therefore, this is the open question - if the burrows occur present only in parts within the profiles or they are common, but only possible to ob ­ serve in such parts in the special conditions of weather?

Abundance of burrows' traces suggests that the Bathonian black clays are enriched by or ­ ganic matter. In fact, the Rock-Eval examinations (Bojesen-Koefoed, 1996) confirmed of organic carbon content. For sedimentological interpretation is very important the fact, that the content of organic carbon within the sequence of the Bathonian black clays is variable. Larger carbonised pieces of wood we noted, especially in Sowa, Glinski and Kawodrza clay-pits.

GEUS 27 Benthic fauna Within the Bathonian black clays, several groups of benthic fauna are reported. Here we can mention such as Annelids (represented by Serpula sp.), bryozoan, end larger - bi­ valves, brachiopods, crinioids, or even fragments of ophiuroids. Most often the specimens are noted singly. In exceptional cases the assemblages of up to several dozen specimens (rather very small) may be observed. Such cases have been noted in Sowa clay-pit; here the tufts of shells appear like small reefs growing on pieces of carbonised wood. During the sedimentation wooden pieces were the isolated hard “islets” on soft bottom sediments. For that they were occupied by sessile benthic fauna immediately.

One more type of special concentrations of fauna remains were seldom observed, too; elongated, with indistinct contour forms with chaotically mixed fragments of shells of Bi­ valves, ammonites and pieces of bellemnites. These forms may be interpreted (in our opinion) as the (?) excrements of bigger animals, probable the vertebrates.

Sedimentary environment

Black clays are commonly interpreted as sediments of anoxic basins because of their dark colour. Abundance of burrows and benthic fauna suggest, however, that the bottom sedi­ ments during the Bathonian period were situated at least in oxygen-minimum zone (see Bromley and Ekdale, 1984). The soft near bottom sediments were divided probably onto two layers - higher enriched in oxygen and termed as aerobic and lower - anaerobic with interstitial hydrogen sulphide water. In the process of the deposition deoxidisation front was relocated upward successively, but several centimetres of the uppermost sediment were permanently oxidised, densely populated by soft sediment borrowers.

Taking under consideration facts such as: very fine sediments i.e. clays, lack of dynamic sedimentary structures, indigence of benthic fauna and abundance of bioturbations of Pas- cichnia type, the sedimentary environment during the Bathonian time may be characterised as the marine basin of quiet or stagnant water with very slow or even extremely slow rate of deposition. The sediments were distributed by near bottom low-energy currents, proba ­ bly as clouds of suspended matter. Origin of these clouds was connected with resuspen­ sion (storms) of fine deposits within the shallower zones of the basin. The variability of or ­ ganic carbon content probably contains record of the fluctuation of climate on lands.

In lithology and facies development the Bathonian clays are very similar to the Kimmeridge Clays in England; fluctuation of organic carbon content within the Kimmeridge Clays is in­ terpreted as result of climate cycles accordingly with Milankovitch ones (Oschmann et ai. 1996). For last about 15 years, new data about sedimentary environments of black clays are reported based upon the investigations of Upper Pleistocene - Lower Holocene and recent sediments, especially from the bottom of eastern part of Pacific Ocean, for example from basins off northern California (Anderson 1989). This modem region may be is the best key for reconstruction for ancient sedimentary environment of black clay sedimentation.

On the other hand, the Bajocian - Bathonian clay facies seemingly monotonous but with indistinct Maser bedding, traces of ripples, "series" of clays, bioturbations, intercalations of silt, (?) erosion surfaces, corresponds very close to estuarine complex of sediments (cf. Nichols, Biggs 1985), i.e. fresh-brackish - marine water sedimentary environment. Using the conceptual model of dispersal zones of estuary (cf. Nichols, Biggs op. cit), all dis­ cussed environmental and life conditions persisted through the Bathonian period allow to suppose that the estuary and estuarine marine conditions ought to be taken under consid­ eration as alternate to the open basin sedimentary environment.

28 GEUS The characteristics of lithology and reconstruction of sedimentary environment of the Ba- thonian black clays presented above ought to be treated as the first step for more detailed estimations in the future. For more reliable interpretation of sedimentary conditions as well the ecological investigations as chemical ones are necessary. The Bathonian black clays offer opportunities for sedimentological study because of their diversity. These studies need more advanced technical methods of examination.

GEUS 29 GEUS 30 Figure 1

Early Bathonian

Pafaeogeograpfoic map for the Eariy Bathonian of Poland

1 - clays, 2 - clayey-silty facies, 3 - arenaceaous facies, 4 - terrestrial facies

Figure 2

Kawodrza'

GNASZYN DLN KAWO

Leszi

Glinski KAWODRZA GRN GD - Gnaszyn Din GG - Gnas^n Gm KD - Kawodrza Din Aniot KG-Kawodrza Gm GNASZYN GRN JG-JasnaG6ta

Location map of the clay-pits at Czestochowa

GEUS 33 GEUS 34 Figure 3

Retfoepstattmr

-Anna day pit

Gnaszyn day pit Kawodrza day pit

:Wlncek Stttqpzfca day pita

mm wmmm mm

An tot, Sowa & GOftski day pits

Stratigraphical succession of the Uppermost Bajocian to Bathonian deposits and schematic sedimentological log of the clay-pit sequences at Czestochowa D - relative quantity of detritus, B - abundance of bioturbations, M - muscovite enrichment c - indistinct cross-bedding, w - carbonized wooden pieces, r - small "reef

GEUS 35 36 GEUS m O c (D

Thickness Real

present thickness [□0-25

of

Q

clays 25-50

near

50-75

Gnaszyn □

75-100

0100-125

(level

0 Q

m 125-150

-

top

of

the

"Kodcieliskie" At-"Alina" A Arrows AN Investigated K GS G L

- - - -

"Leszczyriski" "Anlol" "Kawodrza" "Gnaszyn" - -

"Anna" "Glirtskl"

show sandstone)

pit-clays:

& a

"Sowa" location 6000 6600 of

Figure 4 38 GEUS Figure 5

Schematic explanation ofsideritic layer - sideritic concretions relationship in the same horizon

A - correlated sequences I and II, B -’aerial” view of the top surface ofsideritic horizon; I and II - location of sequences

GEUS 39 40 G EU S Figure 6

Possible relationship between clay series (1 - V) and siderite horizons in the Lower to Upper Bathonian

GEUS 41 42 GEUS Ammonite biostratigraphy of the Uppermost Bajo- cian and Bathonian in the Czestochowa - Wieluh area

by Bronislaw A. Matyja and Andrzej Wierzbowski

Introduction

The classical area of occurrence of the Upper Bajocian and Bathonian deposits lies in the Czestochowa Upland, and the Wielun Upland in Central Poland. The deposits are black clays and siltstones with abundant siderite concretions, distinguished in the Polish geologi­ cal literature as the „ Ore Bearing Clay” formation. The formation became famous due to wealth of well-preserved ammonites known already since XIX century. The more detailed biostratigraphical studies of these deposits by Rehbinder (1913) and Premik (1934) were based, however, on ammonites not very precisely located in the sections, and hence re­ sulted only in very general recognition of the ammonite succession. The part of older col ­ lections, enlarged with a new one carefully gathered regarding the stratigraphical sequence of deposits by Rdzycki, were destroyed during the Second World War, before their full pa­ laeontological and stratigraphical elaboration (Rdzycki 1953). On the other hand, the de­ tailed studies of the „Ore Bearing Clays” after the war concentrated mostly on analysis of the cores that did not yield many well-preserved ammonites enabling the detailed bios­ tratigraphical interpretation. All these circumstances resulted in relatively poor recognition of the ammonite biostratigraphy of the Upper Bajocian and Bathonian in the Czestochowa - Wielun area. The only detailed study of the ammonite fauna that has been published more recently is that of Kopik (1974) on the representatives of the genus Cadomites.

The area of study is located in south-western part of the black-clay facies of the Polish ba­ sin (Fig. 1). This facies is interpreted as representing the central part of the Bathonian ba­ sin. It is laterally replaced by clayey-silty and silty facies that were formed at the margins of the basin. In the Holy Cross Mountains, in the Miechow Syncline and in the Krakow Upland the Lower Bathonian deposits are represented by extremely thin, palimpsest-type deposits. The deposits of terrestrial origin occur in north and north-eastern part of Poland

The present study included the careful collecting of ammonites bed by bed in several sec­ tions in the clay-pits at Czestochowa (in Gnaszyn G6my, Kawodrza G6ma, Gnaszyn Dolny, and Kawodrza Doha - .Alina” clay-pit, Aniol clay-pit, Sowa and Glinski clay-pits, Leszc- zynski clay-pit, Wincek clay-pit, Gnaszyn” clay-pit, .Kawodrza ” clay-pit, and .Anna” clay-pit, see Fig. 2), and in the vicinity of Wielun (in Pacandw village, Faustianka village, and Krzy- worzeka village, see Fig. 3). As a result of this study some 200 ammonites were collected. The preservation of specimens is different: these found in siderite concretions are often not deformed and mostly beautifully preserved (except the specimens heavily deformed in the septaria type of concretion), whereas those from clays are usually strongly compressed. The ammonite shells are, however, nearly always preserved.

The palaeontological interpretation of the collected ammonites enabled the differentiation of the ammonite zones and subzones distinguished in the uppermost Bajocian and Bathonian in the Submediterranean and NW European Provinces in Western Europe (see Rioult etai,

GEUS 43 1997, and Mangold and Rioult 1997 with earlier papers cited therein). The detailed results of this study are presented below in the report (see Fig. 4).

During the field work, the samples precisely located in the sections for dinoflagellate stud­ ies have been collected. This resulted in elaboration of the dinoflagellate cyst zonation well correlated with the ammonite subdivision (see report of Poulsen 1997).

Ammonite stratigraphy of the uppermost Bajocian and Ba- thonian in Poland

The ammonite subdivision of the Bajocian and Bathonian stages used so far in Poland (mostly in the studies of the Institute of Geological Survey) differs markedly from that ac­ cepted widely in Europe, especially since the Jurassic colloquiums in Luxembourg in early sixties . The main difference lies in location of the boundary between the two stages, and to a lesser degree also in ammonite zonation. In western Europe, the lower boundary of the Bathonian stage is placed at the base of the standard Zigzag Zone, whereas in Poland, the lower boundary of the Bathonian has been placed either at the base of the Asphinctites tenuiplicatus Zone, or at the base of so called „ Procerites Zone ”: it was a consequence of differentiation in Poland of the Kuyavian Substage correlated more recently with the Upper Bajocian which included all the ammonite zones from the „ Strenoceras subfurcatum Zone ” up to the Parkinsonia compressa = Parkinsonia wuerttembergica Zone, and sometimes even up to the Asphinctites tenuiplicatus Zone (see e.g. Kopik and Znosko 1968, Kopik 1974, Dayczak-Calikowska and Kopik 1976, Dayczak-Calikowska 1988). Such interpreta­ tion of the Upper Bajocian in Poland resulted in totally different stratigraphical range of this substage when compared with western Europe. In Poland the Upper Bajocian (Kuyavian) has corresponded not only to the Upper Bajocian, but also to the Lower Bathonian (or a big part of it) according to the standard western European subdivisions.

In present report the standard ammonite subdivision of the uppermost Bajocian and Ba­ thonian is accepted (see Fig. 4), and the boundary between the two stages is put at the boundary of the Bomfordi Subzone of the Parkinson! Zone (uppermost Bajocian) and the Convergens Subzone of the Zigzag Zone (lowermost Bathonian).

Ammonite succession in the sections studied

Uppermost Bajocian

The oldest deposits studied are these from the clay-pit at Pacandw, south of Wielun, where a small assemblage of fragmentary preserved ammonites of the genus Parkinsonia has been collected. The ammonites possibly belong to the two species: (1) Parkinsonia (Parkinsonia) cf. pseudoparkinsoni Wetzel, (2) Parkinsonia (Durotrigensia) ex gr. friederici- augusti Wetzel. The co-occurrence of these two species indicates (Rioult et at., 1997) the uppermost part of the Acris Subzone and/or the lowermost part of the Densicosta Subzone = Parkinson! Subzone of the Parkinsoni Zone (Fig. 4; see also Pavia 1971, Callomon et a/., 1987).

Still younger are deposits from the „Alina” clay pit in Gnaszyn G6my at Czestochowa that yielded several specimens of Parkinsonia (Parkinsonia) parkinsoni (Sowerby) and a single

44 GEUS specimen of Cadomites (Cadomites) daubenyi (Gemmelaro). It is the assemblage indica­ tive of the Densicosta Subzone = Parkinsoni Subzone of the Parkinson! Zone (Fig. 4; see Rioult etal., 1997, see also Pavia 1971, Callomon etal., 1987).

The youngest Bajocian ammonites found in the Aniol clay-pit in Gnaszyn Gomy at Czesto ­ chowa include small Parkinsonia (Parkinsonia) dorni Arkell, and a bigger form that seems to be close to Parkinsonia {Parkinsonia) bomfordi Arkell (at least as interpreted by Zany et a/., 1995). These ammonites indicate the Bomfordi Subzone of the Parkinsoni Zone (Fig. 4; see Rioult et a/., 1997; see also Arkell 1956).

Lower Bathonian

The oldest Bathonian ammonites include Parkinsonia (Gonolkites) subgaleata (Buckman) found in the Aniol clay pit and the Sowa and Glinski clay-pits in Gnaszyn Gomy at Czesto­ chowa; possibly from the same level comes a single specimen of Parkinsonia schloenbachi Schlippe found in a rubble in the Glinski clay pit. These ammonites are indicative of the Convergens Subzone of the Zigzag Zone (Fig. 4; see Sturani 1966, Mangold and Rioult 19997).

Still younger are fragments of involute parkinsonids traditionally placed in the subgenus Oraniceras, but more recently treated as the involute group of Parkinsonia (Gonolkites). Although poorly preserved, and specifically indeterminable with certainty - they indicate the presence of the Macrescens Subzone of the Zigzag Zone ( Fig. 4; see Sturani 1966, Man­ gold and Rioult 1997). These ammonites have been gathered from the youngest deposits of the Glinski clay-pit section.

Still younger ammonite assemblage has been recognised in the Leszczynski clay-pit in Kawodrza Goma at Czestochowa, and in the lower part of the section cropped out in the clay-pit in Faustianka near Wielun. The assemblage consists of abundant representatives of the genera Asphindites and Polysphindites, associated with some oppeliids of the ge­ nus Oxycerites and rare perisphinctids of the genus Wagnenceras. It is the typical fauna of the Aurigerus Zone (the Recinctus and Tenuiplicatus Subzones) of the Submediterranean subdivision, and the Yeovillensis Subzone of the Zigzag Zone, as well as the Tenuiplicatus Zone in NW-European subdivision (Fig. 4; see Mangold and Rioult 1997, and papers cited therein). It is interesting that at the base of this assemblage takes part a big turn-off of the ammonite faunas: an older impoverished assemblages consisting mostly of parkinsonids are replaced by diversified assemblage of morphoceratids, perisphinctids and oppeliids. This phenomenon was possibly related with the transgressive impulses.

Middle Bathonian

Immediately above the youngest ammonite assemblage of Early Bathonian age, the new ammonite fauna consisting entirely of perisphinctids and oppeliids appear. It is recognised in sections at Czestochowa (Wincek clay-pit), as well as near Wielun (higher part of the section in clay-pit in Faustianka). Of perisphinctids occur such forms as Wagnericeras {Suspensites) suspensum (Buckman) found in the Wincek clay-pit, and Procerites {Procerites) imitator (Buckman) or P. (P.) magnificus Arkell associated with other forms of the genus Procerites mostly of the subgenus Siemiradzkia, but also the oppeliids, such as Oxycerites sp., in the clay pit in Faustianka. This fauna is indicative of the Progracilis Zone of the lowermost Middle Bathonian (Fig. 4; see Mangold and Rioult 1997 and earlier papers cited therein, see also Dietl 1990).

GEUS 45 The Subcontracts Zone is not recognised in the sections studied. Possibly, it is repre­ sented in the unexposed part of the succession at Czestochowa, in between the Wincek clay pit section and the Kawodrza and Gnaszyn clay pits sections.

Still younger ammonite assemblage corresponding to the Morris! Zone was discovered in the lowermost part of the Kawodrza clay pit section in Kawodrza Dolna, and the Gnaszyn clay pit section in Gnaszyn Dolny at Czestochowa (see Fig. 4). It consists mostly of the ammonites of the genus Morrisiceras represented by the species such as Morrisiceras (Morrisiceras) comma Buckman, Morrisiceras (M.) sphaera Buckman, Morrisiceras (Holzbergia) schwandorfense (Arkell), as well as occurring less commonly representatives of the genera Procerites, Oxycerites, and Paroecotraustes.

The youngest Middle Bathonian ammonite assemblage of the Bremen Zone occurs in the upper part of the Gnaszyn clay pit and the Kawodrza clay pit sections, as well as in the lowermost part of the „Anna” clay pit section in Kawodrza Dolna at Czestochowa (see Fig. 4). The ammonites occurring here include Cadomites (Cadomites) bremeri Tsereli, and specifically not determined Procerites (Procerites and Siemiradzkia) and Oxycerites.

Upper Bathonian

The youngest deposits in the „Anna” clay pit yielded such ammonites as Paroecotraustes waageni Stephanov, and a few forms of the genus Homeoplanulites, e.g. Homeoplanulites (Homeoplanulites) acuticostatus (Roemer) indicative "already of the Retrocostatum Zone, and more precisely of its lower part - the Blanazense Subzone in the Submediterranean zonal scheme, or the Orbis Zone in the NW-European zonal scheme ( Fig. 4; see Mangold and Rioult 1997 with references given therein, see also Hahn et a/., 1990). The deposits of similar age exposed in the Krzyworzeka clay pit nearby Wielun yielded besides Paroeco­ traustes waageni Stephanov, such forms as Bullatimorphites sp., and Procerites sp. These are the youngest ammonites of Late Bathonian age recognised by us in the sections stud­ ied. Still younger, the latest Bathonian ammonites corresponding to the standard Discus Zone have not been discovered so far. They should occur higher in the succession, directly below the siliceous sandy limestones (gaizes) of the Callovian age, but no relevant out ­ crops occur to day in the area of study.

46 GEUS Figure 1

Paiaeogeograplhic map for the Early BaHhonian of Poland

1 - clays, 2 - 3iayey-silty facies 3 - arenaceaous facies, 4 - terrestrial facies

Figure 2

Kawodrza' Gnaszyn

GNASZYN DLN KAWO

Lesz<

■Glinski KAWODRZA GRN GD-Gnaszyn Din 'Alina GG-Gnaszyn Gm KD - Kawodiza Din Aniot KG - Kawodiza Gm GNASZYN GRN JG - Jasna G6ra

Location map of the clay - pits at Czestochowa

49 GEUS 50 G EU S ; Figure 3

Wieluri

K1ELCE

CZESTOCHOWA

KRAKOW Vistula

Location map of the clay - pits in the vicinity ofWieluh 1- Krzyworzeka, 2 - Faustianka, 3 - Pacanow

G EU S 51 52 GEUS Figure 4

leluft Upland

XrzyworaskadsypK

Anns day pk

KawodtzadaypH

FauaCanka day p*. Wtneek & M^cdca day pea

Anlot Sows & OBWd day pBs

MM*##

mm PaeanAwdeyptt

Stratigraphical succession of the Uppermost Bajocian to Bathonian deposits in the Czestochowa - Wielun area

G EUS 53 54 GEUS Bajocian to Oxfordian palynology of the Polish Ju­ rassic

by Niels E. Poulsen

Abstract

The Upper Bajocian - Bathonian organic-rich claystones succession, and the Lower Cal- lovian sandy, marly and gaize (dispersed biogenic silica) deposits of the central - southern Poland, yields diverse and well-preserved dinoflagellate cyst floras dominated by cteni- dodinioids, principally Ctenidodinium combazii and Dichadogonyaulax sellwoodii together with Korystocysta spp., but also Atopodinium and Wanaea spp. are common. The stratigraphical distribution of dinoflagellate cysts within the Upper Bajocian - Bathonian - Lower Callovian has provided a detailed correlation between the Polish Submediterranean Province (northern Tethyan realm) and the Subboreal Province of the North Sea area (chronostratigraphy and dinoflagellate zonation). The dinoflagellate cyst biostratigraphical events are of correlative value and are consistent with interpretations based on macrofau ­ nas. The Middle Callovian - Oxfordian of central - southern Poland indicates only few bios ­ tratigraphical events likely to be of correlative value. The Oxfordian carbonates and marl- stones of the Barcin area (northern Poland) provided richer dinoflagellate cysts floras dem­ onstrating good correlation to the British-Danish dinoflagellate cyst zonation. The British or the Subboreal zonation (Riding and Thomas, 1992; Poulsen and Riding, in press) is dem­ onstrated useful for the Polish sections. Some marker species have, however, differences in their first or last appearances in Poland compared to those reported from England.

Introduction

This paper represents the palynological part of the research project (Danish Energy Agency EFP-1995 project): The Polish Middle - Upper Jurassic Epicratonic Basin, Stratigraphy, Facies and Basin History, which is part of research at the University of Warsaw and the Geological Survey of Denmark and Greenland (GEUS) into Jurassic stratigraphy. Other parts of the project were ammonite stratigraphy presented by Kutek and Zeiss (1997), Matyja and Glowniak (this report): Matyja and Wierzbowski (1997, this report), palae- ogeographic evolution by Matyja and Wierzbowski et al. (this report), clay sedimentology by Merta and Drewniak (this report), carbonate sedimentology by Ineson et al. (this report).

GEUS 55 Figure 1. Location map showing the central-southern Polish localities studied for this project (1. Bydlin quarry, 2: Gorenice “small” quarry west of the village, 3: Zalas quarry, 4: Ogrodzieniec quarry and clay pit, 5: Wysoka quarry, 6: Zawodzie quarry, 7: the clay pits at Czestochowa (Alina clay pit, Aniol clay pit, Sowa & Glinski clay pits, Leszczynski clay pit, Gnaszyn clay pit, and Kawodrza clay pit; see fig. 2 of Matyja and Wierzbowski, this report), 8: Lisowice quarry, 9: Raciszyn quarry, 10: Pacanow clay pit (see figure 3 of Matyja and Wierzbowski, this report), 11: Faustianka clay pit (see fig. 3 of Matyja and Wierzbowski, this report), 12: Krzyworzeka clay pit (see fig. 3 of Matyja and Wier­ zbowski, this report), 13: Gniezdziska, 14: the northwestern Polish Zalesie structure (Wapienno and Bielawy quarries, and the Barcin-Pakosc 3 borehole) in the Barcin area (Kujawy Region, Torun District, northwestern Poland).

There are only few published reports (i.e., from the western Poland, Gdrka, 1970) on dino- flagellate cysts of the Polish claystones, sandstones or gaizes (dispersed biogenic silica). The Upper Jurassic of Poland has received more attention recently in Poulsen (1992, 1993, 1994, 1996). This study embodies descriptions of Middle Jurassic

56 GEUS dinoflagellate cyst floras from the of central - southern Poland (Fig. 1). Abundant dinoflagel- late cyst associations have been extracted from the Upper Bajocian to Bathonian clay- stones and the lower part of the Callovian sandstones, marls and gaizes (dispersed bio ­ genic silica). Middle Callovian - Upper Oxfordian samples from Poland are often barren of dinoflagellate cysts. Samples with common-abundant dinoflagellate cysts occur, however, from this interval and demonstrate, that the reason for barren samples is poor preservation.

The standard ammonite zones are treated here as chronostratigraphical units (Callomon, 1984; Wimbledon and Cope, 1978; Cox, 1990). The ammonite zones are referred to by the species name alone and written in Roman, for example, Tenuicostatum Zone. This is the convention followed by working groups of the International Subcommission on Jurassic Stratigraphy (ISJS) and the International Commission on Stratigraphy (ICS).

The dinoflagellate cyst zones are indicated, either, by the generic and specific names of the index taxon in italics, e.g., Scriniodinium crystallinum Zone, or by a code, for example, DSJ18 (D for dinoflagellate cysts, S is added to emphasise that it is a Subboreal zonation and J for Jurassic, see Table 1), following the proposal of Poulsen and Riding (in press).

Investigated exposures

The majority of the outcrops sampled for this project were described in Poulsen et al. (1995). Geological, sedimentological and stratigraphical descriptions of the Bathonian lo ­ calities in the south-western part of Czestochowa are given in Merta and Drewniak (this report) and in Matyja and Wierzbowski (this report). The description of an older studied borehole (Barcin-Pakosc 3) is in Poulsen (1989, 1996). The samples were prepared for palynological studies following the method described by Poulsen et al. (1990) and Desezar and Poulsen (1994).

The outcrops (clay pits) cut into the Bajocian - Bathonian sequence (well-known in the Pol ­ ish geological literature as the „Ore Bearing Clay” formation) are situated (Fig. 1) in the Czestochowa Upland (south western part of the Czestochowa city), and the Wielun Upland in central - Southern Poland, west to north-west of Czestochowa (about 5-20 km south of Wielun). The Faustianka clay pit (Fig. 1) is not described in the geological literature, whereas the Krzyworzeka clay pit (Fig. 1) was described briefly by Deczkowski and Jurkiewiczowa (1960). The lithology is dark grey to black claystone with many horizons of sideritic concretions; bioturbation is evident at certain levels. The concretions are often bored and represent hiatal surfaces. The sedimentology and ammonites of these deposits are described in details by Merta and Drewniak (this report) and Matyja and Wierzbowski (this report).

The marine Bathonian sediments gradually passing into the coarser facies (Merta and Drewniak, this report), arenaceaous deposits and elastics (sandstones and conglomerates). Within the Mesozoic margin of the Holy Cross Mountains (G6r Swietokrzyskich) (Gniezdziska Quarry, west of Kielce, described in Drewniak and Matyja, 1992; see Fig. 1) gaize (dispersed biogenic silica [mostly loose sponge spicules] in a carbonate matrix) is

GEUS 57 overlying the Bathonian clays. The basal gaize is overlain by clay intercalated with gaizes. The unit is followed by Oxfordian alternating marly limestones and marly shales (Jasna Gora beds), and by grey bedded wackestones and packstones (Grey Limestones), and further by grey sponge limestones (Morawica Limestone).

In the south-eastern part of the Krakow - Wielun Upland Lower Callovian rests uncon- formably on porphyrite (Zalas Quarry; described in Gioejewska and Wieczorek, 1977; Matyja and Tarkowski, 1981). The Callovian consists of a basal kaolinitic sandstones, locally showing trough cross-bedding and pebbly layers, which passes up into sandy lime­ stone (grainstone). The boundary with the overlying Lower - Middle Oxfordian is abrupt and represents a complex hiatal surface, with several phases of sedimentation, erosion and corrosion. Marly lime mudstones succeed; biohermal structures are developed in this fa­ cies.

Oxfordian samples from the Krakow - Wielun upland and the margins of the Holy Cross Mountains (Gor Swietokrzyskich) are often barren of dinoflagellate cysts. Abundant dino- flagellate cyst associations have been extracted from the Oxfordian bioherms of the Zalesie structure in the Barcin area, Kujawy Region, Torun District in northern Poland (Fig. 1); these demonstrate, that the reason for barren samples in other regions is poor preserva­ tion. They are situated in the Kujawy Region, Torun District. The bioherms in the two large outcrops Bielawy and Wapienno Quarries, which are separated only by 0.5 km, consist of massive, poorly bedded limestone in the bioherm core, massive or bedded marly lime­ stones interbedded with marls, successions of debris flow, which include huge blocks up to 20 meters across, characterises the bioherm flank deposits (Matyja, Merta, and Wier- zbowski, 1985; Ineson, Matyja, and Merta, this report).

Stratigraphical background

The zonal correlation of the strata sampled in the present study is substantially similar to that of Poulsen and Riding (in press, Table 1) though subsequent work during this project has further subdivided this zonal scheme. The zonation used for describing the Polish sec­ tions is therefor the zonation of Poulsen and Riding (in press), however, the definitions of the DSJ Zones are for some zones improved this report, and a further subdivision of some of the DSJ Zones is proposed. The definition of the biozonal limits is essentially species given in the stratigraphical distribution charts of Riding and Thomas (1992), but not used as stratigraphical index fossils for the British - Danish area. Appendix 2 presents a number of the recorded dinoflagellate cysts.

58 GEUS Zonation Formal zonal names Age after: (after: Woollam and Riding (1983), Riding and Tho ­ Poulsen & mas (1988,1992) Riding DSJ26 Scriniodinium crystallinum Zone, Subzone c latest Oxfordian DSJ25 Scriniodinium crystallinum Zone, Subzone b Late Oxfordian DSJ24 Scn'niodinium crystallinum Zone, Subzone a (pars) Late Oxfordian DSJ23 Scriniodinium crystallinum Zone, Subzone a (pars) Middle Oxfordian DSJ22 Trichodinium scarburghense Zone, Subzone b Middle Oxfordian DSJ21 Trichodinium scarburghense Zone, Subzone a Early Oxfordian DSJ20 Wanaea fimbriata Zone earliest Oxfordian DSJ19 Wanaea thysanota Zone Late Callovian DSJ18 Ctenidodinium continuum Zone Early-Middle Callovian DSJ17 Ctenidodinium sellwoodii Zone, Subzone c Lt. Bth. - Er. Civ. DSJ16 Ctenidodinium sellwoodii Zone, Subzone b Middle-Late Bathonian DSJ15 Ctenidodinium sellwoodii Zone, Subzone a Early-Middle Bathonian DSJ14 Cribroperidinium crispum Zone, Subzone b Late Bajocian

Table 1The Late Bajocian - Oxfordian dinoflagellate cyst zonation for the Subboreal province after Poulsen and Riding (in press). The zonation is based on the zonations of Woollam and Riding (1983) and Riding and Thomas (1988,1992).

Dinoflagellate cyst stratigraphy

All Bajocian-Bathonian localities consistently yielded abundant, well-preserved dinoflagel ­ late cyst assemblages. Small numbers of foraminiferal test linings and acanthomorph acri- tarchs, mainly referable to the genus Micrhystridium, are consistently present. Comparison with other areas suggests that the geographical distribution of the dominant species reflects the general evolution in the northwestern European assemblages, though some differences in the first appearance occur. The stratigraphic conclusions based on dinoflagellate cysts are consistent with interpretations based on ammonites.

The Polish Early Callovian dinoflagellate cyst assemblages show a marked change from the Bathonian broad uniformity with ctenidodiniods being the most important group. There are a significant number of forms that are not present, or were recorded in much smaller numbers in the Polish sections (see below). The Early Callovian assemblages are being dominated by proximate species with apical archeopyles for example, the Sentusidinium “suite” Lithodinia, and Epiplosphaera spp. the only ctenidodinioid recorded in the Callovian of Poland is Dichadogonyaulax sellwoodii; these taxa mark the top of the of the Middle Ju­ rassic dinoflagellate cyst assemblages in Poland.

GEUS 59 The mid-Callovian to mid-Oxfordian strata in the Krakow - Wielun upland (central - south ­ ern Poland) and Holy Cross Mountains area (G6r Swietokrzyskich, central - southern Po ­ land) were sampled intensively both in earlier investigations (Poulsen, 1992, 1993, 1994, 1996) and for this project. All material, however, proved almost devoid of dinoflagellate cysts. The Oxfordian of the Barcin area (northern Poland) was sampled in two huge quar ­ ries with god fresh exposures. Samples from these quarries produced samples with abun­ dant dinoflagellate cysts' contents. As most of the samples examined from the Middle Ju­ rassic in this project and from the Late Jurassic of Poland (Poulsen, 1996) were rich in dinoflagellate cysts. It is therefor believed that the reason for unproductive Oxfordian sam­ ples in central - southern Poland is weathering. The Oxfordian of the Barcin area is charac­ terised by assemblages different in composition from those in Denmark, the North Sea area and Britain. However, most of the species occur in both areas, but with different fre­ quencies in the assemblages, and for some species also with difference range.

DSJ14Zone DSJ14 Zone was defined as the interval between the last appearance datum’s (LADs) of Durotrigia daveyi and Mancodinium semitabulatum to the LAD of Cribroperidinium crispum (Poulsen and Riding, in press). For identifying the upper boundary in Poland, the definition is extended to include the first occurrence datum (FAD) of Ctenidodinium comigera in the definition of the upper boundary.

Poland: The Bajocian Pacandw clay pit dinoflagellate cyst assemblages (Fig. 2) are domi ­ nated by Korystocysta and Dissiliodinium spp. with Ctenidodinium combazii, Dichadogon- yaulax sellwoodii and Lithodinia jurassica present in lower proportions. The three latter species have their inceptions in the DSJ14 Zone. In the overlying Alina section D. sell­ woodii becomes abundant. Korystocysta spp. are continuous common until the Early Ba- thonian and occur consistent throughout the Bathonian. Ctenidodinium combazii is increas­ ing in proportion in the Alina section. Atopodinium polygonalis, a species that also has its first occurrence in the DSJ14, is present from the base of the Alina section. The indicative species for the DSJ15 Zone Ctenidodinium cornigera is not recorded at the Pacandw sec­ tion or in the overlying Alina section. The Pacandw and the Alina sections are therefor cor­ related to the DSJ14 Zone.

DSJ15 Zone DSJ15 Zone was defined as the interval between the LADs of Cribroperidinium crispum and Carpathodinium preda (Poulsen and Riding, in press). To recognise the lower boundary in Poland, the definition is extended to include the first occurrence datum (FAD) of Cteni­ dodinium comigera in the definition of the lower boundary. For the upper boundary the LAD of Atopodinium polygonalis is included in the definition. The zone is proposed divided into DSJ15a and DSJ15b Subzones. The base of the zone, defined by the first occurrence of Ctenidodinium cornigera, appears slightly diachronous. The inception of the marker species is recorded within the Densicosta Subzone (Parklnsoni Zone) in Poland, whereas in Eng ­ land, the first occurrence is at the base of the Zigzag Zone.

60 GEUS DSJISa Subzone: The section defined from the base of DSJ15 Zone to the first appear­ ance of Atopodinium prostatum. The subzone can be recognised both in England and Po ­ land.

DSJ15b Subzone: The section defined from the FAD of Atopodinium prostatum to the top of the zone. The subzone can be recognised both in England and Poland. The base of DSJ15b is recorded in Poland at mid-Aurigerus Zone approximately at the boundary Re- cinctus - Tenuiplicatus Subzones (Submediterranean zonation). In England, the base of the DSJ15b is at the base of Tenuiplicatus Zone (Subboreal zonation). The top of the zone corresponds to the top of the Progracilis Zone in both England and Poland. In Germany is A. prostatum only known from the Upper Bathonian - Kimmeridgian (Prauss, 1989; Feist- Burkhardt and Wille, 1992).

Poland: Representatives of the earliest Ctenidodinium comigera have their inceptions in the latest Bajocian Bomfordi Subzone at Aniol - Sowa - Glinski section (Fig. 2). This spe­ cies is the stratigraphical marker for the DSJ15 Zone and is considered to be a reliable marker for the Bathonian in Britain.; but in the Polish sections it occurs, however, only in low numbers in the topmost part of the Bajocian. Ctenidodinium combazii is continuous low in relative abundance until the base of the Bathonian where it starts to dominate the dino- flagellate cyst assemblages. The dinoflagellate cyst assemblages become gradually more diverse from the base of DSJ15 and upwards, especially through DSJ15b. Several taxa occur with first appearance at the base of DSJ15 and at the base of the Bathonian, for ex­ ample, Atopodinium haromense and Epiplosphaera gochtii are present at the base, whereas for example Aldorfia aidorfensis, Nannoceratopsis peiiucida and. Endoscrinium asymmetricum occur for the first time in the Polish Sections within earliest Bathonian. The three latter species are yet are known from older strata in England (Riding et a/., 1985), but only from younger strata in Germany (Feist-Burkhardt and Wille, 1992). Carpathodinium preda has been found to be characteristic of the late Bajocian-eariy Bathonian interval elsewhere in Britain (Riding and Woollam, in Riding and Thomas, 1992). This species is only rare in Poland. In England ctenidodinioid dinoflagellate cysts are dominant in the Lower Bathonian, especially Ctenidodinium spp. (Riding et a/., 1985; Riding and Thomas, 1992). Ctenidodinium combazii was considered indicative of open marine situations in England, whereas D. sellwoodii was interpreted as being more euryhaline (Riding et a/., 1985; Riding and Thomas, 1992). In Poland, C. combazii and D. sellwoodii are common to abundant recorded from the base of the Bathonian with C. combazii being more common than D. sellwoodii. At the top of DSJ15a Subzone (Leszczynski section, Fig. 2) C. comigera be­ comes common, and it becomes abundant to dominant within DSJ15b Subzone (Leszczynski - Faustianka sections, Fig. 2). Also ammonites become more diverse from the Aurigerus Zone, and dinoflagellate cysts indicate more open marine facies. Also ammonites indicate less restricted marine facies than in the earliest Bathonian (Matyja and Wier- zbowski, pers. commun., 1997; Matyja and Wierzbowski, this report; Matyja and Wier- zbowski et a!., this report).

GEUS 61 DSJ16 Zone DSJ16 Zone was defined as the interval between the LAD of Carpathodinium preda, and the FADs of Impletosphaeridium varispinosum and Sirmiodinium grossi and LAD of Vaf- vaeodinium spinosum (Poulsen and Riding, in press). The lower boundary is for Poland defined by the LAD of Atopodinium polygonalis. The FAD of S. grossi is in Poland within DSJ15b (Tenuiplicatus Subzone). Also in Germany the FAD of S. grossi is earlier than in Britain, that is in the Orbis Zone (Prauss, 1989).

Comments: Ctenidodinium combazii is continuous dominant, but other ctenidodiniods are less common compared to the DSJ15. Only at the upper part of the zone equivalent to the Hodsoni Zone, C. omatum becomes abundant again, and at the top of DSJ16, equivalent to the Orbis Zone, D. sellwoodii becomes abundant again. Fenton and Fisher (1978) and Riding and Thomas (1992) discussed regional differences in the Bathonian of north-west Europe, with migrations of species from southern marine waters in the mid Bathonian re­ sulting in a less provincialism between the northern North Sea to southern England and southern Germany in the late Bathonian. Riding and Thomas (1992) concluded that the Tethyan provincialism represented by Ctenidodinium spp. (especially C. combazii), was wrong, however, Riding and Thomas (1992) noticed that, C. combazii seems to migrate northwards in Late Bathonian and Early Callovian times.

Poland: In the Kawodrza, Gnaszyn and Krzyworzeka sections (Fig. 2), as in the underlying sections, C. combazii and/or D. seiiwoodii are normally the dominant constituents of the assemblages, with the remainder of the taxa comprising a remarkably uniform subordinate association, including such species as Adnatosphaeridium caulleryi, Korystocysta spp., Pareodinia ceratophora and Ctenidodinium omatum, the last mentioned has a FAD at the base of the overlying DSJ17 Zone equivalent to the Discus Zone in Britain, whereas Gocht (1970) recorded Ctenidodinium ornatum from the early Bathonian of north-west Germany. The FAD of A. caulleryi is later in Poland than reported from Britain (Riding and Thomas, 1992), but apparently older range bases than in Germany as reported by Feist-Burkhardt and Wille (1992).

DSJ17 Zone DSJ17 Zone is defined as the interval between the FADs of Impletosphaeridium varispino­ sum and Sirmiodinium grossi and LAD of Valvaeodinium spinosum, and the LADs of Aidor- fia aldorfensis and Ctenidodinium combazii. As described above, S. grossi makes its first appearances earlier in Poland than in Britain, and is therefor not stratigraphicaily useful for defining the DSJ17 in Poland. Aldorfia aldorfensis has apparently an older range top than in Britain as reported by Riding and Thomas (1992). Taugourdeau-Lantz and Lachkar (1984) considered Aldorfia aldorfensis to be a good marker for the late Middle to Late Bathonian in the Aquitain region. In Poland, this species is only rare and is therefor not stratigraphicaily useful for defining the DSJ17 in Poland. The first appearance of I. varispinosum is as in Britain at the base of the Discus Zone. It is here considered to be a good marker for DSJ17 Zone, in Britain as well as in Poland, though Prauss (1989) reported the inception of the marker species I. varispinosum occurs one zone earlier (the Orbis Zone) in Germany.

62 GEUS Poland: There are several events worthy of note despite the apparently monotonous nature of the assemblages, and the fact the Krzyworzeka section (Fig. 2) is highest sampled sec­ tion of the Bathonian, though the Bathonian - Callovian boundary or the top of DSJ17 (equivalent to the top of the Herveyi Zone) not have studied (or sampled). The LADs of Nannoceratopsis gracilis and Ctenidodinium comigera are confined to the top of the Ba­ thonian in Britain. In the sections studied in Poland, the uppermost Bathonian Krzyworzeka section is the youngest recorded occurrence of these species. The FAD of Pareodinia pro- longata is in Poland recorded with in the DSJ17 Zone. In Britain the FAD of P. prolongata is within the Upper Bajocian strata elsewhere in Britain (Riding and Thomas, 1992).

DSJ18Zone DSJ18 Zone was defined as the interval between the LADs of Aldorfia aldorfensis and Ctenidodinium combazii, and the FADs of Trichodinium scarburghense, Limbodinium absi- datum, Scriniodinium crystallinum and Wanaea thysanota. As described above, Aldorfia aldorfensis has apparently an older range top than in Britain, and S. grossi makes its first appearances earlier in Poland than in Britain, and both are therefor not stratigraphically useful for defining the DSJ17-18 boundary in Poland. The DSJ18 Zone is proposed divided into two subzones:

DSJ18a Subzone: is defined as the interval from the base of the DSJ18 Zone to the LAD of I. varispinosum.. The age of the DSJ18a Subzone is in Britain and in Poland Koenigi - Calloviense Zones. Although the base of the DSJ18 Zone has not been identified, the pres­ ence of the marker species /. varispinosum in DSJ17 - DSJ18a is here considered to be a good marker.

DSJ18b Subzone: is defined as the interval from the LAD of I. varispinosum to the top of DSJ18 Zone.

Poland: The Polish Callovian dinoflagellate cyst assemblages from the Zalas and Gniezdziska sections (Fig. 2) reveal a noticeable switch from the Bathonian largely un­ changing assemblages with ctenidodiniods being the most significant group. There are a notable number of forms that are not present, or were recognised in much smaller numbers in the Polish sections; these include Adnatosphaendium caulleryi, Atopodinium prostatum, Chytroeisphaeridia spp., Compositosphaeridium polonicum, Ctenidodinium continuum, C. ornatum, Gonyaulacysta jurassica adecta, Limbodinium absidatum, Mendicodinium groen- landicum, Nannoceratopsis pellucida, Pareodinia ceratophora, Rhynchodiniopsis clado- phora, Rigaudella aemula, Scriniodinium crystallinum, Stephanelytron spp., Trichodinium scarburghense, Tubotuberella apatela, Wanaea acollaris, Wanaea fimbriata, and Wanaea thysanota. caytonense. The Early Callovian assemblages are being dominated by proxi ­ mate species with apical archeopyles for example, the Sentusidinium “suite” Lithodinia caytonensis, and Epiplosphaera gochtii; the only ctenidodinioid recorded in the Callovian of Poland is Dichadogonyaulax sellwoodii; these taxa mark the top of the of the Middle Juras­ sic dinoflagellate cyst assemblages in Poland. The mid-Callovian to mid-Oxfordian strata in the Krakow - Wielun upland and Holy Cross Mountains (Gor Swietokrzyskich) area were

G BUS 63 sampled intensively for this project and earlier investigations (Poulsen, 1996), but all mate­ rial proving devoid of dinoflagellate cysts.

DSJ21?Zone DSJ21 Zone is based on the Trichodinium scarburghense Zone, Subzone a. The definition was emended by Poulsen and Riding (in press) to exclude the inception of forms belonging to the Systematophora areolata group, which was used to re-define the lower boundary of this zone by Riding and Thomas (1992). The distribution of the Systematophora areolata group in Britain and the Danish Embayment appears to be palaeoenvironmentally con ­ trolled (Poulsen, 1996; Riding and Thomas, 1992), therefore this group is excluded from the definition.

The base of DSJ15 Zone is defined as the interval between the FAD of Leptodinium subtile and the top of the DSJ21 zone is defined by the FADs of Gonyaulacysta centriconnata, Limbodinium absidatum and Wanaea thysanota and the LAD of Endoscrinium luridum (Poulsen and Riding, in press). The age of the zone corresponds to the Cordatum Zone.

Poland: The oldest Oxfordian dinoflagellate cyst assemblage recognised in Poland is from the Cordatum Zone (Bielawy Quarry, Fig. 3). The occurrence of Gonyaulacysta jurassica jurassica indicates the mid-DSJ21 Zone or younger zones. The presence of Trichodinium scarburghense indicates and age no younger than equivalent to DSJ23 Zone. The assem­ blage has a large number of species in common with coeval assemblages in Britain (Riding and Thomas, 1992) or France (for example, Poulsen, 1996) with for example Com- positosphaeridium polonicum, Endoscrinium galeritum, Gonyaulacysta centriconnata, Gon­ yaulacysta jurassica adecta, Leptodinium mirabile, Scriniodinium crystallinum.

The overlying Middle Oxfordian sequence of biohermal carbonates has not given any dino­ flagellate cyst floras in earlier studies (Poulsen, 1996). First near the top of the Bielawy Quarry (Fig. 3) and in the lower part of the Wapienno Quarry (Fig. 3), corresponding to Upper Oxfordian strata, are dinoflagellate cysts recorded.

DSJ25 Zone The base of the DSJ25 zone is defined by the LAD of Compositosphaeridium polonicum, and the top is defined by the LAD of Gonyaulacysta jurassica adecta and the FADs of Din- godinium tuberosum and Occisucysta balia (Poulsen and Riding, in press). DSJ25 is equivalent to the Scr (b) subzone of Riding and Thomas (1992).

Poland: The LAD of Atopodinium prostatum in the Bifurcatus Zone of the Wapienno Quarry (Fig. 3) allows a correlation with the DSJ25 Zones. The presence of Endoscnnium luridum and Glossodinium dimorphum with FADs in DSJ22 and DSJ23, and the correlation earlier (Poulsen, 1996) of the Transversarium Zone with the DSJ23 (previously the Scriniodinium crystallinum Zone, Subzone a) support this correlation of the Bifurcatus zone with the DSJ 25 Zone. The guide Compositosphaeridium polonicum has in Poland a range top in

64 GEUS the Bimammatum Zone (see below). Endoscrinium luridum appear for the first time in the Bifurcatus Zone, the latter is guide fossil in Britain and Denmark with FAD in the Densiplica- tum Zone (Riding and Thomas, 1992; Poulsen, 1996). The section has a rich dinoflagellate cyst flora with Aldorfia, Adnatosphaeridium, Amphorula, Cribroperidinium, Dichadogon- yaulax, Endoscrinium, Epiplosphaera, Impletosphaeridium, LHhodinia, Heslertonia?, Sen- tusidinium, Sirmiodinium, Systematophora, and Tubotuberella spp.

DSJ26 Zone The base of DSJ26 is defined by the LAD of Gonyaulacysia jurassica adecta and the FADs of Dingodinium tuberosum and Occisucysta balia. The top of the zone is defined by the LAD of Ctenidodinium ornatum and the FAD of Senoniasphaera jurassica. DSJ26 equates to the Scr (c) subzone of Riding and Thomas (1992).

Poland: Previous results from the nearby Barcin-Pakosc 3 borehole (Poulsen, 1996; and Fig. 3) has demonstrated a correlation of the Hypselum Subzone (Bimammatum Zone) with the Scriniodinium crystallinum Zone, Subzone c, equivalent to the DSJ26 Zone. The corre­ lation was based on the Ctenidodinium ornatum and Occisucysta balia are present, the lat­ ter, however, only tentatively identified. In the Wapienno Quarry (Fig. 3) the FAD of Din­ godinium tuberosum together with the presence of Ctenidodinium ornatum identifies the DSJ 26 Zone. Ctenidodinium ornatum has not been recorded above the Bimammatum Zone (Poulsen, 1996) and the presence here is considered as the LAD. The guide fossil, Compositosphaeridium polonicum occurs both in the Bifurcatus and the Bimammatum Zones in Poland. This is three Chronozones higher than in Britain, where its LAD is in DSJ24. Also in Germany it disappears earlier in the Transversarium Zone (Feist-Burkhardt and Wille, 1992). Also present are Endoscrinium gaieritum, and Scriniodinium crystallinum; both are only recorded to the Transversarium Zone in Germany (Feist-Burkhardt and Will, 1992), and Gonyaulacysia centriconnata, which in Britain only is known to DSJ21 Zone (Riding and Thomas, 1992). Dichadogonyaulax chrondra and Scriniodinium inritibile appear for the first time in the Bimammatum Zone, the latter is known from the Tenuiserratum Zone equivalent to the DSJ23 Zone in the Britain (Riding and Thomas, 1992). Gonyaula- cysta centriconnata has been present from the Cordatum Zone, it is here recorded with the LAD is different from Britain. Here it is recorded to near the top of the Bimammatum Zone. In Britain, this species is confined to the uppermost DSJ18 - DSJ21 Zones. In Germany it is recorded slightly higher, that is with LAD in the Plicatilis Zone (Feist-Burkhardt and Wille, 1992).

The diversity of the dinoflagellate cyst assemblages within the DSJ26 Zone (Fig. 3) shows an increase compared with older Jurassic Polish strata. The most abundant taxa are Am­ phorula metaelliptica, Chytroeisphaeridia chytroeides, Cribroperidinium granulatum, Di­ chadogonyaulax spp., Epiplosphaera spp., Gonyaulacysia jurassica jurassica, Imple­ tosphaeridium spp., Lithodinia spp., Sentusidinium “suite” (Barbatacysta, Pilosidinium, and Sentusidinium spp.), and Systematophora spp., Also present are Adnatosphaeridium caulleryi, Aldorfia dictyota, Atopodiniumharomense, Cometodinium jurassicum, Cribroperid­ inium giobatum, Dingodinium minutum, Dissiliodinium globulum, Ellipsoidictyum cinctum, Escharisphaeridia spp., Gonyaulacysia eisenackii, Glossodinium dimorphum, Heslertonia?

GEUS 65 pellucida, Lithodinia spp., Occisucysta balia, Prolixosphaeridium spp., Rhynchodiniopsis cladophora, Sirmiodinium grossi, Stiphrosphaeridium sarjeantii, Taeniophora iunctispina, Tubotuberella apatela, and Valensiella ovula.

Conclusions

The investigation of Middle-Late Jurassic dinoflagellate cysts from ammonite-dated sam­ ples from Poland have made it possible, firstly to use many of the dinoflagellate cyst zones and subzones from the British - Danish area in Poland, and, secondly, to show that the zonation may be isochronous. There are, however, some exceptions in the ranges of the guide and other stratigraphic important fossils compared to the British - Danish area, and more data are required to establish precise datum’s for all the taxa in Europe.

The late Bajocian and Bathonian sediments of the Czestochowa region (central - southern Poland) yield dinoflagellate cyst floras similar to coeval associations from Britain and conti­ nental Europe. The dinoflagellate cyst assemblages are dominated by ctenidodiniods with representatives of Ctenidodinium, Dichadogonyaulax and Korystocysta. The diversity ap­ pears to increase with from the latest Bajocian - earliest Bathonian to the late Early - Late Bathonian.

The dinoflagellate cyst floras from the Callovian strata of the gaizes and sandstones in the Holy Cross Mountains region (Gor Swietokrzyskich) and the Krakow - Wielun upland illus­ trate the change from the ctenidodinioid dominance, which typifies the Bajocian - Bathonian clays, to the more poor assemblages of sandstones. The youngest part of the Callovian sandstones and gaizes yielded no dinoflagellate cysts. The Callovian Stage was a trans­ gressive interval (Haq et a/., 1987), and much of Europe was covered by sea. The marked uniformity of the dinoflagellate cysts floras recorded from coeval European floras is, as a result, not recorded in Poland.

The Oxfordian trend with steadily increasing dinoflagellate diversity is difficult to recognise in Poland. The numbers of productive samples do not provide a finely tuned dinoflagellate cyst stratigraphical control. However, there is good evidence in the productive samples of Late Jurassic dinoflagellate cyst floras of Europe and of the stratigraphical in implications from the dinoflagellate cysts, especially concerning the correlation of the Submediterranean ammonite zones Bifurcatus and Bimammatum Zones with the Subboreal Serratum- Regulare and the Rosenkrantzi Zones respectively.

The composite range charts (Figs 2-3) illustrating the stratigraphically significant dinoflagel ­ late cyst datum’s recognised throughout the sequence investigated. Acknowledgements

I am grateful to Drs Jan Kutek, Bronislaw Andrzej Matyja, Andrzej Wierzbowski, Ewa Glowniak, and Tadeusz Merta and to Arkadiusz Drewniak, (University of Warsaw) for their fruitful co-operation during this project. I wish to express my most sincere thanks to col ­ leagues and the staff of the University of Warsaw and the Geological Survey of Denmark and Greenland for their participation, help, interest and encouragement during this project.

The Danish Energy Agency, the Geological Survey of Denmark and Greenland, and the University of Warsaw gave financial support to the project. Niels E. Poulsen publish with the permission of the Director, Geological Survey of Denmark and Greenland (GEUS), Ole Winter Christensen. Figure 2. Composite range chart showing the dinoflagellate cyst to occur throughout the Late Bajocian to Callovian in central - southern Poland in the Krakow-Wielun upland and the Holy Cross Mountains (Gor Swietokrzyskich). LATE BAJOCIAN EARLY BATHONIAN MIDDLE BATHONIAN LATE BATHONIAN E. CLV. M.av.-u.av. Subage

Lithology

MQ Arid - Sowo - Qinski Leszczynski Kawodrza - Grwz>n (Anna) Krzyworzeko Gniezdziska SECTION Alina 8 Parkinson! Zigzag Aurigerus fctnwitilm- free AMMONITE ZONES

Densicosta i Rednetus - TenJpfoatw Banazense AMMONITE SUBZONES

Parkinson! Zigzag TtmipTicetus Hodsoni Orbis - Discus AMMONITE ZONES (BOREAL) DSJ14 DSJ15a DSJ15b DSJ16 DSJ18a DSJ18b DINOFLAGELLATE CYST ZONES

10 20 30 40 50 60 70 80 90 100 110 120 130 j 140 150 160 meter I I j I I I I I I I I,I,I.l.I,I I I I I I I I I I i. i. I. i. i. i i I i i i i I i i i i I i i i i I i i i i I i i i i I i t i i i i i i i i i I i i i I i i i peptodinium cf. subtile Lithodinla valensii _Kallosphaeridium hypornatum Pareodinia aphelia Korystocysta pachyderma Rhynchodinlopsls? regalls .Lithodinla jurasslca Dlsslllodlnlum wlllel Ctenldodlnlum combazii Elllpsoldlctyum cinctum Korystocysta gochtll Valenslella ovula Wanaea acollaris Dlchadogonyaulax sellwoodll Cribroperldlnlum crispum Escharisphaeridla psllata Kallosphaeridium capulatum Atopodlnlum polygonalls Kallosphaeridium praussil Nannoceratopsls gracilis Rhynchodiniopsls cladophora Escharlsphaerldla pocockil Pareodinia ceratophora Ctenldodinlum continuum Chytroelsphaeridia chytroeldes Can fi ie>lrilnh im *Oi«VoB Gonyaulacysta Jurassica adacta Pareodinla halosa Escharisphaaridla pellonense Atopodlnlum haromensa Ctenldodinlum cornlgera Eplplosphaera gochtli • Nannoceratopsis splculata Aldorfia aldorfensis Prollxosphaerldium capitatum Nannoceratopsis pelluclda Valvaeodlnium spinosum Sirmiodinlopsls orbis Endoscrinium asymmetricum . Compositosphaeridlum polonicum Disslliodinlum erymnotaichos Implatosphaeridium polytrichum Atopodinium prostatum Lithodinia spongiosa Prolixosphaeridium spp. Gonyaulacysta eisenackii Sirmiodinium grossi . Carpathodinium preda Tubotuberella apatela Tubotubereiia dangeardii Implatosphaaridium ehrenbergii • Nannoceratopsis triangulata • Willeldinium baiocassinum — Heslertonia ? pellucida Dlngodinlum minutum . Kalyptea diceras . Kalyptea stegasta ) Jansonia spp. . Hapsldaulax margarethae Adnatosphaeridium caulleryi . Comatodinium Jurassicum • Nannoceratopsis senex • Hystrichodinium spp. • Amphorula mataelliptica Ctenidodinium ornatum Mendicodinium groenlandicum Pareodinla prolongata Implatosphaeridium varispinosum . Cribroperidinium spp. Aldorfia dictyota Eplplosphaera biretlculata Fromea tomatilis Wallodinium cylindricum ZONES 71

CYST

adecta

jurassica

pdonicum

tribulifervm lumectum polytrichum sarjeantii polyacanthum

cauUeryi parvispinum

anasillum chrondra chytroeides

schizoblata

seUwoodii

peGonense

pocockS dadophora

hypomatum vestita globatum ZONES orbifera petlucida granulatum areoJata valensu

penicillata

gmenlandtcum eisenackH

dneturn

cayionense spp.

scarburghense centriconnata

areolata reticulospinosa jurassica reticulata omatum bireticulata

jurassica gochtii gtobulum noultii inritibile

dimorphum

luridum apatela

dangeardii galeritum crystaHinum verrucosa pilosa brevispinosa

creberbarbata minutum tuberosum grossi

iuncSspina echinatum myriatrichum haromense scarburghense prostatum pellucida

balia

mirabile

ovula metaelliptica

aemula

arcanitabulata bejui

mltra

dictyota

Subage Lithology SECTION AMMONITE DINOFLAGELLATE ValensicIIa WaHodinium^dndriojm^ Scriniodinium Cribroperidinium Dissiliodinium Lithodinia Lithodinia Pilosidinium Pilosidinium Taeniophora Systematophora Dichadogonyaulax Dichadogonyadax Dingodinium Dingodinium Gonyaulacysta SUphrosphaeridium Barbatacysta Ocdsucysta Glossodinium TubotubereHa Impletosphaeridium Mendicodinium Pmlixosphaeridium Chytroeisphaeridia Cribroperidinium Endoscrinium Epiplosphaera Epiplosphaera Impletosphaeridium Barbatacysta Barbatacysta Eilipsoidictyum Escharisphaeridia Systematophora Ctenidodinium Sentusidinium Dichadogonyautax Systematophora Impletosphaeridium Gonyauiacysta Gonyaulacysta Scriniodinhim Sirmhdinium Systematophora Epiplosphaera Epiplosphaera Gonyaulacysta Trichodinium TubotubereHa Cometodiniumjurassicum Compositosphaeridium Escharisphaeridia Heslertonia? Amphonrfa Atopodinium Stephanelytron Stephanelytron Stephanelytron Lithodinia Pmlixosphaeridium Barbatacysta Downiesphaeridium Endoscrinium Epiplosphaera Kalfosphaeridium Rhynchodiniopsis Atopcdinium Aldorfia Lcptodinium Nannoceratopsis Rigaudelta Adnatosphaeridium JSystematophora t 200

'

I 190

'

' 180 Wapienno

'

DSJ26

# 170

'

' Bimammatum 160 OXFORDIAN i 150

,

Wapienno

i 140

,

t LATE 130

.

DSJ25 t 120

, BifurcatUs

i 110

t

i 100

,

i 90

,

t 80

.

i 70 ransversarium

t T

60 Bielawy OXFORDIAN

50

40 BUS — :

— G I 30 MIDDLE — J Plicatilis

l 20 '

I

h h

10

'

OXF. h

E. DSJ21? Cordotum I-1-

Text-figir 03 72 G EU S Ammonite successions of the Plicatilis and the Transversarium Zone in the Submediterranean Middle Oxfordian of Poland

by Bronislaw Andrzej Matyja & Ewa Glowniak

Introduction

Bed-by-bed collected ammonites from continuous and non-condensed sections of Krakdw- Wielun Upland allow to distinguish the new ammonite assemblages which modify the bios- tratigraphical scheme of the Middle Oxfordian. The sections studied are located in the cen ­ tral part of the Krakow - Wielun Upland, in the Czestochowa Upland (Fig. 1). The Middle Oxfordian deposits in the Krakow - Wielun Upland are represented by well-bedded sponge- tuberolithic limestones and by cyanobacteria-sponge bioherm complexes. Both mentioned types of deposits belong to a sponge megafacies which during Late Jurassic covered a huge part of the European shelf bordering Tethys (Matyja & Wierzbowski 1995). The sites of the sections are related to main common types of deposits: the „Wysoka sections (l-VII)” and „Niegowonice I” belong to the bioherm complexes and „Ogrodzieniec ” and „Zawodzie ” sections represent layered, basinal facies (Figs 2 and 3).

Ammonite successions in described sections

Ogrodzieniec composite section

(Og3 - sheet Ogrodzieniec 27650 89276)

Zawodzie Limestone Member

Transversarium Zone - Elisabethae Subzone

Bed 19d: Neoprionoceras lautlingensis (Roller ), Neoprionoceras henrici (d'Orbigny ), Bed 19c: Trimarginites aff. arolicus (Oppel), Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Neoprionoceras henrici (d’Orbigny ), canaliculatum (von Buch ), Ochetoceras praecanaliculatum sp. nov., Perisphindes (Dichotomosphindes) elisabethae de Riaz , Bed 19b/c: Taramelliceras (Proscaphites) anar (Oppel ), Bed 19b: Neoprionoceras lautlingensis (Roller ), Taramelliceras (Taramelliceras) tuberculatum (Quenstedt), Perisphindes (Dichotomosphindes) elisabethae de Riaz , Bed 19a: Taramelliceras (Proscaphites) anar (Oppel), Cardioceras sp. indet,

GEUS 73 (Dichotomosphinctes) elisabethae de Riaz , Bed 17: Perisphinctes (Dichotomosphinctes) dobrogensis Simionescu , Perisphinctes (Dichotomosphinctes) elisabethae de Riaz , Perisphinctes (Perisphinctes) aff. pumilus Enay , Perisphinctes (Perisphinctes) aff. parandieri de Loriol , Bed 15b: Perisphinctes (Dichotomosphinctes) elisabethae de Riaz , Perisphinctes (Dichotomosphinctes) dobrogensis Simionescu , Bed 15a/b: Perisphinctes (Dichotomosphinctes) elisabethae de Riaz .

Transversarium Zone - Buckmani Subzone

Bed 15a: Perisphinctes (Dichotomosphinctes) dobrogensis Simionescu , Perisphinctes (Perisphinctes) aff. parandieri de Loriol , Bed 13: Perisphinctes (Dichotomosphinctes) dobrogensis Simionescu , Bed 11c: Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Perisphinctes (Dichotomosphinctes) buckmani A rkell , Perisphinctes (Dichotomosphinctes) dobrogensis Simionescu , Bed 11b: Perisphinctes (Dichotomosphinctes) buckmani Arkell, Perisphinctes (Perisphinctes) aff. pumilus Enay , Bed 11a: Perisphinctes (Dichotomosphinctes) dobrogensis Simionescu , Perisphinctes (Dichotomosphinctes) buckmani A rkell , Bed 10: Perisphinctes (Dichotomosphinctes) dobrogensis Simionescu , Bed 9: Perisphinctes (Dichotomosphinctes) antecedens Salfeld , Perisphinctes (Dichotomosphinctes) buckmani Arkell, Bed 9a/b Perisphinctes (Perisphinctes) alatus Enay , Bed 7b/c: Taramelliceras (Taramelliceras) tuberculatum (Quenstedt), Bed 5: Perisphinctes (Dichotomosphinctes) antecedens Salfeld , Bed 5a: Ochetoceras praecanaliculatum sp. nov., Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Bed 4: Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Bed 3: Trimarginites arolicus (Oppel), Neoprionoceras henrici (d'Orbigny ), Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Bed 3d: Perisphinctes (Dichotomosphinctes) antecedens Salfeld , Bed 3b: Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Bed 2: Trimarginites arolicus (Oppel), Taramelliceras (Taramelliceras) tuberculatum (Quenstedt , Perisphinctes (Dichotomosphinctes) antecedens Salfeld , Perisphinctes () gyrus Neumann ,

Plicatilis Zone - Arkelli Subzone

Bed 1d: Trimarginites arolicus (Oppel), Perisphinctes (Otosphinctes) arkelli wysokae ssp. nov., Perisphinctes (Kranaosphinctes) gyrus Neumann , microconch of Perisphinctes (Kranaosphinctes) gyrus Neumann or Perisphinctes (Kranaosphinctes) cyrilli Neumann , Bed 1b/c: Perisphinctes (Platysphinctes) perplanatus (M) Tintant , Perisphinctes (Platysphinctes) perplanatus (m) Tintant , Bed 1b: Trimarginites aff. arolicus (Oppel), Perisphinctes (Platysphinctes) perplanatus (M) Tintant , Perisphinctes (Platysphinctes) perplanatus (m) Tintant , Gregoryceras (Gregoryceras) riazi (de Grossouvre ),

Plicatilis Zone - Ouatius Subzone

Bed 1a: Perisphinctes (Otosphinctes) ouatius ouatius (S. Buckman ), Cardioceras (Subvertebriceras) zenaidae Ilovaisky , Cardioceras (Scoticardioceras) excavatum (Sowerby ),

74 GEUS Jasna Gora Beds (Member): Bed 1: Cardioceras (Subvertebriceras) densiplicatum Boden, (Cardioceras (Scoticardioceras) excavatum (Sowerby ), Cardioceras (Subvertebriceras) zenaidae Ilovaisky , Trimarginites aff. arolicus (Oppel), Perisphinctes (Otosphinctes) cf. ouatius ouatoides ssp. nov., Perisphinctes (Arisphinctes) helenae de Riaz , Bed 2: Cardioceras (Subvertebriceras) densiplicatum Boden, Cardioceras (Scoticardioceras) excavatum (Sowerby ),

Plicatilis Zone - Paturattensis Subzone

Bed 3: Neocampylites deimontanus (Oppel), Cardioceras (P/asmatoceras) popilaniense Boden, Cardioceras (Scoticardioceras) excavatum (Sowerby ), Cardioceras (Subvertebriceras) densiplicatum Boden, Cardioceras (Subvertebriceras) zenaidae Ilovaisky , Perisphinctes (Otosphinctes) ouatius ouatoides ssp. nov., Bed 4: Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Cardioceras (Subvertebriceras) densiplicatum Boden, Perisphinctes (Otosphinctes) aff. paturattensis de Loriol , Bed 6: Lissoceratoides erato (d’Orbigny ), Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Bed 7: Perisphinctes (Uosphinctes) sp. indet., Bed 8: Neocampylites deimontanus (Oppel), Bed 9: Neocampylites deimontanus (Oppel), Perisphinctes (Uosphinctes) sp. indet., Bed 10: Neocampylites deimontanus (Oppel), Cardioceras (Scoticardioceras) excavatum (Sowerby ), Bed 11: Perisphinctes (Otosphinctes) cf. paturattensis de Loriol , Bed 12: Neocampylites deimontanus (Oppel), Poparirtes paturattensis (Greppin ), Cardioceras (Subvertebriceras) densiplicatum Boden, Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Bed 13: Lissoceratoides erato (d’Orbigny ), Bed 14: Ussoceratoides erato (d’Orbigny ), Neocampylites deimontanus (Oppel), Popanites paturattensis (Greppin ), Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Cardioceras (Plasmatoceras) popilaniense Boden, Cardioceras (Plasmatoceras) tenuistriatum (Nikitin), Cardioceras (Scoticardioceras) excavatum (Sowerby ), Cardioceras (Subvertebriceras) sowerbyi A rkell , Bed 16: Ussoceratoides erato (d'Orbigny ), Popanites paturattensis (Greppin ), Cardioceras (Plasmatoceras) popilaniense Boden, Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Cardioceras (Scoticardioceras) excavatum (Sowerby ),

Beds 17-39: Lower Oxfordian Bed 25: Perisphinctes (Otosphinctes) paturattensis de Loriol ,

Sections Wysoka

(La115 - sheet Lazy, 26553 88880)

G BUS 75 Section Wysoka I

Plicatilis Zone -Arkelli Subzone

Bed 58: Taramelliceras (Taramelliceras) tuberculatum (Quenstedt),

Plicatilis Zone - Ouatius Subzone

Bed 50: Cardioceras (Subvertebriceras) zenaidae Ilovaisky , Bed 48: Cardioceras (Subvertebriceras) densiplicatum Boden, Bed 47: Cardioceras (Subvertebriceras) densiplicatum Boden, Plicatilis Zone - Paturattensis Subzone Bed 46: Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Cardioceras (Plasmatoceras) popilaniense Boden, Bed 45: Ussoceratoides erato (d'Orbigny ), Neocampylites delmontanus (Oppel), Cardioceras (Plasmatoceras) popilaniense Boden, Perisphinctes (Otosphinctes) paturattensis de Loriol , Bed 44: Neocampylites delmontanus (Oppel), Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Cardioceras (Plasmatoceras) popilaniense Boden, Cardioceras (Vertebriceras) vertebrate (Sowerby ), Bed 43: Holcophylloceras zignodianum (d'Orbigny ), Neocampylites delmontanus (Oppel), Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Cardioceras (Plasmatoceras) popilaniense Boden, Cardioceras (Subvertebriceras) sowerbyi A rkell , Cardioceras (Vertebriceras) vertebrate (Sowerby ), Bed 42: Neocampylites delmontanus (Oppel), Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Bed 41: Neocampylites delmontanus (Oppel), Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Bed 38: Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Cardioceras (Vertebriceras) vertebrate (Sowerby ), Perisphinctes (Otosphinctes) montfalconensis de Loriol , Bed 37: Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Bed 36: Neocampylites delmontanus (Oppel), Popanites paturattensis (Greppin ), Bed 35: Neocampylites delmontanus (Oppel), Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Bed 34: Neocampylites delmontanus (Oppel), Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Cardioceras (Plasmatoceras) popilaniense Boden, Perisphinctes (Liosphinctes) sp. indet. Beds 33 - 2: Lower Oxfordian Bed 32ab: Perisphinctes (Otosphinctes) paturattensis de Loriol , Bed 24: Perisphinctes (Otosphinctes) paturattensis de Loriol ,

Section Wysoka II

Eiisabethae Subzone - Kreutzi Horizon

Bed 2: Perisphinctes (Liosphinctes) berlieri de Loriol , Bed 4: (Glochiceras) subclausum (Oppel ), Perisphinctes (Dichotomosphinctes) eiisabethae de Riaz , Bed 5: Perisphinctes (Dichotomosphinctes) luciae de Riaz , . Bed 6: Ussoceratoides erato (d’Orbigny ), Trimarginites arolicus (Oppel), Glochiceras (Glochiceras) subclausum (Oppel),

76 GEUS Taramelliceras (Proscaphites) minor sp. nov., Perisphinctes (Liosphinctes) sp. indet., Perisphinctes (Dichotomosphinctes) eiisabethae de Riaz , Subdiscosphinctes (Subdiscosphinctes) kreutzi (Siemiradzki ), Perisphinctes (Perisphinctes) pumilus Enay , Bed 7: Perisphinctes (Dichotomosphinctes) eiisabethae de Riaz , Perisphinctes (Dichotomosphinctes) luciaeformis Enay , Bed 8: Lissoceratoides erato (d’Orbigny ), Trimarginites arolicus (Oppel), Neoprionoceras lautlingensis (Roller ), Glochiceras (Giochiceras) subclausum (Oppel), Taramelliceras (Taramelliceras) dentostriatum (Quenstedt), Taramelliceras (Proscaphites) anar (Oppel), Perisphinctes (Dichotomosphinctes) luciae de Riaz , Bed 8a: Taramelliceras (Taramelliceras) callicerum (Oppel), Perisphinctes (Dichotomosphinctes) eiisabethae de Riaz , Perisphinctes (Dichotomosphinctes) luciae de Riaz , Perisphinctes (Dichotomosphinctes) luciaeformis Enay , 8b: Perisphinctes (Liosphinctes) sp. indet., 8b/c: Perisphinctes (Dichotomosphinctes) eiisabethae de Riaz , Bed 8c: Ochetoceras praecanaliculatum sp. nov., Perisphinctes (Dichotomosphinctes) eiisabethae de Riaz , Perisphinctes (Dichotomosphinctes) crotalinus Siemiradzki , Perisphinctes (Perisphinctes) aff. andelotensis Enay , Bed 10: Lissoceratoides erato (d'Orbigny ), Neoprionoceras lautlingensis (Roller ), Taramelliceras (Proscaphites) anar (Oppel), Perisphinctes (Dichotomosphinctes) eiisabethae de Riaz , Perisphinctes {Dichotomosphinctes) luciaeformis Enay , Perisphinctes (Dichotomosphinctes) crotalinus Siemiradzki , Bed 11: Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Perisphinctes (Perisphinctes) pumilus Enay , Bed 12: Taramelliceras (Proscaphites) anar (Oppel), Perisphinctes (Dichotomosphinctes) luciaeformis Enay , Bed 12a: Taramelliceras (Proscaphites) anar(Oppel), Bed 12b: Perisphinctes (Dichotomosphinctes) eiisabethae de Riaz , Bed 12c: Neoprionoceras lautlingensis (Roller ), Perisphinctes (Liosphinctes) sp. indet., Bed 14a: Trimarginites arolicus (Oppel), Ochetoceras praecanaliculatum sp. nov., Taramelliceras (Proscaphites) anar (Oppel), Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Ochetoceras canaliculatum (von Buch ), Ochetoceras hispidum (Oppel), Perisphinctes (Dichotomosphinctes) eiisabethae de Riaz , Perisphinctes (Dichotomosphinctes) luciae de Riaz , Perisphinctes (Dichotomosphinctes) crotalinus Siemiradzki , Perisphinctes (Perisphinctes) pumilus Enay , Euaspidoceras sp., Bed 14b: Trimarginites arolicus (Oppel), Euaspidoceras sp., Bed 14c: Ochetoceras canaliculatum (von Buch ), Perisphinctes (Dichotomosphinctes) eiisabethae de Riaz , Perisphinctes (Dichotomosphinctes) luciae de Riaz , Perisphinctes (Dichotomosphinctes) luciaeformis Enay , Euaspidoceras sp., Bed 16a: Neoprionoceras lautlingensis (Roller ), Perisphinctes (Dichotomosphinctes) eiisabethae de Riaz , Bed 18: Neoprionoceras henrici (d’Orbigny ), Ochetoceras hispidum (Oppel), Taramelliceras (Proscaphites) anar (Oppel), - Perisphinctes (Dichotomosphinctes) luciae de Riaz , Bed 20: Ochetoceras canaliculatum (von Buch ), Perisphinctes (Dichotomosphinctes) eiisabethae de Riaz ,

GEUS 77 Bed 22: Perisphinctes (Dichotomosphinctes) elisabethae de Riaz ,

2.6 m section not exposed

Transversarium Zone - Buckmani Subzone

Bed 26: Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Perisphinctes (Dichotomosphinctes) antecedens Salfeld , Perisphinctes (Dichotomosphinctes) cf. buckmani A rkell , Perisphinctes (Perisphinctes) tumulosus Buckman , Perisphinctes (Perisphinctes) parandieri de Loriol , Bed 28: Perisphinctes (Dichotomosphinctes) buckmani Arkell, Bed 30: Perisphinctes (Dichotomosphinctes) cf. antecedens Salfeld , Perisphinctes (Dichotomosphinctes) buckmani A rkell , Bed 30/31: Perisphinctes (Perisphinctes) aff. tumulosus Buckman ,

Section Wysoka III

Plicatilis Zone - Arkelli Subzone

Bed 2: Perisphinctes (Otosphinctes) ouatius ouatius (S. Buckman ), Perisphinctes (Otosphinctes) arkelli arkelli ssp. nov.,

Plicatilis Zone - Arkelli or Ouatius Subzone

Bed 3: Perisphinctes (Kranaosphinctes) kranaus (S. Buckman ), Bed 4: Perisphinctes (Arisphinctes) ariprepes (S. Buckman ), Perisphinctes (Kranaosphinctes) kranaus (S. Buckman ), Bed 5: Trimarginites aff. arolicus (Oppel), Perisphinctes (Kranaosphinctes) decurrens (S. Buckman ),

Plicatilis Zone - Ouatius Subzone

Bed 6: Cardioceras (Scoticardioceras) excavatum (Sowerby ), Cardioceras (Subvertebriceras) densiplicatum Boden, Perisphinctes (Liosphinctes) plicatilis (Sowerby ), Bed 8: Trimarginites arolicus (Oppel), Cardioceras (Subvertebriceras) densiplicatum Boden, Bed 10: Trimarginites aff. arolicus (Oppel), Cardioceras (Subvertebriceras) zenaidae Ilovaisky , Perisphinctes (Otosphinctes) cf. ouatius ouatoides ssp. nov., Perisphinctes (Liosphinctes) plicatilis (Sowerby ), P. (Liosphinctes) laevipickeringius A rkell , Bed 11: Cardioceras (Subvertebriceras) sp., Bed 12: Cardioceras (Subvertebriceras) densiplicatum Boden, Perisphinctes (Liosphinctes) sp. indet., Bed 16: Neoprionoceras henrici (d’Orbigny ), Bed 19: Perisphinctes (Arisphinctes) helenae de Riaz ,

Plicatilis Zone - Paturattensis Subzone

Bed 20: Perisphinctes (Otosphinctes) paturattensis de Loriol , Perisphincies (Liosphinctes) plicatilis (Sowerby ), Bed 21: Cardioceras (Subvertebriceras) densiplicatum Boden , Perisphinctes (Otosphinctes) paturattensis de Loriol , Perisphinctes (Liosphinctes) plicatilis (Sowerby ), Perisphinctes (Kranaosphinctes) collignoni (Brochwicz - Lewinski ),

78 GEUS Section Wysoka IV

Transversarium Zone - Elisabethae Subzone

Bed 1a: Perisphindes (Dichotomosphindes) dobrogensis Simionescu , Perisphindes (Dichotomosphindes) elisabethae de Riaz , Bed 1 b: Perisphindes (Dichotomosphindes) elisabethae de Riaz , Perisphindes (Perisphindes) aff. pumilus Enay ,

Transversarium Zone - Buckmani Subzone

Bed 5a: Perisphindes (Dichotomosphindes) buckmani A rkell , Perisphindes (Perisphindes) tumuiosus Buckman , Bed 5b: Perisphindes (Perisphindes) alatus Enay , Bed 6a: Perisphindes (Dichotomosphindes) dobrogensis Simionescu , Bed 6b: Taramelliceras (Taramelliceras) tuberculatum (Quenstedt), Bed 7a: Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Perisphindes (Dichotomosphindes) antecedens Salfeld , Perisphindes (Perisphindes) alatus Enay , Bed 7b: Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Bed 10a: Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Bed 10b: Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Bed 11: Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Taramelliceras (Taramelliceras) tuberculatum (Quenstedt), Ochetoceras canaliculatum (von Buch ), Perisphindes (Dichotomosphindes) antecedens Salfeld ,

Plicatilis Zone - Arkelli Subzone

Bed 12: Neoprionoceras henrici (d'Orbigny ), Ochetoceras praecanaliculatum sp. nov., Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Perisphindes (Otosphindes) cf. arkelli wysokae ssp. nov., Bed 13: Trimarginites arolicus (Oppel), Trimarginites stenorhynchus (Oppel), Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Bed 14: Trimarginites aff. arolicus (Oppel), Trimarginites arolicus (Oppel), Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ),

Plicatilis Zone - Arkelli or Ouatius Subzone

Bed 16: Lissoceratoides erato (d’Orbigny ), Perisphindes (Otosphindes) makowskii sp. nov., Perisphindes (Kranaosphindes) decurrens (Buckman ), Perisphindes (Kranaosphindes) kranaus (Buckman ), Bed 16 or 17: Cardioceras (Subvertebriceras) zenaidae Ilovaisky , Perisphindes (Uosphinctes) cf. cumnorensis A rkell ,

Plicatilis Zone - Ouatius Subzone

Bed 17a-c: Sowerbyceras tortisulcatum (d’Orbigny ), Perisphindes (Otosphindes) ouatius ouatoides ssp. nov., Perisphindes (Arisphindes) vorda A rkell , Bed 17a: Cardioceras (Scoticardioceras) laevigatum Boden, Perisphindes (Otosphindes) ouatius ouatius (Buckman ), Perisphindes (Otosphindes) ouatius ouatoides ssp. nov., Perisphindes (Otosphindes) makowskii sp. nov., Perisphindes (Kranaosphindes) kranaus (Buckman ), Bed 17b: Perisphindes (Otosphindes) ouatius ouatoides ssp. nov., Perisphindes (Arisphindes) trifidus (Sowerby ), Bed 17b/c: Perisphindes (Liosphindes)plicatilis (Sowerby ),

G EU S 79 Bed17c: Perisphinctes (Otosphinctes) makowskii sp. nov., Bed 17-18: Cardioceras (Subvertebriceras) densiplicatum Boden , Cardioceras (Scoticardioceras) excavatum (Sowerby ),

Plicatilis Zone - Paturattensis Subzone

Bed 18: Trimarginites aff. arolicus (Oppel), Lfssoceratoides erato (d’Orbigny ), Perisphinctes (Otosphinctes) paturattensis de Loriol , Perisphinctes (Otosphinctes) montfalconensis de Loriol , Perisphinctes (Liosphinctes) sp. indet., Perisphinctes (Kranaosphinctes) cf. sp. nov. A, Perisphinctes (Kranaosphinctes) collignoni (Brochwicz - LewiNski ), Bed 18a: Cardioceras (Cuneicardioceras) bullingtonense A rkell , Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Cardioceras (Plasmatoceras) popiianiense Boden, Cardioceras (Subvertebriceras) densiplicatum Boden, Cardioceras (Scoticardioceras) excavatum (Sowerby ), Cardioceras (Scoticardioceras) cf. laevigatum Boden, Bed 19a: Cardioceras (Plasmatoceras) popiianiense Boden, Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Cardioceras (Subvertebriceras) densiplicatum Boden, Bed 19b: Lissoceratoides erato (d’Orbigny ), Bed 19c: Trimarginites aff. arolicus (Oppel), Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Cardioceras (Plasmatoceras) popiianiense Boden, Cardioceras (Subvertebriceras) densiplicatum Boden, Cardioceras (Scoticardioceras) excavafum(SowERBY), Perisphinctes (Otosphinctes) paturattensis de Loriol ,

Section Wysoka V

Transversarium Zone - Buckmani Subzone

Bed 1: Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Cardioceras (Cawtoniceras-Maltoniceras) sp. juv., Perisphinctes (Dichotomosphinctes) antecedens Salfeld , Perisphinctes (Dichotomosphinctes) cf. buckmani A rkell , Bed 1/2: Perisphinctes (Perisphinctes) aff. maximus (Young & Bird ), Bed 2: Neoprionoceras henrici (d'Orbigny ), Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Perisphinctes (Dichotomosphinctes) buckmani Arkell, Perisphinctes (Dichotomosphinctes) antecedens Salfeld , Perisphinctes (Perisphinctes) tumulosus Buckman , Perisphinctes (Perisphinctes) aff. maximus (Young & Bird ), Bed 2/3a: Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Cardioceras (Maltoniceras) maltonense (Young & Bird ), Perisphinctes (Dichotomosphinctes) buckmani Arkell, Perisphinctes (Dichotomosphinctes) antecedens Salfeld , Bed 3a: Trimarginites aff. arolicus (Oppel), Taramelliceras (Taramelliceras) dentostriatum (Quenstedt), Perisphinctes (Dichotomosphinctes) antecedens Salfeld , Perisphinctes (Dichotomosphinctes) buckmani Arkell, Perisphinctes (Kranaosphinctes) cyrilli Neumann , Perisphinctes (Kranaosphinctes) gyrus Neumann , Perisphinctes (Perisphinctes) aff. maximus (Young & Bird ), Bed 3a/b: Trimarginites aff. arolicus (Oppel), Neoprionoceras henrici (d’Orbigny ), Perisphinctes (Dichotomosphinctes) buckmani A rkell , Bed 3b: Trimarginites aff. arolicus (Oppel), Neoprionoceras henrici (d'Orbigny ),

80 GEUS Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Perisphinctes (Dichotomosphinctes) antecedens Salfeld , Pen'sphinctes (Perisphinctes) aff. maximus (Young & Bird , Bed 3b/4a: Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Perisphinctes (Dichotomosphinctes) antecedens Salfeld , Perisphinctes (Otosphinctes) arkelli wysokae ssp. nov., Perisphinctes (Perisphinctes) aff. maximus (Young & Bird ), Bed 4a: Trimarginites stenorhynchus (Oppel, Bed 4b: Trimarginites aff. arolicus (Oppel), Trimarginites stenorhynchus (Oppel), Taramelliceras (Taramelliceras) dentostriatum (Quenstedt), Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Perisphinctes (Otosphinctes) arkelli wysokae ssp. nov., Perisphinctes (Dichotomosphinctes) antecedens Salfeld , Perisphinctes (Kranaosphinctes) aff. gyrus Neumann , Ochetoceras praecanaliculatum sp. nov.

Plicatilis Zone - Arkelli Subzone

Bed 4c: Ochetoceras praecanaliculatum sp. nov. Perisphinctes (Otosphinctes) arkelli wysokae ssp. nov., Bed 5: Trimarginites aff. arolicus (Oppel ), Bed 5a: Perisphinctes (Otosphinctes) ouatius ouatius (S. Buckman ), Perisphinctes (Otosphinctes) arkelli wysokae ssp. nov., Perisphinctes (Kranaosphinctes) gyrus Neumann , Perisphinctes (Kranaosphinctes) cyrilli Neumann , Bed 5b: Perisphinctes (Platysphinctes) perplanatus (M) Tintant , Perisphinctes (Platysphinctes) perplanatus (m) Tintant , microconch of Perisphinctes (Kranaosphinctes) cyrilli Neumann or Perisphinctes (Kranaosphinctes) gyrus Neumann , Bed 6a: Perisphinctes (Platysphinctes) perplanatus (M) Tintant , Perisphinctes (Kranaosphinctes) gyrus Neumann , Bed 6b: Trimarginites aff. arolicus (Oppel), Taramelliceras (Taramelliceras) tuberculatum (Quenstedt), Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Perisphinctes (Otosphinctes) arkelli arkelli ssp. nov., Perisphinctes (Platysphinctes) perplanatus (m) Tintant , Perisphinctes (Uosphinctes) cumnorensis A rkell ,

Plicatilis Zone - Ouatius Subzone Bed 7: Perisphinctes (Otosphinctes) makowskiisp. nov., Perisphinctes (Otosphinctes) cf. ouatius ouatius (S. Buckman ), Perisphinctes (Kranaosphinctes) kranaus (S. Buckman ) Bed 8: Perisphinctes (Uosphinctes) cumnorensis A rkell , Bed 9: Perisphinctes (Otosphinctes) makowskii sp. nov., Bed 10a-b: Cardioceras (Subvertebriceras) postsowerbyi sp. nov., Cardioceras (Subvertebriceras) densiplicatum BODEN,

Paturattensis Subzone

Bed 10 c-e: Perisphinctes (Otosphinctes) montfalconensis de Loriol , Perisphinctes (Otosphinctes) cf. paturattensis de Loriol , Bed 11a: Cardioceras (Plasmatoceras) popilaniense Boden, Cardioceras (Scoticardioceras) excavatum (Sowerby ), Perisphinctes (Otosphinctes) cf. paturattensis de Loriol , Bed 11 d: Cardioceras (Subvertebriceras) densiplicatum Boden, Cardioceras (Subvertebriceras) zenaidae Ilovaisky , Cardioceras (Scoticardioceras) cf. excavatum (Sowerby ), Bed 11 d/e: Perisphinctes (Arisphinctes) trifidus (Sowerby ), Bed 11e: Cardioceras (Subvertebriceras) densiplicatum Boden, Cardioceras (Subvertebriceras) sp., Perisphinctes ( Uosphinctes) plicatilis (Sowerby ),

GEUS 81 Bed 11e/f: Perisphindes (Arisphindes) trifidus (Sowerby ), Bed 11f: Cardioceras (Subvertebriceras) sp., Cardioceras (Scoticardioceras) excavatum (Sowerby ), Cardioceras (Scoticardioceras) serrigerum (S. Buckman ), Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Bed 11g: Holcophylloceras zignodianum (d’Orbigny ), Cardioceras (Plasmatoceras) popilaniense Boden, Bed 11h: Cardioceras (Subvertebriceras) densiplicatum Boden, Neocampyiites delmontanus (Oppel), Bed 12a: Neocampyiites delmontanus (Oppel), Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Bed 12f: Lissoceratoides erato (d’Orbigny ), Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Bed 12g: Lissoceratoides erato (d’Orbigny ), Neocampyiites delmontanus (Oppel), Neocampyiites inermis (Jeannet ), Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Bed 12: Cardioceras (Scoticardioceras) excavatum (Sowerby ), Cardioceras (Subvertebriceras) densiplicatum Boden, Perisphindes (Otosphindes) cf. paturattensis de Loriol ,

?Lower Oxfordian

Bed 13: Lissoceratoides erato (d’Orbigny ), Neocampyiites delmontanus (Oppel), Neocampyiites inermis (Jeannet ), Cardioceras (Cardioceras) persecans (Buckman ) Perisphindes (Otosphindes) paturattensis de Loriol ,

Section Wysoka VI Bed 26b: Lissoceratoides erato (d’Orbigny ), Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Cardioceras (Plasmatoceras) popilaniense Boden, Cardioceras (Subvertebriceras) densiplicatum Boden, Cardioceras (Scoticardioceras) excavatum (Sowerby ), Perisphindes (Otosphinctes) cf. paturattensis de Loriol , Bed 26a: Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Perisphindes ( Liosphinctes) plicatilis (Sowerby ), Bed 27: Perisphindes (Arisphindes) trifidus (Sowerby ), Bed 27a: Lissoceratoides erato (d’Orbigny ), Cardioceras (Subvertebriceras) densiplicatum Boden, Cardioceras (Subvertebriceras) zenaidae Ilovaisky , Perisphindes (Otosphinctes) paturattensis de Loriol , P. (Otosphinctes) montfalconensis de Loriol , Perisphindes (Arisphindes) helenae de Riaz , Perisphindes (Kranaosphinctes) sp. nov. A, Bed 27b: Perisphindes (Otosphinctes) paturattensis de Loriol , Bed 28a: Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Cardioceras (Vertebriceras) vertebrate (Sowerby ), Cardioceras (Subvertebriceras) densiplicatum Boden , Perisphindes (Otosphinctes) paturattensis de Loriol, Perisphindes (Otosphinctes) montfalconensis de Loriol , Bed 28b: LJssoceratoides erato (d’Orbigny ), Neocampyiites delmontanus (Oppel), Neocampyiites inermis (Jeannet), Cardioceras (Subvertebriceras) densiplicatum Boden, Cardioceras (Plasmatoceras) popilaniense Boden, Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Cardioceras (Scoticardioceras) excavatum (Sowerby ), Perisphindes (Otosphinctes) paturattensis de Loriol ,

82 GEUS Perisphinctes (Kranaosphinctes) cf. sp. nov. A, Perisphinctes (Arisphinctes) helenae de Riaz , Bed 28c: Neocampylites delmontanus (Oppel), Neocampylites inermis (JEANNET), Cardioceras (Plasmatoceras) popilaniense Boden, Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Perisphinctes (Otosphinctes) paturattensis de Loriol , Perisphinctes (Otosphinctes) makowskii sp. nov., Perisphinctes (Uosphinctes) plicatilis (Sowerby ), Perisphinctes (Kranaosphinctes) sp. nov. A,

Cordatum Zone - Cordatum Subzone

Bed 28d: Neocampylites delmontanus (Oppel), Cardioceras (Cardioceras) persecans (Buckman ,)

Section Wysoka VII

Transversarium Zone - Buckmani Subzone

Bed 1: Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Perisphinctes (Dichotomosphinctes) antecedens Salfeld , Bed 1 or 2: Cardioceras (Maltoniceras) maltonense (Young & Bird ), Bed 2: Trimarginites aff. arolicus (Oppel), Perisphinctes (Kranaosphinctes) cyrilli Neumann , Perisphinctes (Kranaosphinctes) gyrus Neumann , Perisphinctes (Dichotomosphinctes) antecedens Salfeld , Bed 4: Perisphinctes (Perisphinctes) aff. maximus (Young & Bird ),

Plicatilis Zone - Arkelli Subzone

Bed 6b: Perisphinctes (Otosphinctes) arkelli wysokae ssp. nov., Bed 7: Trimarginites aff. arolicus (Oppel), Perisphinctes (Kranaosphinctes) gyrus Neumann , Bed 8b: Perisphinctes (Platysphinctes) perplanatus (M) Tintant , Perisphinctes (Platysphinctes) perplanatus (m) Tintant , Bed 8: Taramelliceras (Taramelliceras) dentostriatum (Quenstedt), Bed 9: Perisphinctes (Otosphinctes) arkelli arkelli ssp. nov., Bed 10: Trimarginites aff. arolicus (Oppel), Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ), Cardioceras (Subvertebriceras) densiplicatum Boden, Perisphinctes (Otosphinctes) magnouatius A rkell , Perisphinctes (Arisphinctes) ariprepes (S. Buckman ), Bed 11: Perisphinctes (Arisphinctes) ariprepes (S. Buckman ), Bed 12: Perisphinctes (Otosphinctes) arkelli arkelli ssp. nov., Perisphinctes (Otosphinctes) ouatius ouatius (S. Buckman ), Perisphinctes (Otosphinctes) magnouatius A rkell , Perisphinctes (Kranaosphinctes) kranaus (S. Buckman ), Perisphinctes (Arisphinctes) ariprepes (S. Buckman ), Bed 13: Perisphinctes (Otosphinctes) magnouatius Arkell, Bed 14: Perisphinctes (Kranaosphinctes) cf. kranaus (S. Buckman ), Bed 16: Goliathiceras (Goliathites) titan A rkell , Perisphinctes (Otosphinctes) arkelli arkelli ssp. nov., Perisphinctes (Otosphinctes) cf. ouatius ouatius (S. Buckman ), Perisphinctes (Arisphinctes) helenae de Riaz , Perisphinctes (Arisphinctes) ariprepes (S. Buckman ), Perisphinctes (Arisphinctes) trifidus (Sowerby ), Bed 16b: Perisphinctes (Otosphinctes) ouatius ouatius (S. Buckman ), Perisphinctes (Otosphinctes) cf. ouatius ouatius (S. Buckman ), Perisphinctes (Otosphinctes) arkelli arkelli ssp. nov.,

GEUS 83 Perisphinctes (Arisphinctes) ariprepes (S. Buckman ),

Plicatilis Zone - Ouatius Subzone

Bed 17: Cardioceras (Subvertebriceras) postsowerbyi sp. nov., Bed 18: Perisphinctes (Arisphinctes) helenae de Riaz , Perisphinctes (Liosphinctes) of. laevipickeringius A rkell , Bed 19: Cardioceras (Subvertebriceras) sp., Bed 20a: Perisphinctes (Kranaosphinctes) cf. kranaus (S. Buckman ), Bed 20b: Perisphinctes (Kranaosphinctes) kranaus (S. Buckman ), Bed 20d (8/2e): Perisphinctes (Otosphinctes) ouatius ouatoides ssp. nov. Bed 20e: Cardioceras (Scoticardioceras) excavatum (Sowerby ), Bed 20f: Cardioceras (Scoticardioceras) excavatum (Sowerby ), Bed 22a: Perisphinctes ( Liosphinctes) cf. plicatilis (Sowerby ), Cardioceras (Subvertebriceras) densiplicatum Boden, Plicatilis Zone - Paturattensis Subzone Bed 22b: Lissoceratoides erato (d’Orbigny ), Neocampylites delmontanus (Oppel), Cardioceras (Plasmatoceras) popilaniense Boden, Cardioceras (Plasmatoceras) tenuicostatum Borissjak , Bed 22c: Neocampylites delmontanus (Oppel), Cardioceras (Subvertebriceras) densiplicatum Boden, Bed 24a: Perisphinctes (Otosphinctes) paturattensis de Loriol , Perisphinctes (Arisphinctes) helenae de Riaz , Lissoceratoides erato (d'Orbigny ), Neocampylites delmontanus (Oppel), Trimarginites aff. arolicus (Oppel), Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Bed 24b: Lissoceratoides erato (d'Orbigny ), Neocampylites delmontanus (Oppel ), Cardioceras (Plasmatoceras) tenuistriatum (Nikitin ), Cardioceras (Plasmatoceras) tenuicostatum Borissjak ,

Zawodzie composite sections from „satum ” quarries

(Cz9 -sheet Czestochowa Pn., 25060 93170)

Bifurcatus Zone - Stenocycloides Subzone

Bed 29: Perisphinctes (Dichotomoceras) bifurcatoides Enay Perisphinctes (Perisphinctes) variocostatus (Buckland ), Subdoscosphinctes (Subdiscosphinctes) richei (de Riaz ), Perisphinctes (Perisphinctes) panthieri Enay , Bed 28: Perisphinctes (Dichotomoceras) bifurcatoides Enay Perisphinctes (Dichotomoceras) wartae Bukowski , Bed 28/29: Perisphinctes (Perisphinctes) cautisnigrae A rkell , Bed 27c: Perisphinctes (Dichotomoceras) bifurcatoides Enay Perisphinctes (Dichotomoceras) wartae Bukowski , Bed 27b: Perisphinctes (Dichotomoceras) wartae Bukowski , Bed 27a: Subdoscosphinctes (Subdiscosphinctes) richei (de Riaz ), Perisphinctes (Dichotomoceras) bifurcatoides Enay , Perisphinctes (Dichotomoceras) wartae Bukowski , Bed 26: Perisphinctes (Dichotomoceras) bifurcatoides Enay , Perisphinctes (Dichotomoceras) wartae Bukowski ,

Bifurcatus Zone - Wartae Subzone

Bed 25: Perisphinctes (Perisphinctes) cautisnigrae A rkell , Perisphinctes (Dichotomoceras) wartae Bukowski , - Subdoscosphinctes (Subdiscosphinctes) kreutzi (Siemiradzki ), Bed 24-23: Perisphinctes (Dichotomoceras) wartae Bukowski , Subdoscosphinctes (Subdiscosphinctes) kreutzi (Siemiradzki ),

84 G EU S Subdoscosphinctes (Subdiscosphinctes) richei (de Riaz), Bed 14: Perisphinctes (Dichotomoceras) wartae Bukowski , Bed 13: Perisphinctes (Dichotomoceras) wartae Bukowski , Bed 12: Perisphinctes (Dichotomoceras) wartae Bukowski , Subdoscosphinctes (Subdiscosphinctes) kreutzi (Siemiradzki ), Bed 11: Perisphinctes (?Uosphinctes) cracoviensis (M) Siemiradzki , Bed 9: Perisphinctes (Perisphinctes) cautisnigrae A rkell ,

Transversarium Zone - ElisabethaeSubzone

Bed 5: Perisphinctes (Dichotomosphinctes) luciaeformis Enay , Bed 4: Perisphinctes (Dichotomosphinctes) iuciae de Riaz , Bed 3: Perisphinctes (Dichotomosphinctes) elisabethae de Riaz , Perisphinctes (Dichotomosphinctes) Iuciae de Riaz , Perisphinctes (Dichotomosphinctes) crotalinus Siemiradzki Bed 2: Perisphinctes (Dichotomosphinctes) elisabethae de Riaz , Perisphinctes (Dichotomosphinctes) Iuciae de Riaz , Perisphinctes (Dichotomosphinctes) luciaeformis Enay ,

Section Niegowonice I

(La3 -sheet Lazy, 26928 88612)

Bifurcatus Zone - Wartae Subzone

Bed 1: Trimarginites stenorhynchus (Oppel), Taramelliceras (Taramelliceras) callicerum (Oppel), Tarameliiceras (Taramelliceras) dentostriatum (Quenstedt), Perisphinctes (Dichotomoceras) wartae Bukowski , Subdiscosphinctes (Subdiscosphinctes) kreutzi (Siemiradzki ), Subdiscosphinctes (Aureimontanites) kreutzi (Siemiradzki ), Bed 2: Trimarginites stenorhynchus (Oppel), Perisphinctes (Dichotomoceras) wartae Bukowski , Subdiscosphinctes (Subdiscosphinctes) kreutzi (Siemiradzki ), Bed 3: Trimarginites arolicus (Oppel), Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Bed 4: Trimarginites stenorhynchus (Oppel), Subdiscosphinctes (Subdiscosphinctes) kreutzi (Siemiradzki ), Bed 5: Taramelliceras (Taramelliceras) callicerum (Oppel), Subdiscosphinctes (Subdiscosphinctes) kreutzi (Siemiradzki ), Bed 6: Perisphinctes (Dichotomoceras) wartae Bukowski , Bed 7: Trimarginites stenorhynchus (Oppel), Perisphinctes (Dichotomoceras) wartae Bukowski , Bed 8: Neoprionoceras lautlingensis (Roller ), Ochetoceras canaliculatum (von Buck ), Glochiceras (Glochiceras) subclausum (Oppel), Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Taramelliceras (Taramelliceras) callicerum (Oppel), Bed 11: Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Bed 12: Taramelliceras (Taramelliceras) callicerum (Oppel), Subdiscosphinctes (Subdiscosphinctes) kreutzi (Siemiradzki ), Bed 13: Trimarginites arolicus (Oppel), Taramelliceras (Proscaphites) minor sp. nov., Taramelliceras (Taramelliceras) callicerum (Oppel), Perisphinctes (Dichotomoceras) wartae Bukowski ,

Transversarium Zone - Elisabethae Subzone

Bed 14: Perisphinctes (Dichotomosphinctes) sp. - Subdiscosphinctes (Subdiscosphinctes) kreutzi (Siemiradzki ), Bed 15: Taramelliceras (Proscaphites) minor sp. nov., Bed 16: Cardioceras (Cawtoniceras-Maltoniceras) sp. juv.,

GEUS 85 Bed 17: Trimarginites stenorhynchus (Oppel), Ochetoceras hispidum (Oppel), Amoeboceras transitorium Spath , Perisphfnctes (Dichotomosphinctes) elisabethae de Riaz , Perisphinctes (Dichotomosphinctes) crotalinus Siemiradzki , Bed 18: Trimarginites aroiicus (Oppel), Taramelliceras (Proscaphites) minor sp. nov., Perisphinctes (Dichotomosphinctes) elisabethae de Riaz , Bed 20: Perisphinctes (Dichotomosphinctes) elisabethae de Riaz , Bed 21: Ochetoceras hispidum (Oppel), Bed 23: Cardioceras (Cawtoniceras-Maltoniceras) sp. juv., Perisphinctes (Dichotomosphinctes) luciae de Riaz , Bed 25: Cardioceras (Cawtoniceras-Maltoniceras) sp. juv., Perisphinctes (Dichotomosphinctes) luciae de Riaz , Bed 26: Trimarginites aroiicus (Oppel), Giochiceras (Glochiceras) subclausum (Oppel), Ochetoceras canaliculatum (von Buck ).

Subdivision of the Middle Oxfordian

To the construction of a new subdivision of a Middle Oxfordian a separate morphocline of the perisphinctids is designated (Fig. 4). This morphocline represents a continuous suc­ cession of a species (both micro- and macroconchs). Ranges of in this way selected spe­ cies are used for construction of rigid framework of the biounits. Ranges of other ammonite species are related to newly distinguished zones and subzones (Fig. 5).

Three zones are distinguished: the Plicatilis Zone, the Transversarium Zone and the Bifur- catus Zone. Although the traditional index species of the classical subdivision are used in the scheme herein proposed, the boundaries of the biostratigraphical units are redefined.

The characteristics of the emended and newly distinguished biostratigraphical units are as follows:

• Plicatilis Zone (Hudleston 1878) includes now the Middle Oxfordian Kranaosphinctes and Arisphinctes assemblages together with microconchiate Otosphinctes; • Paturattensis Subzone

For the Paturattensis Subzone typical is the occurrence of Perisphinctes (Otosphinctes) paturattensis and the close species P. (0.) montfalconensis. Macroconchs are represented by the mass occurrence of Perisphinctes (Arisphinctes) helenae, P. (A.) trifidus as well as common occurrence of representatives of Liosphinctes - with most significant Perisphinctes (Liosphinctes) plicatilis.

Complete list of species: Holcophylloceras zignodianum (d'Orbigny ), Ussoceratoides erato (d'Orbigny ), Trimarginites aff. aroiicus (Oppel), Neocampylites inermis (Jeannet ), Neocampylites delmontanus (Oppel), Popanites paturattensis (Greppin ),

Cardioceras (Plasmatoceras) tenuicostatum Borissjak ,

86 GEUS Cardloceras (Plasmatoceras) tenuistriatum (Nikitin ), Cardioceras (Plasmatoceras) popilaniense Boden, Cardioceras (Scoticardioceras) excavatum (Sowerby ), Cardioceras (Scoticardioceras) serrigerum (S. Buckman ), Cardioceras (Scoticardioceras) cf. laevigatum Boden, Cardioceras (Subvertebriceras) densiplicatum Boden, Cardioceras (Subvertebriceras) zenaidae Ilovaisky , Cardioceras (Subvertebriceras) sowerbyi A rkell , Cardioceras (Vertebriceras) vertebrate (Sowerby ) Cardioceras (Cuneicardioceras) bullingtonense A rkell ,

Perisphinctes ( Liosphinctes) plicatilis (Sowerby ), Perisphinctes ( Liosphinctes) sp. nov. A, Perisphinctes (Otosphinctes) paturattensis de Loriol , Perisphinctes (Otosphinctes) aff. paturattensis de Loriol , Perisphinctes (Otosphinctes) montfalconensis de Loriol , Perisphinctes (Otosphinctes) makowskii sp. nov., Perisphinctes (Kranaosphinctes) sp. A, Perisphinctes (Kranaosphinctes) coliignoni (Brochwicz -Lewinski ), Perisphinctes (Arisphindes) helenae de Riaz , Perisphinctes (Arisphindes) triUdus (Sowerby ).

Ouatius Subzone

For this Subzone typical are early representatives of Perisphinctes (Otosphinctes) ouatius, recognised as P. (O.) ouatius ouatoides. It is also the place of appearance of P. (O.) ouatius ouatius and P. (Kranaosphinctes) kranaus.

Complete list of species: Sowerbyceras torticulcatum Trimarginites arolicus (Oppel), Trimarginites aff. arolicus (Oppel), Neoprionoceras henrici (d'Orbigny ), Cardioceras (Subvertebriceras) zenaidae Ilovaisky , Cardioceras (Subvertebriceras) densiplicatum Boden, Cardioceras (Subvertebriceras) postsowerbyi sp. nov - najwyzsza czesc. Cardioceras (Scoticardioceras) excavatum (Sowerby ), Cardioceras (Scoticardioceras) laevigatum Boden,

Perisphinctes (Otosphinctes) ouatius ouatius (S. Buckman ) Perisphinctes (Otosphinctes) ouatius ouatoides ssp. nov. Perisphinctes (Otosphinctes) makowskii sp. nov. Perisphinctes (Arisphindes) helenae de Riaz , Perisphinctes (Arisphindes) vorda Arkell Perisphinctes ( Arisphindes) triridus (Sowerby ),

Perisphinctes (Kranaosphinctes) kranaus (S. Buckman ) Perisphinctes (Kranaosphinctes) ariprepes Perisphinctes (Liosphinctes) laevipickeringius A rkell , Perisphinctes ( Liosphinctes) plicatilis (Sowerby ), Perisphinctes (Liosphinctes sp. B Perisphinctes (Liosphinctes) cumnorensis A rkell ,

Arkell; Subzone

In this subzone occur Perisphinctes (Otosphinctes) arkelli (= P. (Dichotomosphinctes) rotoi- des Arkell). Among macroconchs typical are ,English" representatives of P.

GEUS 87 (Kranaosphinctes) and P. (Arisphinctes), such as P. (K.) decurrens, P. (K.) kranaus, P. (A.) ariprepes.

Complete list of species Lissoceratoides erato (d’Orbigny ),

Trimarginites arolicus (Oppel), Trimarginites stenorhynchus (Oppel), Trimarginites aff. arolicus (Oppel), Ochetoceras praecanaliculatum sp. nov. Neoprionoceras henrici (d’Orbigny ),

Taramelliceras (Taramelliceras) dentostriatum (Quenstedt), Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ),

Cardioceras (Subvertebriceras) densiplicatum Boden, Goliathiceras (Goliathites) titan A rkell

Perisphinctes (Otosphindes) arkelli wysokae ssp. nov. Perisphindes (Otosphindes) arkelli arkelli ssp. nov., Perisphindes (Otosphindes) magnouatius A rkell , Perisphinctes (Otosphindes) ouatius ouatius (S. Buckman ) in lowermost part of subzone, Perisphinctes (Arisphinctes) helenae de Riaz , Perisphinctes ( Arisphinctes) trifidus (Sowerby ), Perisphinctes (Arisphinctes) ariprepes (S. Buckman ), Perisphinctes (Kranaosphinctes) gyrus Neumann , in upper part Perisphinctes (Kranaosphinctes) cyrilli Neumann , 1907 in upper part Perisphinctes (Kranaosphinctes) kranaus (S. Buckman ), Perisphinctes (Liosphinctes) cumnorensis A rkell , Perisphinctes (Piatysphindes) perplanatus (M & m) Tintant ,

Gregoryceras (Gregoryceras) riazi (de GROSSOUVRE),

Transversarium Zone (Oppel 1863)

The base of the Transversarium Zone is marked by the first appearance of Dichoto- mosphinctes, represented by the species Perisphinctes (Dichotomosphinctes) antecedens and his presumable macroconch Perisphinctes (Perisphinctes) aff. maximus.

Buckmani Subzone

In this subzone the most typical elements are the representatives of Dichotomosphinctes such as P. (D.) antecedens, P. (D.) buckmani, P. (D.) dobrogensis and representatives of Perisphinctes s. s. such as P. (P.) aff. maximus, P. (P.) tumulosus, P. (P.) parandieri.

Complete list of species Trimarginites stenorhynchus (Oppel), Trimarginites arolicus (Oppel), Trimarginites aff. arolicus (Oppel), Neoprionoceras henrici (d’Orbigny ), Ochetoceras praecanaliculatum sp. nov. Ochetoceras canaliculatum (von Buch ), Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Taramelliceras (Taramelliceras) callicerum (Oppel), Taramelliceras (Taramelliceras) tuberculatum (Quenstedt ),

88 GEUS Cardioceras (Maltoniceras) maltonense (Young & Bird ), Cardioceras (Cawtoniceras-Maltoniceras) sp. juv., Cardioceras (Cawtoniceras) cawtonense (Blake & Hudleston),

Perisphinctes (Otosphinctes) arkelli wysokae ssp. nov. Perisphinctes (Otosphinctes) aff. arkelli wysokae ssp. nov. Perisphinctes (Kranaosphinctes) cyrilli Neumann , Perisphinctes (Kranaosphinctes) gyrus Neumann , Perisphinctes (Kranaosphinctes) aff. gyrus Neumann , Perisphinctes (Dichotomosphinctes) dobrogensis Simionescu , Perisphinctes (Dichotomosphinctes) buckmani A rkell , Perisphinctes (Dichotomosphinctes) antecedens Salfeld , Perisphinctes (Perisphinctes) tumulosus Buckman , Perisphinctes (Perisphinctes) aff. tumulosus Buckman , Perisphinctes (Perisphinctes) parandieri de Loriol, Perisphinctes (Perisphinctes) aff. parandieri de Loriol , Perisphinctes (Perisphinctes) aff. maximus (Young & Bird ) Perisphinctes (Perisphinctes) aff. pumilus Enay , Perisphinctes (Perisphinctes) alatus Enay ,

Elisabethae Subzone

Elisabethae Subzone characterised by fine-ribbed planulate perisphinctids, with steeply climbing rib curve.

The base of this subzone is characterised by the first occurrence of P. (Dichotomosphinctes) elisabethae. It is also characterised by closely allied species such as P. (D.) crotalinus, P. (D.) luciae , P. (D.) luciaeformis. Among macroconchs appear P. (Perisphinctes) pumilus, P. (P.) aff. andelotensis. At the uppermost part of this subzone the first representatives of Subdiscosphinctes occur.

Complete list of species Lissoceratoides erato (d'Orbigny ), Trimarginites arolicus (Oppel ), Trimarginites stenorhynchus (Oppel), Neoprionoceras henrici (d'Orbigny ), Neoprionoceras lautlingensis (Roller ), Neoprionoceras lautlingensis-praecanaliculatum, Glochiceras (Glochiceras) subclausum (Oppel ), Ochetoceras praecanaliculatum sp. nov. Ochetoceras canaliculatum (von Buch ), Ochetoceras hispidum (Oppel ), Trimarginites aff. arolicus (Oppel ),

Cardioceras (Cawtoniceras-Maltoniceras) sp. juv., Amoeboceras transitorium Spath , Cardioceras sp.

Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Tarameliiceras (Taramelliceras) callicerum (Oppel) - upper part, Taramelliceras (Taramelliceras) tuberculatum (Quenstedt )- lower part, Taramelliceras (Proscaphites) minor sp. nov. - upper part, Taramelliceras (Proscaphites) anar (Oppel) - lower- part,

Perisphinctes (Uosphinctes) berlieri de Loriol , Perisphinctes (Uosphinctes) sp. nov. C,

GEUS 89 Perisphinctes (Dichotomosphinctes) dobrogensis Simjonescu - lowermost part, Perisphinctes (Dichotomosphinctes) elisabethae de Riaz , Perisphinctes (Dichotomosphinctes) crotatinus Siemiradzki , Perisphinctes (Dichotomosphinctes) luciae de Riaz , Perisphinctes (Dichotomosphinctes) luciaeformis Enay , Subdiscosphinctes (Subdiscosphinctes) kreutzi (Siemiradzki ) - uppermost part Perisphinctes (Perisphinctes) pumilus Enay , Perisphinctes (Perisphinctes) aff. pumilus Enay Perisphinctes (Perisphinctes) aff. andelotensis Enay , Perisphinctes (Perisphinctes) aff. parandieri de Loriol - lowermost part,

Bifurcatus Zone (Petitclerc 1922)

The base of the Bifurcatus Zone is marked by the first appearance of Perisphinctes wartae, as the representatives of this species display significant affinities to the subgenus Dichoto- moceras.

Wartae Subzone

The Wartae Subzone is characterised by occurrence of Perisphinctes (Dichotomoceras) wartae and its macroconch counterpart Perisphinctes (Perisphinctes) cautisnigrae. Repre­ sentatives of Subdiscosphinctes are abundant.

Complete list of species Trimarginites stenorhynchus (Oppel), Trimarginites arolicus (Oppel), Neoprionoceras lautlingensis (Roller ), Ochetoceras canaliculatum (von Buch ), Glochiceras (Glochiceras) subclausum (Oppel ), Taramelliceras (Taramelliceras) callicerum (Oppel ), Taramelliceras (Taramelliceras) dentostriatum (Quenstedt ), Taramelliceras (Proscaphites) minor sp. nov., Perisphinctes (Dichotomoceras) wartae Bukowski , Subdiscosphinctes (Subdiscosphinctes) kreutzi (Siemiradzki ); Subdoscosphinctes (Subdiscosphinctes) richei (de Riaz ), Perisphinctes (Perisphinctes) cautisnigrae A rkell Perisphinctes (?Uosphinctes) cracoviensis (m) Siemiradzki ,

Stenocycloides Subzone (pars)

The base of the Stenocycloides Subzone is characterised by the first occurrence of P. (Dichotomoceras) bifurcatoides.

In lower part of the subzone are recognised Subdiscosphinctes (Subdiscosphinctes) richei (de Riaz ), Perisphinctes (Dichotomoceras) bifurcatoides Enay , Perisphinctes (Perisphinctes) cautisnigrae A rkell , Perisphinctes (Dichotomoceras) wartae Bukowski , 1887 Perisphinctes (?Uosphinctes) cracoviensis (m) Siemiradzki , Perisphinctes (Perisphinctes) panthieri Enay , Perisphinctes (Perisphinctes) variocostatus (Buckland )

90 GEUS Figure 1

IKIELCEl

CZESTOCHOWA

Location map of the studied sections Zw-Zawodzie, Og-Ogrodzieniec, W-Wysoka, N-Niegowonice

G EUS 91 92 G EUS Figure 2

Section Wysoka II (pars) G) :—i m c CO

Section wysoka VII

Section Wysoka V

4vb

Section Wysoka III

IP.

.. d 11 .

9 h

3

____ ' 11 d s 94 G EU S Figure 3 (pars)

Oxfordian

Upper (pars)

Oxfordian

(pars)

Middle Transversarium

G EUS 96 G EU S Figure 4

Stcnocycloides (pars) ! 1. i Bifurcates *8 2| I i (pars) Wartae ill 1 ,

Ejlisabethae 1 nljU 1

Transversarium

Quckmani 'Hl'llhi!

Arkelli '11 Uii i

Ouatius •Tin Plicatilis 1 , i

Patera ttensis Mil'

Cordatum Cordatum (pars) ■ (pars) * i '

GEUS 97 98 GEUS Holcophyttoceras zignadianum Sowerbyceras tortisulcatum LSssocerataides cralo Trimarginites aff arolicus Trimarginites arolicus Trimarginites stenorhynchus Neocampylites deimontamts Neocampylites imams Ochetoceras praecanaliculatum Ochetoceras canaliculatum Ochetoceras hispidwn Giochiceras subciauswn Neoprionoceras henrici Neoprionoceras lautlmgensis TarameBiceras tuberculatum Thramelliceras deniostriatwn TarcmeSiceras cailicenun Pupanites p.dicruttensis Proscaphites anar Proscaphites minor Flasmaloceras Ccnuistriaium Plasmatoceras temdcostatum Plasmaloceras popilaniense Scoticardioceras excavation Scoticardioceras serrigerum Scoticardioceras laevigatum Subvertebriceras densipiicatum Subvertebriceras zenaidae Subvertebriceras sawerbyi Subvertebriceras poststrwerbyi Vertebriceras vertebrate Goliathiies titan Cmeicardioceras bullingtonense Maltoniceras irudtonense Cawtoniceras cawtonaae Cawtoniceras-Mabomceras sp.jnv. Amoeboceras transixorizm Otosphinctespaturattensis Otosphinctes montfalconensis Otosphinctes ouatius ouatoides Otosphinctes ouatius ouatius Otosphinctes arkelli arkelli Otosphinctes arkclli wysokac Otosphinctes magnauatius Dichotomospfunctes antecedens Dichatomosphinctes buckmam Dichotomosphinctes dabrogensis Dichotomospfunctes elisabethae Dichatomosphinctes tuciae Dichotomosphinctes iuciaeformis Dichotomosphinctes crotalinus Dichatomoccras wortae Dicholomoceras bifurcatoides Subdiscosphinctes kreutzi Subdiscosphinctes richei Kranaosphinctes promiscuus Kranaosphinctes collignoni Kranaosphinctes kranaus Kranaosphinctes decurrens Kranaosphinctes gyrus Kranaosphinctes cyrilli Arisphinctes hetenae Arisphinctes tripdus Arisphinctes vorda Arisphinctes ariprepes Perisphinctes aff parandieri Perisphinctes parandieri Perisphinctes aff maximus Perisphinctes pumihts Perisphinctes aff pumilus Perisphinctes hamdasus Perisphinctes aff twmdasus Perisphinctes aff andelotensis Perisphinctes alatus Perisphinctes cautisnigrae Perisphinctes. panthieri Perisphinctes variocastatus Plalysphinctes perpianatus Liosphinctes pUcatilis Liosphinctes iaevipideeringius Liosphinctes cwnnorensis Liosphinctes herlieri ? Liosphinctes cracoviensis Liosphinctes sp. mdet Gregaryceras riazi

GEUS 99 100 G EU S Architecture and evolution of a sponge bioherm complex in the Oxfordian (Upper Jurassic) of north­ west Poland

by Jon R. Ineson, Bronislaw Andrzej Matyja & Tadeusz Merta

Abstract

In the Middle and Late Oxfordian, isolated sponge bioherms developed within a siliciclastic- dominated facies tract in north-west Poland, separate from the extensive sponge megafa ­ cies that prevailed in central and southern Poland. These isolated complexes owe their origins to domal structural highs on the Jurassic sea-floor produced by halokinesis that started in the mid-. The microbial-sponge bioherm complexes in this area are known largely from the subsurface but quarry exposures on the south-western flank of the Zalesie structure reveal both bioherm core and flanking strata. Facies and architectural analysis indicate two distinct styles of bioherm development. During the Middle and early Late Oxfordian, the complex aggraded such that the marginal slopes were relatively gentle. The transition from massive biohermal boundstones through skeletal packstones and grainstones to marly wackestones and floatstones is documented in a number of quarry sections and typically exhibits low-angle clinoforms (5-10°). Off-bank sediment transport was largely piecemeal and sediment gravity flow processes were subordinate in impor ­ tance, although isolated sediment slide scars are recognised. Exposures of latest Late Ox­ fordian age, however, reveal a different style of bioherm development. The flank beds show steep clinoforms (up to 45°) and there is evidence of severe bioherm degradation, probably the result of oversteepening of the margins. Coarse bioherm debris, including house-sized blocks, was transported out onto the flanks of the bioherm by means of slides, debris flows and turbidites.

The causal factor behind this shift in bioherm development in the late Late Oxfordian is not clear; it may reflect renewed salt tectonics at depth or it may be related to the regional pa- laeogeographic changes that resulted in the localisation and ultimate demise of the sponge bioherms in Poland at the end of the Oxfordian.

GEUS 101 Introduction

In the early Late Jurassic, the European shelf bordering Tethys was characterised by a distinctive silicious sponge-rich carbonate facies that is recognised from Portugal to the Caucasus. This “sponge megafacies ” (Matyja, 1978) is particularly well-developed in re­ gions that closely bordered Tethys but expands eastwards into Poland where it forms a broad belt up to 400 km wide (Fig. 1). The sponge megafacies in Poland consists broadly of two facies associations: a biohermal association, characterised by poorly bedded or massive microbial-sponge boundstones, and an inter-bioherm association, typified by sponge-tuberolitic wackestones and packstones. Much of the published data concerning this highly distinctive Upper Jurassic facies are derived from the main megafacies outcrop belt in Poland (e.g. Matyja, 1976; Trammer, 1982, 1989; Matyja & Pisera, 1991; Matyja & Wierzbowski, 1996) and southern Germany (e.g. Gwinner, 1976; Flugel & Steiger, 1981; Hammes, 1995). The aim of this paper, however, is to focus on one of the most northerly sponge bioherm complexes in Poland that occurs within a siliciclastic-dominated facies tract, isolated from the main sponge megafacies belt (Figs 1-3).

Geological setting and stratigraphy

Palaeogeographic evolution

Deposition of the sponge megafacies began in Poland in the Early Oxfordian, succeeding a period of slow sedimentation and creation of a condensed interval of Late Callovian - earliest Oxfordian age. The sponge megafacies expanded in the Early and Middle Oxfor ­ dian to cover much of central and southern Poland by the late Middle Oxfordian (Late Transversarium - Early Bifurcatus Zones). At peak development, the microbial-sponge bio- herms within the main sponge megafacies belt were aggradational in style and formed complexes up to several hundred metres thick and several kilometres across, flanked lo ­ cally by carbonate debris beds and separated by well-bedded inter-bioherm facies. Based on detailed ammonite biostratigraphic data, Matyja & Wierzbowski (1996) demonstrated that the bioherms created depositional relief in excess of 160 m at the Middle-Late Oxfor ­ dian boundary (Bifurcatus-Bimammatum Zones). Development of this megafacies went into decline in the latest Oxfordian and earliest Kimmeridgian, heralded by the colonisation of bioherm crests by hermatypic corals at the turn of the Planula and Platynota Zones re­ cording shallowing of the crestal ragions into the photic zone (i.e. water depths not greater than about 40 m; Matyja & Wierzbowski, 1996).

Much of the published literature concerning the Oxfordian sponge megafacies of Poland is based on the central and southern parts of the facies belt. In north-west Poland, the shelf carbonates are bounded by a marked NE-SW trending facies transition into a region domi ­ nated by siliciclastics sourced from the Fennoscandian High to the north-west (Fig. 3). The

102 G EUS Oxfordian carbonates thus pass northwards into a fine-grained succession of marls, cal­ careous claystones and siltstones. Isolated within these “basinal” strata, beyond the re­ gional limit of the sponge megafacies, are a number of sponge bioherm complexes that occur on an east-west trend and owe their origins to positive Late Jurassic structures of halokinetic origin (Fig. 3). The bioherm complex forming the subject of this paper is ex­ posed in extensive working quarries; the aim is to document the main facies and architec­ tural elements and to investigate the evolution of this isolated bioherm complex in the Mid­ dle - Late Oxfordian. It should be noted that this study was primarily concerned with the large-scale facies relationships and has not involved significant new microfacies analysis; the facies descriptions rely largely on outcrop observations supported by representative thin sections and earlier petrographical observations (Matyja & Wierzbowski, 1985).

Geological and stratigraphic setting

The Zalesie anticline is a gentle, NW-SE trending elongate domal structure (Fig. 2) that owes its origins primarily to halokinesis in the Mesozoic. The geosection in Figure 4 testi­ fies to initial salt pillow growth in the mid to late Triassic, the structure being particularly prominent in Jurassic- times. The Jurassic subcrop, beneath Quaternary cover, forms elongate concentric rings (Fig. 2); the Lower Jurassic forms the core of the structure, encircled by Middle-Upper Jurassic strata. At base Lower Jurassic level, the structure is some 12 km long and 5 km across; extrapolating from Figures 2 and 4, the Oxfordian bio ­ herm complex was probably in the order of 5-10 km across and up to 20 km in length.

The Wapienno and Bielawy quarries (Figs 2, 5) are located on the south-eastern flank of the structure where the regional dip is about 16° to the south-west. A number of minor normal faults have been observed or inferred within the two quarries (see Fig. 5; Matyja et a/., 1985). The massive poorly stratified or clinoform-bedded nature of much of the Oxfor­ dian succession exposed in the quarries complicates recognition of structural features; mi­ nor faults and flexures may thus remain unrecognised with possible implications for tracing facies boundaries.

The quarries are elongate parallel to the strike of the Zalesie structure (Figs 2, 5); the north ­ eastern walls are thus most “proximal ” and expose the bioherm core facies whereas the south-western quarry faces are typically within the bioherm flank or the transition into mar­ ker off-bioherm facies. The short dip sections exposed in the north-western and south­ eastern walls illustrate most clearly the clinoform-bedded flanks of the bioherm complex. The quarries presently measure about 250-500 m wide and 1500-2000 m long and are about 100 m deep at their deepest point. They are worked by means of terraces, each working quarry face being typically 15-20 m high (Fig. 6); the uppermost level exposes the Quaternary cover which is typically about 10 m thick although thickening south-westwards off the structure. Quarrying at these two sites dates from the last century (1860) and has proceeded apace in the last decade such that the 3D facies transitions and boundaries can, to some extent, be reconstructed from data collected in the mid 1980s (Matyja et at. 1985; B. A. Matyja, A. Wierzbowski & T. Merta, unpublished data). Additional information can be

GEUS 103 gleaned from shallow boreholes drilled to delimit the potential limestone resources in the area (see Fig. 5).

The carbonates exposed in the quarries are locally dolomitised in subvertical plugs or lenses that are 2-20 m across and in certain sections occur at regular intervals of 30-50 m along the quarry face (see Chlebowski, 1985). The dolomite plugs are particularly common within the massive bioherm core facies on the north-eastern quarry walls where they are locally related to sub-vertical or oblique fractures. Solution cavities are also present, infilled with Tertiary sediments including carbonaceous mudstones and brown coals (Fig. 7).

The broad stratigraphic relationships of the Oxfordian carbonates exposed in the two quar­ ries is illustrated schematically in Figure 8. Maristones and bedded argillaceous limestones exposed locally at the base of the north-eastern quarry walls yield ammonites indicative of the Plicatilis Zone (Tenuicostatum Subzone). These beds are thought to form the substrate of the bioherm complex indicating that the complex was initiated in the earliest Middle Ox­ fordian. Reliable biostratigraphic data are few through the remainder of the massive bio- hermal section as ammonites and dinoflagellates are scarce in this facies. A single am­ monite specimen collected from the south-eastern wall of the Bielawy section (see Fig. 13) indicates the Bimammatum Zone, Hypselum Subzone (Upper Oxfordian) whereas coarse limestone breccias and succeeding lime mudstones in the upper levels of the exposed sec­ tion are of late Late Oxfordian age (Planula Zone, Planula Subzone). The scarcity of reliable biostratigraphic “fixed points” together with the massive, non-stratified nature of much of the exposed section precludes detailed correlation within and between quarries but the data available provide a broad framework (Fig. 8) within which to track the overall evolution of the bioherm complex.

Lithofacies

Seven lithofacies are recognised in the Wapienno and Bielawy quarry sections (Fig. 8). Lithofacies 1 (maristones and subordinate sponge wackestones/packstones) is restricted to the lowermost stratigraphic levels exposed in the quarries. The biohermal limestones and laterally equivalent flank deposits (lithofacies 2-4) dominate the quarry sections whereas coarse limestone breccia beds, limestone turbidites and succeeding lime mudstones and marls (lithofacies 5-7) are restricted to the uppermost, stratigraphically youngest levels of the quarries (Fig. 8).

Lithofacies 1: Maristones and sponge wackstones/packstones

This facies was only briefly examined under this study; it is exposed at two small localities on the north-eastern walls of both the Wapienno and Bielawy quarries (Fig. 9) and was previously described as facies B1 by Matyja & Wierzbowski (1985). Approximately 8-10 m of section is exposed in both localities; the base is not seen. Pale grey-green spicular maristones dominate the lower part, interbedded at intervals (0.5-1.5 m) with 30-50 cm

104 GEUS thick wackestone beds. Limestones (wackestones-packstones) become dominant in the upper few metres where they are rich in sponges and grade rapidly upwards into massive biohermal limestones referred to lithofacies 2 (Fig. 9); weak stratification may be apparent in the lowermost levels of the biohermal facies. This lithofacies has yielded age-diagnostic ammonites (see above).

This facies records deposition of siliciclastic and carbonate fines in a low energy setting; the upward increase in carbonate and content of sponges and sponge detritus heralds the ini­ tiation of the biohermal complex represented by the succeeding massive limestones.

Lithofacies 2: Sponge-microbial boundstones

This facies dominates the core of the bioherm complex where it is estimated to be about 250 m thick (Fig. 8; Matyja et a/., 1985); it was previously described as facies B2 by Matyja & Wierzbowski (1985). It is typically massive with little sign of bedding, although the paral­ lel orientation of tabular sponges and spar-filled cavities locally provides a semblance of stratification. In marginal settings, close to the transition to marlier off-bioherm facies, the boundstones may exhibit clinoform bedding (see below).

The boundstone fabric is created by large tabular calcite-replaced silicious sponges coated in brown micrite, clotted or weakly laminated, of probable microbial origin; details of the mode of sponge replacement were given by Matyja (1976; see also Pisera, 1997), Volu- metrically, the microbial component commonly appears to dominate the facies, but detailed fabrics are typically only evident on localised fresh quarry faces so that the overall propor­ tions cannot be evaluated. Pale grey lime sediment (skeletal peloidal wackestone- packstone) fills much of the remaining space, although stromatactis-like calcite-filled “cavities” are evident in places, often forming shelter structures beneath microbial crusts or tabular sponges. Pockets of grainstone and packstone occur locally and are dominated by dark micritic (microbial?) peloids and spicules.

This facies forms massive, weakly to non-stratified walls on the north-eastern sides of the quarries and represents the core of the bioherm complex. It records the in situ accumula­ tion of carbonate fines baffled by sponges and stabilised by microbially-mediated early micritic cement. Comparable biohermal fabrics have been described from the Upper Ju­ rassic of southern Germany (e.g. Gwinner, 1976, Hammes, 1995) and elsewhere in Poland (e.g. Matyja, 1976; Trammer, 1982,1989).

Lithofacies 3: Interbedded packstones, grainstones and float- stones/wackestones

This heterogeneous facies forms thick to very thick bedded units that typically grade northwards into clinoform-bedded bioherm flank beds and may be interbedded with marly skeletal wackestones of lithofacies 4; it corresponds roughly to facies B4 of Matyja & Wier-

GEUS 105 zbowski (1985). Based primarily on field observations, the facies is composed largely of sponge debris (both loose spicules and discrete skeletons) together with peloids, micritic intraclasts and other skeletal grains (brachiopods, echinoderms, bivalves(?) etc.). Bedding is typically parallel but lenticular beds of grainstone-packstone or matrix-rich floatstone were recorded; these typically contain dispersed randomly oriented tabular sponges. "Frac­ tional sedimentary structures were not observed in this lithofacies.

The field relationships indicate that this varied assemblage of limestones lie in a transitional position between the bioherm proper and the off-bioherm marly sediments. The lithofacies clearly represents debris shed from the adjacent bioherm but identification, in detail, of the depositional processes and environmental implications of this heterogeneous group is be­ yond the scope of this study. It is likely that the bulk of the beds assigned to the facies were the result of gradual, piecemeal accumulation of bioherm detritus along the flanks of the complex, probably winnowed by gentle bottom currents or on occasion by more energetic storm currents. The lenticular beds, however, probably record deposition from sediment gravity flows of debris flow or high density turbidity current type.

Lithofacies 4: Marly skeletal wackestones/packstones

This facies commonly occurs interbedded with lithofacies 3, and is typically exposed in the southern quarry walls, broadly representing the transition from the bioherm flank to “basinal” argillaceous deposits (facies B3 of Matyja & Wierzbowski, 1985). It typically shows well-developed bedding on a metre scale, defined by an alternation of marl-rich and marl-poor layers (Fig. 10). The typical fabric of the latter is a spicular wackestone or pack- stone containing common sponges that in certain cases appear to be in growth position; calcareous foraminiferans were noted rarely in thin section. Sponge spicules locally retain a silicious composition in this facies.

This facies records accumulation of fines in a low energy setting; the carbonate component was derived from the adjacent bioherm, probably mostly by suspension settling although mud-rich debris flow deposits may be represented. The siliciclastic mud was of regional origin, related to the south-eastwards dispersal of fines from the Fennoscandian High to the north-west. The sponge skeletal material was probably in part allochthonous, derived from the bioherm complex, but in situ sponges in this facies testify to the diffuse nature of the outer limit of the “living ” bioherm. The origin of the regular alternation of marl-rich and marl- poor beds is poorly understood. It may reflect shifts in the balance of carbonate-clastic in­ flux dictated by climatic change (i.e. Milankovich cycles) but the biostratigraphical frame­ work is insufficiently detailed to test this hypothesis.

Lithofacies 5: Interbedded lime mudstones and marlstones

This facies is restricted to the uppermost part of the succession, exposed in the south­ eastern corners of the two quarries. The lime mudstone beds are typically 10-30 cm thick

106 GEUS and parallel-sided with sharp flat bed boundaries, except where slumped or draping irregu ­ lar debris beds. They are typically unfossiliferous, in sharp contrast to the preceding facies. Bioturbation is common, but typically indeterminate or restricted to Chondrites isp.; Thalass- inoides isp. was noted on one bedding surface. The green-grey maristone interbeds range in thickness from partings a few millimetres thick to discrete 5-10 cm thick beds.

This facies records sedimentation of fines, both siliciclastic and carbonate, primarily from suspension in a low energy setting. The scarcity of skeletal debris, particularly sponges, contrasts markedly with lithofacies 3 and 4; the possible significance of this facies with re­ spect to the evolution of the bioherm complex is discussed further below.

Lithofacies 6: Graded grainstones-packstones

This lithofacies occurs in close association with coarse limestone breccia beds (lithofacies 7) in the south-eastern comer of the Wapienno quarry and, less commonly, interbedded with lime mudstones and marls of lithofacies 5. In the former association, these graded grainstone-packstone beds commonly cap coarse carbonate breccia sheets (see Fig. 11). Typically, these beds show normal distribution grading from pebbly very coarse sand or granule grade to very fine sand or silt grade. Although mainly structureless, a few beds show parallel and ripple cross-lamination in their upper levels. Bed bases are typically sharp and flat, though locally scoured. Dark micritic intraclasts and peloids are the domi ­ nant grain type with subordinate abraded skeletal elements (brachiopod, echinoderm, sponge spicules).

The sharp flat, locally erosional bases, the normal grading and the parallel and cross­ lamination in the upper levels testify to deposition from waning turbulent currents; these beds are thus interpreted to record deposition from turbidity currents derived from the ele­ vated crest or flanks of the bioherm complex. The close association of this facies with coarse limestone breccia beds may suggest a genetic relationship; this aspect is discussed further below.

Lithofacies 7: Limestone breccia beds

These coarse debris beds range in thickness from a few tens of centimetres to over 10 metres and in grain size from fine pebble grade to megabreccias containing blocks of sponge-microbial boundstone (lithofacies 1) up to 35 x 12 m in cross-section (see Figs 14, 15). The beds are tabular or broadly lenticular with sharp bed boundaries. The bed bases are typically flat but irregular surfaces were noted, probably reflecting a combination of minor erosion and differential compaction of large blocks. Bed tops are flat or gently undu­ lating but may be hummocky where large blocks protrude above the upper surface of the deposit.

GEUS 107 Although typically clast-supported, matrix-rich variants are also represented; the matrix comprises spicular lime mud with scattered, randomly oriented coarse shell debris (brachiopod, echinoderm) and is argillaceous in some beds. Non-graded, chaotic internal fabrics are most common, although the upper levels of some beds show weak coarse-tail grading. Clasts of cobble-boulder size largely consist of pale-coloured massive limestones of lithofacies 2 with rare slabs of green-grey marlstone up to 50 cm long. Pebble-sized clasts also include individual skeletal elements (sponges, brachiopods). Some beds are capped by 10-30 cm thick graded grainstone-packstone beds (lithofacies 6; Fig. 11).

This facies records deposition from cohesive debris flows shed from the bioherm complex. Such deposits are well-known from proximal off-bioherm settings, both elsewhere in the Polish Oxfordian and generally in the fossil record (e.g. Wilson, 1975). The limestone tur- bidites (lithofacies 6) that cap certain breccia beds may be genetically related to the under­ lying debris flow deposit, the result of turbulent mixing with seawater at the upper surface of the plastic flow (Hampton, 1972; Krause & Oldershaw, 1979).

Bioherm flank architecture

The primary aim of this study was to document the relationships between the core of the bioherm complex and the flank facies in the quarry faces and thus to investigate the impli­ cations of these relationships for lateral growth styles and processes and the long-term evolution of the bioherm complex in the Middle and Late Oxfordian. It rapidly became clear in the course of the field study that two discrete transects were particularly illustrative and significant: (1) the eastern end of the Bielawy quarry, exhibiting an oblique dip section from core to proximal flank of earliest Late Oxfordian age and (2) the south-eastern comer of the Wapienno quarry which exposes a spectacular strike section through redeposited carbon­ ates that onlap the flanks of the bioherm. Illustration and description of these transects are provided below following a general description of the bioherm core-flank relationships based on general observations in the two quarries.

Core-flank relationships: general description

As noted earlier, the proximal, north-eastern walls expose massive bioherm core lime­ stones whereas the south-western walls typically comprise bedded marly flank beds. Bore ­ hole data from transects running NE-SW (i.e. a dip section), indicate that the bedded marly limestones grade distally into fine-grained siliciclastics (Fig. 8; Matyja etal., 1985; Matyja & Wierzbowski, 1985).

In many sections, the transition from massive bioherm core facies (lithofacies 2) to bedded marly flank facies (lithofacies 3, 4) is highly gradational, low-angle clinoform-bedded sponge boundstones becoming progressively marlier and interbedded with (and ultimately replaced by) argillaceous skeletal wackestones, packstones and grainstones. The Bielawy transect illustrated below is an example of such a transition and comparable sections are

108 GEUS exposed at the north-western end of the Wapienno quarry. Stratification within the transi­ tional zone dips south-eastwards at 15-25°, i.e. up to 10° greater than the regional dip (15- 17°). Although in some cases indistinguishable from tectonic dip, the stratification com­ monly shows a gentle concave-up or sigmoidal geometry and is thus interpreted to repre­ sent low-angle clinoform bedding.

In certain sections, this low-angle stratification is itself truncated by steeper surfaces, dip­ ping at up to 20° (corrected for tectonic dip). These surfaces commonly have a gentle con ­ cave-up form and are draped by succeeding strata; an example from the Bielawy quarry is shown in Figure 12.

Transect 1: eastern Bielawy

The transect from the eastern end of the Bielawy quarry (Fig. 13) shows a gentle “synclinal” structure representing the oblique intersection of the quarry face with a minor re-entrant on the irregular margin of the bioherm complex. Bioherm core (core-flank) facies are repre­ sented both to the north-east (left on Fig. 13), in the general direction of the core of the complex, and immediately to the north-west (right on Fig. 13). The latter exposures proba­ bly represent a minor promontory on the margin of the complex, and testify to significant irregularity on the margin of the complex, as is also indicated by repeated lateral transitions from massive core facies to marly stratified carbonates along the south-western face of the Bielawy quarry.

Transect 1 illustrates the interdigitation of bioherm flank limestones (clinoform-bedded sponge-microbial boundstones) with skeletal wackestones, packstones and grainstones at the toe of the low-angle clinoforms. Of particular significance in this transect is the pres­ ence of particular clinoform surfaces that define an abrupt shift from bioherm flank beds (lithofacies 2) to wackestones, packstones and grainstones of lithofacies 3. This facies change is also observed, more gradually, in a lateral sense passing up the low-angle clinoforms.

This transect is considered to be representative of the transition from bioherm to proximal off-bioherm during much of the middle and early Late Oxfordian (an ammonite from the lowermost beds exhibited in Figure 13 indicates an earliest Late Oxfordian age (Bimammatum Zone, Hypselum Subzone). The low-angle nature of the clinoforms and the apparently gradual transition from bioherm core facies to proximal off-bioherm deposits is suggestive of a relatively low relief bioherm structure; carbonate sediment transport off the bioherm was largely piecemeal although mass transport may have occurred on occasion. Periodic failure, sliding and mass flow on the flanks of the bioherm complex is suggested by the isolated scar surfaces that locally truncate the low-angle clinoforms (e.g. Fig. 12), although such events were probably rare and did not markedly influence the form of the bioherm flank. It is not clear whether the abrupt, low-angle surfaces illustrated in Figure 13 were created by mass wastage or reflect solely lateral shifts in the facies distribution. In any event, the facies shifts related to these surfaces are suggestive of an aggradational to weakly progradational style of flank growth in the early Late Oxfordian.

GEUS 109 Transect 2: south-east Wapienno

This section at the south-east comer of the Wapienno quarry contrasts in many respects to that described above from Bielawy (compare Figs 13 and 14). Overtly similar, however, is the crudely “synclinal” geometry of the section, reflecting a strike section through a depres­ sion or re-entrant between two promontories at the margin of the bioherm complex. The transect is essentially composed of three architectural elements (Fig. 14): (a) bioherm flank beds (lithofacies 2), showing steeply-dipping clinoforms (b) skeletal, intraclastic limestones (lithofacies 3), draping or locally interdigitating with the bioherm flank strata (c) coarse debris beds (lithofacies 6,7) that onlap and infill the topography and fine/thin upwards into lime mudstones and marlstones (lithofacies 5). Ammonites from the uppermost part of this section (element c, above) indicate a late Late Oxfordian age (Planula Zone, Planula Subzone).

(a) Bioherm flank beds. These are revealed on both ends of the transect, grading laterally away from the “syncline” into massive bioherm core limestones (Figs 14, 15). They consist of sponge-microbial boundstones in the main and the fabric, as outlined by tabular sponges and associated microbial crusts, dips gently to the south-east (roughly equivalent to tectonic dip). Dissect­ ing this fabric, however, are a series of steeply dipping surfaces (Figs 15,16); after correc ­ tion for tectonic dip, these surfaces dip at up to 46° with the typical range being 20-30°. The surfaces are typically sharp, abruptly interrupting the gently dipping boundstone fabric, and have a planar or gentle concave-up form (Figs 15, 16, 17). They are spaced at intervals of 1-5 m. In a number of cases, the surface is draped by a marlstone bed up to 30 cm thick containing platy sponge fragments oriented parallel to the surface; this bed may be wedge- shaped, thinning up the surface (Fig. 17). This marly layer may be succeeded by a bed, 0.5-1 m thick, of floatstone or packstone that tapers gently laterally (up the clinoform) and contains platy sponge fragments that are either randomly oriented or lie roughly parallel to the dipping surface (Fig. 17). This bed often has a slightly lighter colour than the adjacent boundstones due to the lack of significant brown microbial micrite.

Interpretation of this element of the transect is particularly dependent on the nature of the steeply-dipping surfaces. These surfaces are clearly parallel to, and thus in some form re­ lated to, the outline of the subsequent depression or re-entrant that was draped, onlapped and ultimately infilled by the succeeding strata (Figs 14, 15). However, the fabric of the intervening boundstones argues against the suggestion that these surfaces represent suc­ cessive growth increments of the bioherm margin (as is probably the case for the low-angle clinoforms seen elsewhere e.g. transect 1, Fig. 13). Rather, these steeply-dipping surfaces appear to represent erosional features that cross-cut the growth fabric of the bioherm flank (Fig. 17). It seems likely that these surfaces represent listric slide surfaces, i.e. submarine slide scars, that were formed periodically by sediment failure at the margin of the bioherm.

110 GEUS They are thus analogues to the isolated truncation surfaces observed elsewhere (see Fig. 12). This interpretation is depicted schematically on Figure 18.

(b) Skeletal intraclastic limestones. On the steeper, north-western end of the transect, this element occurs solely as a drape on the flank of the bioherm whereas on the south-eastern end, this facies occurs interbedded with typical bioherm facies (lithofacies 2). The skeletal wackestones/floatstones, pack- stones and grainstones (lithofacies 3) form medium to thick beds, often with marly partings, and contain abundant skeletal debris dominated by sponges. On the steeper, north-western flank (right on Figs 14,15), these beds form a unit about 10 m thick that coarsens upwards, clasts of pebble grade being common in the upper few metres where bedding is lenticular and bed boundaries erosional. Bedding in this interval broadly parallels the clinoform structure in the underlying flank beds but the upper boundary of the unit forms the onlap surface at the base of the stack of coarse debris beds (Figs 14,15).

These deposits represent sediment shed from the adjacent bioherm, transported largely by sediment gravity flow processes. The coarsening-upward trend (Fig. 15) is suggestive of increasing margin instability and the liberation of increasingly coarse, competent sediment gravity flows. This trend culminates in the lower levels of the succeeding, onlapping coarse debris beds.

(c) Coarse debris beds. The uppermost, composite element in the transect consists broadly of a fining-upward suc­ cession of coarse limestone breccia beds, limestone turbidites, lime mudstones and marl- stones (lithofacies 5-7) that onlaps, infills and ultimately drapes'the topographic low created between the two prograding bioherm promontories. This spectacular stack of coarse rede­ posited debris beds is atypical of the succession exposed in the Bielawy and Wapienno quarries, but comparable deposits may be represented more widely in the subsurface (see below).

The basal bed is lenticular, up to 10 m thick in the centre of the depression, and wedges out to the north-west and, by inference, to the south-east. It contains clasts ranging from pebble size to blocks several metres across, but is dominated by an irregular olistolith of bioherm core boundstone some 35 m long and 12 m high (Figs 14, 15). Succeeding breccia beds are typically thinner (up to 2 m thick) but are also markedly lenticular, commonly pinching out laterally (see Fig. 15), within interbedded carbonate turbidites, lime mudstones and marlstones. The stack of coarse breccia beds is approximately 20 m thick in the centre of the topographic low and in general the breccia beds become thinner and finer-grained up­ wards. However, the uppermost breccia bed of significance, exposed in the upper terrace section (Figs 14, 15), includes a limestone block about 25 m long and 8 m high. Interest­ ingly, evidence from geopetal structures within this block indicates that this tabular block rests on its side i.e. the long dimension was vertical when in situ at the margin of the bio­ herm.

The uppermost part of the succession, draping this elongate block, is dominated by inter­ bedded lime mudstones and marlstones. Thin (10-50 cm) lenticular matrix-rich pebble-

GEUS 111 grade breccias occur in the lower few metres above the large block and a lenticular slump body occurs in the uppermost cliff face (Figs 14,15).

The upper architectural element of the Wapienno transect records a phase of significant erosion of the bioherm margin and infill of topography along the flank of the complex. The size of the olistolith blocks shed into this local depression is a measure of the height of the submarine erosional scarp (i.e. in the order of 20-30 m) from which they were derived. The overall fining/thinning upward trend observed in this succession probably reflects progres­ sive stabilisation of the bioherm flank, following oversteepening and mass failure.

The Wapienno transect: general interpretation. The transect exposed on the southern side of east Wapienno records the latter stages of evolution of the bioherm complex, at least locally. The steep clinoforms of the bioherm flank testify to lateral accretion into a pre-existing depression or marginal indentation in the bio­ herm flank. The origin of this depression is not clear. It may be entirely constructional, re­ sulting from localised progradation of the bioherm flank and the creation of a local depres­ sion between bioherm promontories. Alternatively, it may be erosional in origin, having been created by a major sediment failure event that created a bowl- or scoop-shaped scar. The steeply-dipping clinoforms mimic the form of the depression, and probably owe their origins to minor sediment slides. The depression was subsequently draped, onlapped and ultimately infilled by detritus derived from the bioherm complex, both in the form of particu­ late bioclastic/pelodal/intraclastic material and as blocks and olistoliths of bioherm lime­ stone.

Although clearly of local significance, at least, the question arises as to the potential re­ gional significance of these observations with respect to bioherm evolution. Such coarse ­ grained redeposited carbonates are only observed in this single transect, yet borehole data suggest that such deposits may be more widespread in the subsurface. Immediately west of the exposed section, in the E23 borehole (Figs 19, 20), the upper 50 m of the Jurassic section has previously been interpreted as an alternation of in situ biohermal limestones and off-bioherm marly deposits (B. A. Matyja, A. Wierzbowski & T. Merta, unpublished data). It is thought likely, however, that this section represents a stack of redeposited car­ bonates, containing large blocks of bioherm limestone facies, as seen in the nearby expo­ sures. The re-interpretation is compatible with the overall distribution of bioherm core fa­ cies. Similarly, in the J26 borehole (Fig. 21), about 600 m south of the exposed section, biohermal limestone facies were encountered near the base of the borehole. Although pre­ viously interpreted to be in situ, it is likely that these represent redeposited blocks of bio­ hermal limestone, given the regional distribution of the bioherm complex (Fig. 21). There is subsurface evidence, therefore, from the vicinity of the exposed section, that the phase of bioherm erosion and deposition of coarse debris on the flanks was of more than local sig ­ nificance. There are also indications from subsurface data to the south of the Bielawy quarry of coarse resedimented bioherm debris on the flanks of the bioherm at a compara­ ble stratigraphic level (Fig. 22).

112 GEUS Discussion

The Wapienno and Bielawy exposures on the western flank of the Zalesie structure provide a glimpse of the evolution of the Oxfordian bioherm complex. Perhaps the first comment, however, should be a cautionary one: these exposures give only a fragmentary picture of an extensive biohermal development and extrapolation from selected portions of these exposures to the entire complex is clearly risky. Furthermore, the exposures available yield only a limited dip section so that the precise details of the proximal-distal relationships re­ main obscure. With these provisos in mind, however, it is interesting to focus on certain aspects raised by this study.

Bioherm growth style, sedimentary processes

It has been proposed that the sponge-microbial bioherms that are so typical of the Oxfor­ dian of the peri-Tethyan region are a relatively deep-water shelf facies. Features indicative of sedimentation within the photic zone are absent, the facies are dominated by fine­ grained sediment, evidence of energetic tractive bottom currents is scarce and analogues modem sponge communities commonly inhabit deep shelf-abyssal (200-2000 m depth) niches (Matyja & Wierzbowski, 1996). Accumulation at depths in excess of 50 m and up to several hundred metres is deemed most likely (see discussion in Pisera, 1997) although unanimity on this point has not been reached (e.g. Schorr & Koch, 1985).

In the Wapienno and Bielawy sections, the transition from non-bedded bioherm core to bedded marly limestones of the proximal off-bioherm region is typically gradual in nature. As exemplified by the Bielawy transect (Fig. 13), low-angle clinoforms trace the gradual transition from microbial-sponge boundstones of the bioherm core to bedded marly sponge wackestones and packstones. Sponges appear, in many cases, to be in situ in the bedded marly limestones indicating that the boundary between the active “living ” bioherm and the detrital fringe was very diffuse. Off-bioherm transport was largely of fine-grained sediment, probably winnowed by weak bottom currents, but the presence of packstones and grain- stones locally is testament to moderate energy levels on occasion, perhaps during storms. The relief at the margin of the bioherm was gentle, clinoforms typically dipping at 5-10°, and off-bioherm transport by means of gravity flow processes occurred only rarely. Isolated slide scars that truncate the low-angle clinoforms testify to such rare events and imply the presence of sediment gravity flow deposits at more distal locations, probably beyond the reach of present-day exposures. In discussing the lateral development of the bioherm complex, it is important to stress the localised window provided by these quarries. Although it is thought likely that the features described here represent the relationships at the outer margin of the bioherm complex, it is possible that certain transects (e.g. Fig. 13) represent only local features (i.e. intra-bioherm depressions) within the large-scale complex.

The stratigraphically highest exposures in the quarries, particularly those of the Wapienno quarry (Figs 14, 15), are indicative of a different style of bioherm development. Steep clinoforms, probably created by repeated slide events, and coarse debris beds testify to a bioherm with abrupt unstable flanks that repeatedly suffered marginal degradation by

GEUS 113 sediment sliding. The equivalent biohermal core is not preserved but it is likely that the growth style was highly aggradational or retrogradational. Although borehole data suggest that this steep, degraded bioherm margin extended some kilometres in the Wapienno- Bielawy area, it is not clear to what extent this can be extrapolated to the entire complex.

Evolution of the bioherm complex: some general comments

Initiation. The bioherm complex was initiated in the latest Middle Oxfordian (Plicatilis Zone, Tenui- costatum Subzone); the underlying spicular marlstones and argillaceous sponge wack- estones/packstones show a decrease in marl content upwards and are abruptly overlain by biohermal sponge-microbial boundstones. As the exposures studied here lie on the flank of the Zalesie structure, it is likely that bioherm nucleation occurred north-eastwards of this locality. The argillaceous sponge limestones and spicular marlstones thus probably repre­ sent the lateral equivalents of the early pioneer bioherms that subsequently expanded to create an extensive complex over the structural high.

Construction. From the early Middle Oxfordian to the early Late Oxfordian, the biohermal complex devel­ oped into an extensive carbonate bank up to 10 x 20 km in area and ultimately over 200 m thick. The clinoform geometries observed in the Wapienno and Bielawy quarries indicate however that depositional relief at the margin of the bioherm complex was moderate (perhaps 20-50 m?), permitting a gradual transition from bioherm core to off-bioherm fa­ cies.

Destruction. In the late Late Oxfordian (Planula Zone, Planula Subzone), a phase of margin steepening and bioherm degradation is suggested by the Wapienno exposures and associated bore­ hole data. As noted earlier, the significance of this event must remain a matter of specula­ tion at present. It may record only local factors such as a period of renewed salt growth and associated differential subsidence and fault reactivation; such processes may have resulted in steepening of only a part of the margin of the bioherm or may have had a more general influence on the development of the Zalesie structure bioherm complex. Alternatively, the development of a steep flank to the bioherm complex may have resulted from a phase of enhanced aggradation (and retrogradation) in the latest Oxfordian, leading to oversteepen­ ing and gravitational instability along the margins. Such a shift in the growth style of the bioherm may have been precipitated by an increase in the rate of relative sea-level rise or, somewhat contradictively, by a decrease in the growth potential of the bioherm related to regional shallowing out of the optimum deep shelf depths for sponge-microbial bioherm development. In this context, it is interesting to note that a “bioherm destruction ” event at

114 GEUS the end of the Oxfordian has been inferred elsewhere in Poland (see discussion in Matysz- kiewicz & Krajewski, 1996).

Interbedded poorly fossiliferous bioturbated lime mudstones and marlstones form the youngest strata observed in the quarry sections, succeeding the thick stack of debris beds in the Wapienno exposures. The significance of these deposits is also poorly understood but the scarcity of bioclastic detritus in these beds testifies firstly to the decreasing influence of the sponge bioherm complex as a local sediment source and secondly to an influx of lime sediment that may have been of regional extent controlled by the expansion and pro- gradation of shallow-water platforms in the south and east of Poland (see Matyja & Wier- zbowski, this report).

Demise. In a regional context, the end of the Oxfordian saw a general shallowing that precipitated the demise of the deep shelf sponge megafacies, heralded by the colonisation of bioherm crests by hermatypic corals (Matyja & Wierzbowski, 1996). This event is recorded in the Zalesie structure by the presence of reworked coral debris in uppermost Oxfordian - low­ ermost Kimmeridgian strata encountered in boreholes adjacent to the bioherm complex (Matyja & Wierzbowski, 1985). The succeeding Kimmeridgian section is dominated by marlstones but lowermost Volgian strata include shallow-water facies such as ooid grain- stones, confirming the regional shallowing trend.

Acknowledgements

Access to the Wapienno and Bielawy quarries was granted by the quarrying company and we are grateful for their friendly and co-operative assistance during the course of the field­ work.

G BUS 115 116 GEUS #0 Present day distribution Continental facies Mariy facies of siliceous sponge biofacies or nondeposition .

Possible original distribution Shallow-marine of siliceous sponge biofacies carbonate facies

Fig. 1. Distribution of the sponge megafacies in Europe in the Middle Oxfordian - note the eastward expansion of this facies tract into Poland (from Pisera, 1997).

GEUS 117 118 GEUS Fig. 2. Geological map of the core of the Zalesie anticline, showing the location of the Wapienno (W) and Bielawy (B) quarries on the south-western flank of the structure. The dark blue in the core of the structure is the Lower and Middle Jurassic, the pale blue repre­ sents the Upper Jurassic and the pale green is the Cretaceous. The width of the map area shown here is 18 km; from Radwan etal. (1990).

(

Fig. 3. Regional facies distribution in Poland in the middle Middle Oxfordian (Transversarium Zone); from Matyja & Wierzbowski (this report). 1, shallow-water carbonates; 2, sponge megafacies; 3, marlstones/mudsto- nes; 4, sandstones. The bioherm complex of the Zalesie structure, the subject of this paper, is arrowed.

(

of of

-2500 .3500 -5000 ,6000 -6500 -1000 -1500 mid-

K,

d+Tr reflecting

development

approximately

is the

of

(T1) structure

the

reflection section

over a

Triassic

markedly

presumably Early

thin

the

T2)

that structure,

(T1,

the

Note

sections

depth. towards

at

(J3)

Triassic (P2)

section

Upper pillow

salt and

Jurassic

the

Middle

Upper

the

showing the

of

whereas

structure

; l'

I

t (1985). thickening

Zalesie structure the

Marek Marek '77//>/lUHlll*

the &

also

Note across

across-the Dadlez

\ From growth.

thickness

salt

Geosection //nnnnin/1

4.

bioherm. llllln

: rr

.. Fig. constant the Triassic 1000- 6500J 5500- 6000.' 2000 4500- 3500.

GEUS 124 GEUS (1985).

etal.

Matyja

from V

D

RE

K quarries; Bielawy Y

Bielawy R

0

and W

T

U Wapienno

the

of

map

geological

Wapienno ♦M-20 Outline

5.

Fig.

GEUS $8 126 GEUS Fig. 6. General view of the south-western face of the Wapienn.o quarry, showing the ter­ raced working faces, each being about 15-20 m high. Note the massive poorly bedded nature of the biohermal carbonates in this section.

Fig .7. Solution cavity within white biohermal limestones, infilled with carbonaceous Tertiary sediments; notebook is about 20 cm long.

Planula ★ o

Bimamm

Birfucatus

Transvers

1 Q C' Plicatilis

Cordatum

Mariae

sy-x Marls, arg. Imst. (LF 1) Lmst. Breccias/turbs (LF6.7)

S Bioherm core (LF 2) Lime mdst./marls (LF5)

— Flank beds (LF 3,4) Marls, mudstones

Fig. 8. Schematic stratigraphic scheme showing the lateral and stratigraphic relationships of the main lithofacies recognised in the quarry sections; adapted from Matyja etal. (1985). The biostratigraphic “fixed points ” are shown by asterisks.

G EU S 131 132 G EU S Fig. 9. Exposures of spicular marlstones and bedded sponge-rich limestones (lithofacies 1), immediately overlain by massive biohermal limestones (lithofacies 2); south-eastern Bielawy, north-eastern face. These marly sediments represent the foundation of the bio- herm complex in this area and yield biostratigraphic data that date the initiation of bioherm development to the earliest Middle Oxfordian.

Fig. 10. Alternation of marl-rich and marl-poor wackestones/packstones (lithofacies 4) the notebook (centre left) is about 20 cm long.

Fig. 11. The upper levels of a limestone breccia bed (lithofacies 7), several metres thick, composed of pale micritic clasts and randomly oriented sponge debris. This bed is abruptly (arrow) overlain by a graded grainstone bed (lithofacies 6).

Fig. 12. Sketch (from field observations and photographs) of a gently sigmoidal surface trucating low-angle clinoforms and draped by succeeding deposits. South-east Bielawy, south-west quarry face.

GEUS 139 GEUS 140 Thin-bedded lirr

Bioherm flank: core facies with low-angle clinoform bedding x

Skeletal floatstones, packsto: 1 > & grainstones x

/

Bioherm flank relationships; SE Bielawy

Fig. 13. Transect 1, south-eastern end of the Bielawy quarry (an oblique dip section). The sketch, based on field observations and enlarged photographs, illustrates the transition from bioherm flank (lithofacies 2) showing low-angle clinoforms to proximal off-flank facies (skeletal wackestones/floatstones, packstones, grainstones; lithofacies 3). Note the two arrowed clinoform surfaces marking distinct facies shifts that are suggestive of a weak pro- gradational trend at this stratigraphic level.' Although deemed likely that this transect is rep­ resentative of the margin geometry at this level, it is possible that this transect is within the bioherm complex, recording the fill of an intra-biohermal depression. Quaternary udstones and marls

Bioherm flank Bioherm flank relationships; SE Wapienno

—z '±C ^.r~> Flank beds: alternating units of redeposited skeletal debris (float/packstones) and bioherm facies with c&ioform bedding

i

Fig. 14. Transect 2, south-eastern comer of the Wapienno quarry, south-west face (es­ sentially a strike section). Sketch, based on field observations and enlarged photographs, showing a crudely synclinal structure that represents a depression or re-entrant on the margin of the bioherm complex. Note the steep clinoforms within the bioherm flank beds, the drape of skeletal, intraclastic limestones and the onlapping coarse debris beds (see also Fig. 15) that grade up into interbedded lime mudstones and marlstones. This transect records the later stages of evolution of the bioherm complex in the late Late Oxfordian. : / i Onlap surface 1 i T7" ______1 £ ' 1 • ’ '• t

showing clinoform bedding^ " Biohenn core fades Bioherm flank relationships; SE Wapienno

Quaternary

Oco

& o

Skeletal floatstones - packstones '•^s ^.nC7,/ ; (redeposlted skeletal debris) Coarse debris flow breccias \ containing olistoliths of bioherm \ i core facies x'

Fig. 15. Sketch and composite photograph of the upper two quarry faces shown in Fig. 14; south-eastern Wapienno. Note the steep clinoform bedding in the bioherm flank facies (right; see Fig. 16), the marked onlap surface at the base of the coarse debris beds, the large olistoliths of bioherm core facies and the crude fining/thinning-upward trend into the lime mudstones and marlstones that cap the succession.

(

(

Fig. 16. A. Bioherm flank facies showing steeply-dipping clinoforms (for location, see Fig. 15). B. Close-up of the flank facies in accompanying photograph, showing subhorizontal geopetal structure (arrow) within a brachiopod shell, coated in brown microbial micrite. This demonstrates that the steeply dipping surfaces represent primary dipping surfaces, rather than rotated bedding.

Brachiopod geopetal * /'/s Bioherm core facies

Bioherm core facies (sponge floatstone, early micritic cement fabrics)

Float/packstone bed (0.5-1 m) - platy sponges random or *** sub-parallel to surface Sharp surface - planar Marl with sponge fragments or gently concave-up parallel to surface Primary dip 20-30*

Fig. 17. The salient features of the steeply-dipping surfaces in the bioherm flank beds of theWapienno transect (see Figs 14-16). See text for discussion.

G EU S 149 150 GEUS ‘Normal ’ flank

Gentle flank Bioherm core

Low-angle clinoforms (5-10)

‘Oversteepened’ flank

Failure and sliding

Bioherm accretion

Fig. 18. Cartoon illustrating the inferred development of the clinoform structures observed in the Bielawy and Wapienno sections. In the “normal” case, the low-angle clinoforms rec­ ord successive growth increments on the flank of the bioherm i.e. they represent construc ­ tional features. In contrast, the steeply-dipping clinoforms typified by the Wapienno tran­ sect (but also represented locally elsewhere; see Fig. 12), are thought to record episodic erosional (slide) events that interrupted lateral bioherm accretion along an “oversteepened ” flank. 152 GEUS

in

the

Data

at

deposi- faces

SSW. the the

of

Note westwards

2.

position

farther

approximately the

Transect

of extend

shows

trending

line

facies axis

Wapienno

elements

an

broken

main with

East

the

the

resedimented of

1995; 21.

in

depression trace

Fig. coarse

in

F26 faces

that •

quarry

approximate

illustrated

suggests the is

the

of

F26)

primary scoop-shaped primary

of a

transect,

showing

position

south the

m quarry

exposed indicating

500 shows

the of line

Wapienno (about (about

clinoforms, west

solid

the

J26

of the the

The and of to

end

20). dip) F26

Fig.

B26, eastern

tectonic tectonic (see immediately

the

of m for

section

level N

* 100 map

borehole,

(corrected borehole

E23 Sketch

The stratigraphic dips

the 19.

tional 1985. Fig. same from

tS GEUS 154 G EU S m

si

0 100

-50 Matyja, r L-50

redeposited B.A.

of by

North presence

marls

cross-sections

inferred

B23 the Basal

unpublished

showing

from

19)

core

Fig.

Modified,

(see

E23.

Bioherm Wapienno m transect

1985. borehole

In in 100

exposed

quarry

the

of encountered

Wapienno

the

extent section of

the

west

Jurassic shows

the

line

of

m immediately

50 dashed

The

'Quaternary upper

the

E23 Merta. cross-section, in

T. (?)

& Imsts

South detritusjj.

limestones Interpretive

Coarse breccias 20. skeletal

Wlerzbowski

Fig. bioherm A. (bioherm Marly

GEUS 155 156 GEUS North un­

core core

from 1995.

and Bloherm

Modified

1985 core

south. in

m Bloherm

Wapienno faces farther farther

100

m -t

developments.

quarry 600

the beds/

of some

Imst" (cllnoforms) "Flank

biohermal

detritus}.

situ

skeletal position

in borehole,

the Marly

(bloherm Coarse

• \ J26 than

4 + the

shows

4 to rather

line

blocks

transect

dashed

thin \

/ exposed

'

The

redeposited

Merta.

Wapienno T.

represent &

the

probably

through

Wierzbowski

Quaternary A.

borehole

this

Matyja, cross-section

of

B.A.

base

by

the

north-south at

limestones cross-sections

& Interpretive

South Klmmerldglan^ encountered

21. marls

Fig. published facies

GEUS 157 158 GEUS

& of

off-

style

base

(B4)

North the redeposited

at

Wierzbowski

A.

intraclastic facies core

retrogradational represent

to core Matyja,

overall skeletal,

B.A.

BIELAWY the Bioherm by and bioherm

suggested

of

(note (B3)

are

marly

presence

Cross-section

borehole

5. the

relationships KAMIENIObOM

through this

Fig.

in

on (B2)

however, i

marginal

shown facies

Note,

m broad

encountered

core

the

100 C1-C3). of boreholes

(

facies level.

of

ii bioherm

basis core

|~

strata

the

m position

on

stratigraphic

bioherm Oxfordian 10

this

quarry;

The from

at

understand

Bielawy to

section

marlstone-dominated section).

transition the

this

the

in difficult

Is

Wapienno through

that the Kimmeridgian

illustrates in

by

relationships

seen data) position

cross-section a as

facies in

succeeded

olistolith? CZWARTORZED the

by

olistoliths, (unpublished facies,

North-south borehole

or

22. J50

Merta Bioherm

South blocks Fig. bioherm suggested T. the

GEUS 160 GEUS Palaeogeographic evolution of the Middle-Upper Jurassic of Poland

by Bronislaw Andrzej Matyja and Andrzej Wierzbowski with collaboration of Arkadiusz Drewniak and Tadeusz Merta

Introduction

Jurassic rocks in Poland were deposited within two main palaeogeographic areas:

1. epicratonic area which occupied majority of the present territory of Poland

2. oceanic Tethys area which was during that time located, probably completely, outside the present territory of Poland.

During the Jurassic Period epicratonic area was divided into two main sedimentary basins:

1. most of the Polish epicratonic area regarded as a part of the Northwest (Central) Euro­ pean Basin (Kutek 1994),

2. the southernmost part of the Polish epicratonic area occupied by Peri-Carpathian Basin. This was the case of Late Jurassic time, while during the Middle Jurassic time this area constituted the Meta-Carpathian Arch, the zone of lesser and discontinuous subsidence which separated the European Basin from basins of the Carpathian Domain.

Included maps present six selected palaeogeographic patterns for Polish marine epicra­ tonic area. Three of them (Figs 3-5) present palaeogeographic situation for smallest chro- nostratigraphic units- chrons, others for substages. This differentiation depends on existing stratigraphic data and their reliability.

The Early Bathonian map (Fig. 1) was compiled by T. Merta, Middle-Upper Callovian maps (Figs 2a and 2b) were worked out by A. Drewniak, Late Jurassic maps (Figs 3-6) were originally prepared by B. A. Matyja.

Middle-Late Jurassic palaeogeography of epicratonic Poland Marine transgression.

The Middle Jurassic epicratonic basin had a transgressive character. Widespread marine transgression on the territory of epicratonic Poland was connected with the first order Zuni megacycles (Haq et all. 1987) of the Aalenian Murchisonae Chron. The direction of the transgression is a matter of controversy. The SE direction from Tethyan ocean (Marek and Pajchlowa 1997), and W direction from Germany (Swidrowska 1994) are proposed.

The geometric setting of Aalenian marine basin was very similar to the Early Jurassic one. It was a narrow basin elongated NW-SE (Pomeranian-Kujawy Furrow of Dadlez and Kopik 1975, Middle Polish Trough of Kutek 1994) with clastic sedimentation. The zone of maxi­

GEUS 161 mum subsidence during the Aalenian-Middle Bathonian time was located in the central and south-eastern part of the Middle Polish Trough. In respect to this, Aalenian - Middle Ba­ thonian thickness pattern resembles those of the Lower Jurassic series. But successively during the Bathonian basin became wider (Fig. 1). Its maximum extension was during Late Bathonian, when almost all the Polish Lowland was covered by marine deposits except for a small part in Lublin area. Dominant facies are siltstones and clayey - siltstones.

Starved basin and extensional regime (Fig. 2)

It is clearly visible (Figs 2-6) that from Middle - Late Callovian onwards the successive patterns of the facies indicated NE-SW direction, perpendicular to the direction of the Mid- Polish Trough. This change over the structural pattern of the epicratonic basins of Poland was related also with the important changes in the character of sedimentation. The clastic sediments that dominated up to Middle Callovian were replaced during the Late Callovian by the carbonate sediments. The only place where the clastic sedimentation persisted dur­ ing the Middle Jurassic up to early Late Oxfordian was that of NW Poland (Figs 2b-3).

In the bulk of territory of Poland the Callovian deposits are generally extremely thin, show ­ ing rapid changes in their thickness’. These rapid changes in thickness’ of the deposits we interpret as resulting from synsedimentary faulting. The direction of the faults corresponds to NE-SW direction mentioned before (Fig. 2a).

Beginning of sponge megafacies (Fig. 3)

Late Jurassic phase of extension has been recognised by backstripping in the evolution of the Polish Rift Basin (Dadlez and all., 1995). In our opinion this phase of extension began in Middle - Upper Callovian and was strong signature of the Tethyan extensional regimes in epicratonic area. During most of Late Jurassic the area of Poland constituted a part of the northern Tethyan shelf that was the place of occurrence of the sponge megafacies. Classi­ cal areas of the sponge megafacies development are in Europe, but it is also known from several offshore localities along the northern Atlantic, as well as from Argentina. In Europe, the sponge megafacies extends from Portugal to the Ukraine, Moldavia and Rumania, and perhaps also from Caucasus, along the distance 4000-4500 km. Its occurrence was related with areas which during the Late Jurassic bordered directly the Tethyan facies from the North. In case of Poland this megafacies entered as far as 400 km into epicratonic seas (Fig. 3). The relief of the sea-bottom (Matyja and Wierzbowski 1996) calculated for these megafacies exceeded 200 m. Sponge megafacies event can be explained by exceptionally large sea-level rise. This event is overlooked in recent palaeogeographic synthesis (cf. Ziegler 1990).

Uninterrupted marine connection between Polish basin and Tethyan seas existed to the early Late (Kutek et all. 1984) as proved by ammonite findings.

Intensive development of carbonate platform (Figs 4 and 5)

In Late Jurassic two carbonate platforms were developed: Lublin carbonate platform and Pomeranian one.

162 GEUS The Lublin carbonate platform, which develops on western promontory of the Ukrainian Shield during the Middle Oxfordian, was progressing westward and reached area of the north-eastern Holy Cross region during Bifurcatus Chron. Sudden progradation of this car­ bonate platform took place during the latest Planula Chron when it reached the south ­ western margin of the Holy Cross Mountains (Matyja et all. 1989).

Pomeranian carbonate platform developed on former clastic shelf of NW Poland. It keeps the same position growing aggradationally.

Maximal development of the carbonate platforms took place during late Hypselocyclum Chron, when Pomeranian and Lublin carbonate platforms showed the biggest lateral ex­ tension (Fig. 5).

Sinking of the carbonate platforms

On the turn of Hypselocyclum and Divisum Chrons began accumulation of the deeper- water clays and carbonate sedimentation stopped. Sinking of carbonate platforms affected both Lublin and Pomeranian platforms. The deeper-water clays of latest Kimmeridgian to early Late Tithonian (Volgian Scythicus Chron - Kutek 1994) age accumulated over large part of Poland (Fig. 6). This deepening event has been traced over huge area of Europe and resulted in biogeographic uniformity beginning from the Eudoxus Chron (Matyja and Wierzbowski 1997).

Isolated basin with evaporites

Because of the incipient uplift of the Meta-Carpathian Arch, the Late Tithonian micritic car­ bonates with gypsum and anhydrite accumulated in a restricted basin in central and north ­ ern Poland. Continued uplift of that arch led to the sedimentation of brackish or fresh-water sediments in Central Poland at the passage from the Jurassic to the Cretaceous.

GEUS 163 164 G EU S Figure 1

Palaeogeographic map for the Early Bathonian off Poland

1 - clays, 2 - clayey-silty facies, 3 - arenaceaous facies, 4 - terrestrial facies J / Figure 2a

Palaeogeographic map for Middle/Late Caiiovian of Poland areas with thicker (grey) and strongly condensed (white) deposits

GEUS 167 168 GEUS Figure 2b

Middle/Late Callovian

Palaeogeographic map for Middle/Late Callovian of Poland 1 - sandstones, 2 - mixed calcareous siltstones to sandstones with sponge spicules, 3 - mixed siltstones to sandstones with sponge spicules

Figure 3

Paiaeogeographic map for the Tramsversarium Chron (Middle Oxfordian) of Poland

1 - carbonate platform facies, 2 - sponge megafacies 3 - si if stone facies, 4 - sandstone facies

Figure 4

Pfatynota Chron

Palaeogeographic map for the Plaiynofla Chron {Early Kimmeridgian) of Poland

1 - lagoonai facies, 2 - carbonate platform facies, 3 - carbonate mudstone facies, 4 - marly facies. 5 - siltstone facies, 6 - sponge facies

Figure 5

Palaeogeographic map for the Hypseiocyclum Chron {middle Early Kimmeridgian) of Poland

1 - lagoonai facies 2 - carbonate platform facies, 3 - marly facies, 4 - siltstone facies

( Figure 6

Palaeogeographic map for the Early Tifahanian of Poland

1 carbonate platform facies, 2 - marly-clayey facies, 3 - siltstone facies, 4 - denudated area

Figure 7

Stage IUGS History of the Basin 1989 135 isolated basin with evaporiles Tithonian 4 1"1 139

sinking of carbonate platforms Kimmeridgian

^ intensive progradalion of carbonate platforms 144 intensive production of "carbonate factory"

d "I i northern shelf of the Tetbys Ocean Oxfordian with sponge megafacies, extensional regime

152 starved basin, i n extensional regime Callovian

159

Bathonian wide basin with black clays sedimentation

170

Bajocian

narrow basin with coarse clasic sedimentation 178 marine transgression Aalenian (?bcginmng of Zuni megacycle) -4S0—

Main events in Middle - Late Jurassic history of the Polish basin Blue arrows indicate stratigraphical positiion of the paleeogeographical maps (Fig. 1-6)

GEUS 179 GEUS Referencer

Anderson, R., 1989. Variability of the Late Pleistocene - Early Holocene oxygen-minimum zone off Northern California. - Geophysical Monogr., 55, 75-84. Menlo Park. Arkell, W. J., 1956. Monograph of the English Bathonian ammonites. Mon. Palaeoni Soc., 6,141-162. London. Bojesen-Koefoed, J., 1996: EFP-95 Project: The Polish Middle to Late Jurassic epicratonic basin, stratigraphy and basin history. Organic geochemical screening analysis of out ­ crop samples. GEUS report 1996/81, 30 pp. Copenhagen. Bromley, R. G., Ekdale, A. A., 1984. Chondrites: A fossil indicator of anoxia in sediments. - Science, 224,872-874. Callomon, J. H., 1984. Biostratigraphy, chronostratigraphy and all that-again!. In: Michel- sen, O. and Zeiss, A. (eds), International Symposium on Jurassic Stratigraphy, Geo ­ logical Survey of Denmark 3, 611-624. Callomon, J. H., Diet!, G., Galacz, A., Gradl, H., Niederhofer, H.-J., and Zeiss, A., 1987. Zur Stratigraphie des Mittel- und unteren Oberjuras in Sengenthal bei Neumarkt/Opf. (Frankische Alb). Stuttgarter Beitr. Naturk., B, 132,1-53. Stuttgart. Chlebowski, R. 1985. Procesy diagenetyczne w utworach jury gomej rejonu Barcina ze szczegolnym uwzglednieniem dolomityzacji. Utwory jurajskie struktury Zalesia na Kujawach i ich znaczenie surowcowe, 36-46. Wydawnictwa Geologiczne, Warszawa. Cox, B. M. 1990. A review of Jurassic chronostratigraphy and age indicators for the UK. In: Hardman, R. F. P. and Brooks, J. (eds). Tectonic events responsible for Britain's oil and gas reserves. Geological Society of London, Special Publication, 55,169-190. Dadlez, R., Dayczak-Calikowska, K., Dembowska, J., Kopik, J., Malinowska, L., 1970. JURA. Paleogeografia i tektonika. - In: Surowce mineralne Polski (Osika, R., -Ed.), Biul. IG. 251. Warsaw. Dadlez, R., Kopik, J., 1970. Stratigraphy and palaeogeography of the Jurassic. - In: Geo/. Inst. Anniversary Bull, (ed.: Osika, R.), 252,149-171. Warsaw. Dadlez, R., Kopik, J., 1975. Stratigraphy and palaeogeography of the Jurassic. Bull. Inst. Geol., t. 252, p. 149-171. Warsaw. Dadlez, R. & Marek, S. 1985. Antyklina Zalesia na tie geologicii regionu kujawskiego. Utwory jurajskie struktury Zalesia na Kujawach i ich znaczenie surowcowe, 11-18. Wydawnictwa Geologiczne, Warszawa. Dadlez, R., Narkiewcz, M., Stephenson, R. A., Visser, M. T. M., and van Wees, J.-D., 1995. Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. Tectonophysics, 252,179-195. Amsterdam Daniec, J., 1963. Dogger srodkowej czesci pdlnocno-wschodniego obrzezenia G6r Swietokrzyskich. - Biul. Inst. Geol., 168. Warsaw Daniec, J., 1970. Jura srodkowa. - In: Stratygrafia mezozoiku obrzezenia Gor Swietokrzyskich, Prace Inst. Geol.. LVI, 99-134. Wydawnictwo Geologiczne Warsaw. Dayczak-Calikowska, K., 1965. Uwagi w sprawie stratygrafii srodkowej jury miedzy Gorami Swietokrzyskimi a Bugiem.- Przegl. Geol., 2, Warsaw. Dayczak-Calikowska, K., 1988. Biostratigraphic correlation of the Middle Jurassic of Poland and other areas, pp. 83-88. In: L. Malinowska (ed.), Geology of Poland, III, Atlas of guide and characteristic fossils, 2b, Mesozoic - Jurassic. Wydawnictwo Geologiczne, Warsaw. Dayczak-Calikowska, K., and Kopik, J., 1976. Middle Jurassic. The Cracow-Wielun Upland, pp 241-257. In: S. Sokolowski (ed.), Geology of Poland, I, Stratigraphy, 2, Mesozoic. Wydawnictwo Geologiczne, Warsaw.

GEUS 181 Deczkowski, Z., and Jurkiewiczowa, J., 1960. Kajper I jura okolic Wielunia-Krzyworzeka (gomy baton). In: Rooycki, S.C. (ed.), Przewodnik 33 Zjazdu Polskiego Towarzystwa Geologicznego (Warszawa). 73-74. Desezar, Y. B., and Poulsen, N. E., 1994. On palynological preparation technic. American Association of Stratigraphic Palynologists, Newsletter 1994,27 (3), 12-13. Dietl, G., 1990. Procerites progracllis Cox and Arkell und andere Ammoniten aus dem basa- len Mittel-Bathonium (Mittl. Jura) der Zollemalb, Schwab. Alb, SW-Deutschland. Jber Mitt. Obberrhein. Geo/. Ver., N. F. 72, 329-340. Stuttgart. Drewniak, A., and Matyja, B. A., 1992. Gniezdziska; Callovian through Lower Oxfordian to lowermost Middle Oxfordian (Plicatilis Zone) succession. In: Matyja, B. A., Wier- zbowski, A., and Radwanski, A. (eds). Oxfordian and Kimmeridgian Joint Working GroupsMeeting, Guide Book and Abstracts, 26-30. Warsaw. Feist-Burkhardt, S., and Wille, W., 1992. Jurassic palynology in Southwest Germany - state of the art. Cahiers de micropaleontologie 7 (1/2), 141-156, 3 pi. Fenton, J. P. G. and Fisher, M. J., 1978. Regional distribution of marine microplankton in the Bajocian and Bathonian of Northwest Europe. Palinologia, 1,233-243. Fliigel, E. & Steiger, T. 1981. An Upper Jurassic sponge-algal build-up from the northern Frankenalb, W. Germany. In: D. F. Toomey (ed.), European Fossil Reef Models. Spe­ cial Publication of the Society of Economic Paleontologists and Mineralogists 30, 371- 398. Gidejewska, M., and Wieczorek, J., 1977. Remarks on the Callovian and Lower Oxfordian of the Zalas area (Cracow Upland, Southern Poland). Bulletin de I’Academie de Polo- gne des Sciences de la Terre, 24 (3/4). Glowniak, E., 1997. Middle Oxfordian ammonites. JMG Newsletter 6.12-13. Glowniak, E., Matyja, B. A., Poulsen, N. E., and Wierzbowski, A., 1997a. Oxfordian (Jurassic) Meeting in Poland, 26-28 May 1997. JMG Newsletter 6.12. Glowniak, E., Matyja, B. A., Poulsen, N. E., and Wierzbowski, A., 1997b. Oxfordian (Jurassic) Meeting in Poland, 26-28 May 1997. International Subcommission on Ju­ rassic Stratigraphy, Newsletter 25.44- 46. Glowniak, E., 1997. The phytogeny, taxonomy and stratigraphical importance of Per- isphinctidae of the Middle Oxfordian in the Cracow-Czestochowa Upland (in Polish). Unpublished Ph.D. Thesis, University of Warsaw, 330 pp., 49 pi. Gocht, H., 1970. Dinoflagellaten-Zysten aus dem Bathonium des Erdolfeldes Aldorf (NW Deutschland). Palaeontographica, Abt. B, 129,125-165. Gorka, H., 1970. Callovian cysts from Lukow (Poland). Acta Palaeontologica Polonica 15 (4), 479-498,6 pi. Gwinner, M. P. 1976. Origin of the Upper Jurassic limestones of the Swabian Alb (Southwest Germany). Contributions to Sedimentology 5,1-75. Hampton, M. A. 1972. The role of subaqueous debris flow in generating turbidity currents. Journal of Sedimentary Petrology 42,775-793. Hammes, U. 1995. Initiation and development of small-scale sponge mud-mounds, late Jurassic, southern Franconian Alb, Germany. Special Publication of the International Association of Sedimentologists 23, 335-357. Hahn, W., Westermann, G. E. G., and Jordan, R., 1990. Ammonite fauna of the Upper Ba­ thonian Hodsoni Zone (Middle Jurassic) at Lechstedt near Hildesheim, Northwest Germany. Geo/. Jb. A121,21-63. Hannover. •

182 GEUS Hakenberg, M., and Swidrowska, J., 1997. Propagation of the south-eastern segment of the Polish Trough connected with bounding fault zones (from Permian to the Late Juras­ sic). C. R. Acad. Sci., Paris, t.324, series lia, p.793-803. Paris. Haq, B. U., Hardenbol, J., and Vail, P. R., 1987. Chronology of fluctuating sea levels since the Triassic. Science 235,1156-1167. Howard, J. D., Frey, R. W., 1975. Estuaries of the Georgia coast, USA: sedimentology and biology. Senckenberg. Marit, 7, 33-103. Hakanson, L, Jansson, M., 1983. Principles of Lake Sedimentology. - Springer, 316 pp. Berlin. Kopik, J., 1974. Genus Cadomites Munier-Chalmas, 1892 () in the Upper Bajo- cian and Bathonian of the Cracow-Wielun Jurassic Range and the Gory Swietokrzyskie Mountains (southern Poland). Biul. Inst Geo/., 276,7-54. Warsaw. Kopik, J., and Znosko, J., 1968. La limite du Bajocien et du Bathonien de meme que le probleme du Vesulien et du Kuyavien en Pologne (in Polish). Przegl. Geo/., 6, 269-273. Warsaw. Krause, F. F. & Oldershaw, A. E. Submarine carbonate breccia beds - a depositional model for two-layer sediment gravity flows from the Sekwi Formation (Lower ), Mackensie Mountains, Northwest Territories, Canada. Canadian Journal of Earth Sci­ ences, 16,189-199. Kutek, J., 1994. Jurassic tectonic events in south-eastern cratonic Poland. Acta Geol. Polon., 44,167-221. Warsaw. Kutek, J., 1997. The Polish Permo-Mesozoic Rift Basin. IGCP Project No. 369 .Comparative Evolution of Peri Tethyan Rift Basins”. Abstract Book, 4th Annual Meet­ ing and Fieldtrip. Barcelona, Spain. Kutek, J., Matyja, B. A., and Wierzbowski, A., 1984. Late Jurassic biogeography in Poland and its stratigraphic implications. International Symposium on Jurassic Stratigraphy, Erlangen. Symp. Vol. Ill, 744-754. Copenhagen. Kutek, J., and Zeiss, A., 1997. The highest Kimmeridgian and the Lower Volgian in Central Poland: their ammonites and biostratigraphy". Acta Geologica Polonica 47 (3-4), 107- 198. Lentin, J. K. and Williams, G L, 1993. Fossil dinoflagellates: Index to genera and species. 1993 edition. American Association of Stratigraphic Palynologists Contributions Series 28, 856 p. Mangold, Ch., and Rioult, M., 1997. Bathonien, pp. 55-62. In: E. Cariou, and P. Hantzper- gue (coord.), Biostratigraphie du Jurassique ouest - europeen et mediterranean: zona- tions parallels et distribution des invertebres et microfossiles. Bull. Centre Rech. Elf Explo Prod.., Mem. 17. Marek, S. and Pajchlowa, M., (eds). 1997. Epikontynentlny perm i mezozoik w Polsce. Prace Inst. Geol., t. CLIII, 1-452. Warszawa Martinsson, A., 1970. Toponomy of trace fossils. - In. Crimes, T. P., and Harper, J. C., (eds). Trace fossils, 323-330. Seel House. London Matyja, B. A. 1976. Oksford poludniowo-zachodniego obrzezenia Gor Swietokrzyskich, 85 pp. Unpublished Ph.D. thesis. University of Warsaw. Matyja, B. A., Gutowski, J., and Wierzbowski, A., 1989. The open shelf - carbonate platform succession at the Oxfordian/Kimmeridgian boundary in the SW margin of the Holy Cross Mountains; stratigraphy, facies and ecological implications. Acta Geol. Polon., 39 (1-4), 29-48. Warsaw. Matyja, B. A., Merta, T. & Wierzbowski, A. 1985. Stratygrafia i lithologia utworow jurajskich struktury Zalesia. Utwory jurajskie struktury Zalesia na Kujawach i ich znaczenie surowcowe, 19-29. Wydawnictwa Geoldgiczne, Warsaw.

G EUS 183 Matyja, B. A. & Pisera, A. 1991. Late Jurassic European sponge megafacies: general per­ spective. 3rd International Symposium on Jurassic Stratigraphy 81. Poitiers. Matyja, B. A., and Tarkowski, R., 1981. Lower and Middle Oxfordian ammonite bios­ tratigraphy at Zalas in the Cracow Upland. Acta Geologica Polonica, 31 (1-2). Matyja, B. A. and Wierzbowski, A., 1981. The Upper Jurassic Rocks at Barcin and Piechin; Their stratigraphy and facies as compared with neighbouring areas (In Polish, with English summary). Kwartalnik geologiezny, t. 25, 3,513-526. Matyja, B. A. & Wierzbowski, A. 1985. Rozwoj sedymentacji i zroznicowanie facjalne w jurze gomej struktury Zalesia. Utwory jurajskie struktury Zalesia na Kujawach i ich znaczenie surowcowe, 30-35. Wydawnictwa Geologiczne, Warsaw. Matyja, B. A. and Wierzbowski, A., 1995. Biogeographic differentiation of the Oxfordian and Early Kimmeridgian ammonite fauna of Europe, and its stratigraphic consequences. Acta Geol. Polon., 45 (1-2), 1-8. Warsaw. Matyja, B. A. and Wierzbowski, A., 1996. Sea-bottom relief and bathymetry of Late Jurassic sponge megafacies in Central Poland. GeoResearch Forum, 1-2,333-340. Matyja, B. A. and Wierzbowski, A., 1997. The quest for a unified Oxfordian/Kimmeridgian boundary: implications of the ammonite succession at the turn of the Bimammatum and Planula Zones in the Wielun Upland, Central Poland. Acta Geologica Polonica 47 (1-2), 77-105. Warsaw Matyszkiewicz, J. & Krajewski, M. 1996. Lithology and sedimentation of Upper Jurassic massive limestones near Bolechowice, Krakow-Wielun upland, south Poland. Annates Societatis Geologorum Poloniae 66,285-301. Matyja B. A., Poulsen N. E,, and Wierzbowski' A., 1997. Upper Oxfordian Palaeontology. JMG Newsletter 6.13-15. Melendes, G., 1997a. Report on Oxfordian Working Group. JMG Newsletter 6.10-12. Melendes, G., 1997b. Report on Callovian - Oxfordian Boundary Working Group. Interna­ tional Subcommission on Jurassic Stratigraphy, Newsletter 25.43- 44. Nichols, M. M., Biggs, R. B., 1985. Estuaries. - In: Davis, R. A., Jr., (ed.). Coastal Sedimen­ tary Environments. Springer, 716 pp. New York. Oschmann, W., Herbin, J. P., Rossler, J., Liu, CH., 1996. Milankovitch-Zyklen in Kimme- ridge Clay (England, Oberjura) ermittelt aus palaookologischen und geocheischen Oaten. - Zbl. Geol. Palaont, 1.5/6,545-559. Stuttgart. Pavia, G., 1971. Ammoniti del Baiociano superiore di Digne (Francia SE, dip. Basses- Alpes). Boll. Soc. Paleont. Italiana, 10 (2), 75-142. Modena. Pisera, A. 1997. Upper Jurassic siliceous sponges from the Swabian Alb: taxonomy and Paleoecology. Palaeontologia Polonica 57,216 pp. Poulsen, N. E., 1989. Sample-catalogue of samples collected in Poland, 1988. Geological Survey of Denmark, Internal report 33,27 pp. Poulsen, N. E., 1992. Jurassic dinoflagellate stratigraphy of the Danish Subbasin in relation to sequences in England and Poland; a preliminary review. Review of Palaeobotany and Palynology, 75, 33-52. Poulsen, N. E., 1993. Dinoflagellate cyst biostratigraphy of the Oxfordian and Kimmeridgian of Poland. Acta Geologica Polonica, 43 (3-4), 251-272. Poulsen, N. E., 1994. Dinoflagellate cyst biostratigraphy of the Late Jurassic of Poland. Geobios, M. S. 17, 401-407. Poulsen, N. E., 1996. Dinoflagellate cysts from marine Jurassic deposits in the Danish Subbasin and from Poland. American Association of Stratigraphic Palynologists, Con ­ tribution Series, 31, 227 pp.

184 GEUS Poulsen, N. E., Drewniak, A., Glowniak, E., Ineson, J., Matyja, B. A., Merta, T., and Wier- zbowski, A., 1995. The polish Middle to Late Jurassic Epicratonic Basin, stratigraphy, facies and basin history. Geological Survey of Denmark, Datadokumentation 14-1995, 26 pp. Poulsen, N. E., Gudmundsson, L, Hansen, J. M. and Husfeldt, Y., 1990. Palynological preparation techniques, a new macerationtank-method and other modifications. Geo ­ logical Survey of Denmark, Series C 10,24 pp. Poulsen, N. E., and Riding, J. B., (in press). Dinoflagellate cyst zonations signals of changes in Jurassic palaeotemperature and sea-level changes. In: Surlyk, F., and Ine­ son, J., et a/., (eds): The Jurassic of Denmark and Greenland (provisional title). Special Issue of the Geological Survey of Denmark and Greenland. Prauss, M., 1989. Dinozysten-Stratigraphie und Palynofazies im Oberen Lias und Dogger von NW-Deutschland. Palaeontographica Abt. B. 214,1-124. Premik, J., 1934. Ober den geologischen Bau und Geschichte der Umgegend von Czesto­ chowa (in Polish with German summary). Ziemia Czestochowska, 1,177-266. Czesto­ chowa. Radwan, D., Szuwarzynska, K., Hammer, I., Wierzbowski, A., Matyja, B. A. & Merta, T. 1990. Kujawski okreg eksplatajci surowcow weglanowych - mapa geologiczno - surowcowa, CPBP 04.10, Panstwowy lnstytut Geologiczny, Warsaw. Rehbinder, .1913. Die mitteljurassischen eisenerzfuhrenden Tone langs dem sudwestlichen Rande des Krakau - Wieluner Zuges in Polen. Z. Dtsch. Geo/. Ges., 65,181-349. Ber­ lin. Riding, J. B., Penn, I. E., and Woollam, R., 1985. Dinoflagellate cysts from the type area of the Bathonian Stage (Middle Jurassic; Southwest England). Review of Palaeobotany and Palynology, 45,149-169. Rioult, M., Contini, D., Elmi, S., Gabilly, J., and Muterde R., 1997. Bajocien, pp. 41-53. In: Cariou, and P. Hantzpergue (coord.), Biostratigraphie du Jurassique ouest - europeen et mediterranean: zonations parallels et distribution des invertebres et microfossiles. Bull. Centre Rech. Elf Explor. Prod., Mem. 17. Riding, J. B. and Thomas, J. E., 1988. Dinoflagellate cyst stratigraphy of the Kimmeridge Clay (Upper Jurassic) from the Dorset coast, southern England. Palynology 12,65-88. Riding, J. B. and Thomas, J. E., 1992. Dinoflagellate cysts of the Jurassic System. In: Powell, A. J., (ed.), A Stratigraphic Index of Dinoflagellate Cysts. Chapman and Hall, London, U. K., 7-97. Rdzycki, S.Z., 1953. Gomy dogger i dolny malm Jury Krakowsko-Czestochowskiej. Prace Inst. Geol., 17,1-412. Warsaw. Schorr, M. & Koch, R. 1985. Fazieszonierung eines oberjurassichen Algen-Schwamm- Bioherms (Herriingen Schwabische Alb). Facies 13,227-270. Seilacher, A., 1962. Paleontological studies on turbidite sedimentation and erosion. - Jour. Geol., 70, 2,227-234. Chicago. Sturani, C., 1966. Ammonites and stratigraphy of the Bathonian in the Digne-Barreme area (south-eastern France. Dept. Basses-Alpes). Boll. Soc. Paleont. Italiana, 5 (1), 3-57. Modena. Swidrowska, J., 1994. Direction of the Aalenian transgression in the area of Mid-Polish Trough. Geol. Quart., 38 (2), 319-336. Warsaw. Taugourdeau-Lantz, J. and Lachkar, G., 1984. Stratigraphic par les marqueurs palynologi- ques sur la Bordure Ardchoise du Bassin du sud-est. In: Programme Geologic pro- fonde de la France, Theme 11; Subsidence et diagenese. Documents du BRGM, 81-1 1, pp. 59-7 1.

G EUS 185 Trammer, J. 1982. Lower to Middle Oxfordian sponges of the Polish Jura. Acta Geologica Polonica 32,1-39. Trammer, J. 1989. Middle to Upper Oxfordian sponges of the Polish Jura. Acta Geologica Polonica 39,49-91. Williams, G L, Stover, L. E., and Kidson, E. J. 1993. Morphology and stratigraphic ranges of selected Mesozoic-Cenozoic dinoflagellate taxa in the northern hemisphere. Geologi­ cal Survey of Canada, Paper. 92-10,137 pp., 2 pi. Wilson, J. L. 1975. Carbonate Facies in Geologic History. 471 pp. Springer Verlag, New York. Wimbledon, W. A. and Cope, J. C. W., 1978. The ammonite faunas of the English Portland Beds and the zones of the Portlandian Stage. Journal of the Geological Society of Lon­ don, 135, 183-190. Woollam, R. and Riding, J. B., 1983. Dinoflagellate cyst zonation of the English Jurassic. Institute of Geological Sciences Report 83/2,44 p. Zany, D., Mangold, Ch., Marchand, D., and Tehour, M., 1995. Biostratigraphie et stratigra- phie sequentielle du Bajocien superieur - Bathonien inferieur dans le Nivemais. Geo/, de la France, 1,47-61. Ziegler, P. A., 1990. Geological Atlas of Central and Western Europe. Shell Int. Pet. Mij. and Geol. Soc. London, pp. 235. Znosko, J., 1954. Stratygrafia ilow rudonooenych na podstawie otworow wiertniczych. Biul. Inst. Geol., 93b, 183-284. Warsaw.

186 GEUS Appendix 1

Resultateme af ferste del af undersagelsen af den Mellem Jurassiske (Bajocien - Bathoni- en) bitumin0se (organisk rige) lerstens aflejringer er samlet i Bojesen-Koefoed (1996). Un- ders0gelsen af de restende 144 proven v.h.a. Rock-Eval/TOC screening er samlet i dette appendix. Resultateme viser TOC-vaerdier mellem 0.23% og 2.59% (gennemsnit = 1.24 %), og meget lave Hydrogen Index vaerdier mellem 6 og 141. Det organiske materials kan klassificeres som kerogen-type lll/IV. Kerogenet ma beskrives som generelt umodent med hensyn til olie - gas dannelse.

Lokaliteter: Faustianka 20 proven Krzyworzeka 28 proven Malogoszcz 8 proven Pacanow 1 prove Sowa og Glinsky 24 proven Leszczynski 19 pr0ver Alina 15 pr0ver Aniol 7 pr0ver Gnaszyn 23 pnaver Kawodrza 4 pr0ver

GEUS 187 188 GEUS Locality: SOVA & GLINSKI 1

Material: Database: 96GEUS

Client: NIELS POULSEN Ref.no: 96065

Comments :

Date: 20. DECEMBER 1996 Device: LECO IR-212/ROCK EVAL II

TOC Tmax SI S2 PI PC HI Sample_NO (wt-%) (C) (mg HC/g rock) #

NPB-1 0.84 426 0.04 0.32 0.11 0.03 38 69 NPC-O 0.92 429 0.04 0.44 0.08 0.04 48 70 PC-1 0.84 419 0.03 0.40 0.07 0.04 48 71 NPC-2 1.04 427 0.03 0.33 0.08 0.03 32 72 NPC-3 1.00 429 0.01 0.35 0.03 0.03 35 73 NPC-4 1.51 424 0.03 0.63 0.05 0.05 42 74 NPC-5 1.33 428 0.02 0.50 0.04 0.04 38 75 NPC-6 1.05 428 0.03 0.49 0.06 0.04 47 76 NPC-7 1.26 428 0.01 0.40 0.02 0.03 32 77 NPC-8 1.36 430 0.03 0.63 0.05 0.05 46 78 NPD-1 1.40 430 0.04 0.67 0.06 0.06 48 79 NPD-2 1.06 425 0.03 0.50 0.06 0.04 47 80 NPD-3 1.50 424 0.03 0.67 0.04 0.06 45 81 NPD-4 1.51 425 0.03 0.51 0.06 0.04 34 82 NPE-1 1.40 427 0.03 0.55 0.05 0.05 39 83 NPE-2 1.06 425 0.03 0.51 0.06 0.04 48 84 NPE-3 1.40 424 0.03 0.55 0.05 0.05 39 85 NPE-4 1.43 423 0.04 0.60 0.06 0.05 42 86 NPE-5 1.22 424 0.03 0.51 0.06 0.04 42 87 NPE-6 1.32 434 0.03 0.41 0.07 0.04 31 88 •TPF-1 1.12 425 0.03 0.43 0.07 0.04 38 89 -vPF-2 1.29 424 0.03 0.39 0.07 0.03 30 90 NPF-3 0.84 422 0.04 0.32 0.11 0.03 38 91 NPG-1 0.99 425 0.03 0.36 0.08 0.03 36 92

GEUS 189 190 GEUS Locality: LESZCZYNSKI 1 Material: Database: 96GEUS

Client: NIELS POULSEN Ref.no: 96065

Comments:

Date: 20. DECEMBER 1996 Device: LECO IR-212/ROCK EVAL II

TOC Tmax SI S2 PI PC HI Sample_N0 (wt-%) (C) (mg HC/g rock) #

NP-L 1 0.53 421 0.02 0.18 0.10 0.02 34 46 >Tt-L 2 0.82 425 0.01 0.28 0.03 0.02 34 47 -J-L 3 0.62 423 0.03 0.33 0.08 0.03 53 48 NP-L 4 0.58 429 0.03 0.35 0.08 0.03 60 49 NP-L 5 0.78 427 0.04 0.36 0.10 0.03 46 50 NP-L 6 0.76 431 0.03 0.33 0.08 0.03 44 51 NP-L 7 0.79 424 0.01 0.29 0.03 0.02 37 52 NP-L 8 0.53 431 0.01 0.27 0.04 0.02 51 53 NP-L 9 0.45 429 0.01 0.23 0.04 0.02 51 54 NP-L 10 0.69 427 0.03 0.33 0.08 0.03 48 55 NP-L 11 0.65 422 0.01 0.25 0.04 0.02 39 56 NP-L 12 0.80 427 0.02 0.32 0.06 0.03 40 57 NP-L 13 0.82 421 0.04 0.34 0.11 0.03 41 58 NP-L 14 0.88 417 0.01 0.33 0.03 0.03 37 59 NP-L 15 0.70 421 0.01 0.25 0.04 0.02 36 60 NP-L 16 0.93 426 0.01 0.33 0.03 0.03 36 61 NP-L 17 0.69 428 0.04 0.28 0.13 0.03 41 62 NP-L 18 0.71 429 0.04 0.40 0.09 0.04 57 63 NP-L 19 0.57 430 0.03 0.33 0.08 0.03 58 64

GEUS 191 GEUS 192 Locality: ALINA 1

Material: Database: 96GEUS

Client: NIELS POULSEN Ref.no: 96065 Comments:

Date: 20. DECEMBER 1996 Device: LECO IR-212/ROCK EVAL II

TOC Tmax SI S2 PI PC HI Sample_NO (wt-%) (C) (mg HC/g rock) #

NP-AL 1 1.52 426 0.08 1.00 0.07 0.09 66 1 XTP-AL 2 1.51 428 0.07 0.79 0.08 0.07 52 2 .P-AL 3 1.32 426 0.08 0.48 0.14 0.05 36 3 NP-AL 4 1.35 427 0.06 0.50 0.11 0.05 37 4 NP-AL 5 1.14 424 0.05 0.46 0.10 0.04 40 5 NP-AL 6 0.88 430 0.03 0.35 0.08 0.03 40 6 NP-AL 7 0.83 431 0.05 0.33 0.13 0.03 40 7 NP-AL 8 1.06 433 0.03 0.31 0.09 0.03 29 8 NP-AL 9 1.06 433 0.04 0.28 0.13 0.03 27 9 NP-AL 10 0.96 428 0.06 0.34 0.15 0.03 35 10 NP-AL 11 0.69 430 0.05 0.23 0.18 0.02 33 11 NP-AL 12 0.56 433 0.05 0.23 0.18 0.02 41 12 NP-AL 13 0.52 433 0.03 0.23 0.12 0.02 45 13 NP-AL 14 0.53 434 0.05 0.27 0.16 0.03 51 14 NP-AL 1ST 1.12 425 0.05 0.53 0.09 0.05 47 15

GEUS 193 GEUS 194 Locality: ANIOL 1

Material: Database: 96GEUS

Client: NIELS POULSEN Ref.no: 96065

Comments:

Date: 20. DECEMBER 1996 Device: LECO IR-212/ROCK EVAL II

• TOC Tmax SI S2 PI PC HI Sample_NO (wt-%) (C) (mg HC/g rock) #

NPX-1 1.26 426 0.06 0.64 0.09 0.06 51 16 TkTPX-2 1.23 427 0.03 0.50 0.06 0.04 41 17 PX-3 1.12 427 0.04 0.56 0.07 0.05 50 18 NPX-4 0.92 423 0.03 0.46 0.06 0.04 50 19 NPX-5 0.90 418 0.03 0.46 0.06 0.04 51 20 NPA-1 1.20 425 0.03 0.59 0.05 0.05 49 21 NPA-2 0.95 419 0.03 0.43 0.07 0.04 45 22

G EU S 195 GEUS 196 Locality: GNASZYN 1

Material: Database: 96GEUS

Client: NIELS POULSEN Ref.no: 96065 Comments:

Date: 20. DECEMBER 1996 Device: LECO IR-212/ROCK EVAL II

TOC Tmax SI S2 PI PC HI Sample_N0 (wt-%) (C) (mg HC/g rock) #

NP-G l 0.98 418 0.03 0.38 0.07 0.03 39 23 NP-G 2 1.46 427 0.09 0.56 0.14 0.05 38 24 P-G 3 1.34 425 0.01 0.45 0.02 0.04 34 25 NP-G 4 1.88 426 0.07 0.55 0.11 0.05 29 26 NP-G 5 2.04 423 0.03 0.62 0.05 0.05 30 27 NP-G 6 1.67 426 0.03 0.57 0.05 0.05 34 28 NP-G 7 1.83 431 0.11 0.73 0.13 0.07 40 29 NP-G 8 1.50 425 0.03 0.58 0.05 0.05 39 30 NP-G 9 1.81 421 0.03 0.67 0.04 0.06 37 31 NP-G 10 1.71 427 0.03 0.72 0.04 0.06 42 32 NP-G 11 1.66 430 0.03 0.60 0.05 0.05 36 33 NP-G 12 1.64 421 0.04 0.58 0.06 0.05 35 34 NP-G 13 1.68 427 0.03 0.62 0.05 0.05 37 35 NP-G 14 1.73 419 0.04 0.62 0.06 0.05 36 36 NP-G 15 1.73 427 0.03 0.75 0.04 0.06 43 37 NP-G 16 1.74 430 0.04 0.53 0.07 0.05 30 38 NP-G 17 1.75 428 0.03 0.64 0.04 0.06 37 39 NP-G 18 1.52 428 0.01 0.37 0.03 0.03 24 40 NP-G 19 1.23 431 0.03 0.41 0.07 0.04 33 41 NP-G 20 1.41 429 0.03 0.44 0.06 0.04 31 42 'TP-G 21 0.80 434 0.03 0.35 0.08 0.03 44 43 -.P-G 22 0.75 431 0.03 0.29 0.09 0.03 39 44 NP-G 23 1.38 428 0.03 0.52 0.05 0.05 38 45

G EU S 197 GEUS 198 Locality: KAWODRZA 1

Material: Database: 96GEUS Client: NIELS POULSEN Ref.no: 96065

Comments:

Date: 20. DECEMBER 1996 Device: LECO IR-212/ROCK EVAL II

TOC Tmax SI S2 PI PC HI Sample_NO (wt-%) (C) (mg HC/g rock) #

NP-KW 1 1.26 427 0.03 0.46 0.06 0.04 36 65 -'P-KW 2 1.13 426 0.03 0.45 0.06 0.04 40 66 .

GEUS 199 GEUS 200 Appendix 2

This Appendix gives, in alphabetical order, Middle and Late Jurassic dinoflagellate cyst species encountered in this study and indicates for each specimen, their location, sample and age affiliation. The generic allocation of follows Lentin and Williams (1993) and Wil­ liams etal. 1993.

GEUS 201 GEUS 202 Middle Jurassic of Poland

Adnatosphaeridium caulleryi Bathonian =25,00 Kawodrza clay pit Sample NPKw-1 Slide 4, coordinates 35.0-99.0

Adnatosphaeridium caulleryi Bathonian =25,00 Kawodrza clay pit Sample NPKw-1 Slide 4 Coordinates 52.8-92.5

Adnatosphaeridium caulleryi Bathonian =25,00 Gnaszyn clay pit Sample NPG-7 Slide 4, coordinates 39.0-95.0

Adnatosphaeridium caulleryi Bathonian =25,00 Kawodrza clay pit Sample NPKw-1 Slide 4 Coordinates 29.0-95.0

Adnatosphaeridium caulleryi Bathonian =25,00 Gnaszyn clay pit Sample NPG-7 Slide 4, coordinates 27.0-93.0 NEP-1998-022

Aldorfia aldorfensis Uppermost Bajocian =25,00 Aniol clay pit Sample NPX-1 Slide 4 Coordinates 26.7-103.2

Atopodinium haromense Uppermost Bajocian =25,00 Aniol clay pit Sample NPX-1 Slide 4, coordinates 30.0-99.0 NEP-1998-017

Niels E. Poulsen \ Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark T«t. -1.AC <30 a a no && ^.acz no a a on zrn tr GEUS 204 Middle Jurassic of Poland

Atopodinium polygonatis Middle Bathonian

Faustianka clay-pit Sample 7.6 m (section C) Slide 4, coordinates 37.0-94.5 Ortholux NEP-1998-009

Atopodinium polygonaBs Early-Middle Bathonian =25,00 Gnaszyn clay pit Sample NPG-7 Slide 4, coordinates 54.4-105.0

Atopodinium polygonatis Bathonian =25,00 Leszczynski clay pit Sample NPL-18 Slide4 Coordinates 27.0-103.0

Atopodinium polygonalis Bajocian =25,00 Alina clay pit Sample AH5 Slide 4, coordinates 54.0-95.0 NEP-1998-010

Atopodinium prostatum Bathonian =25,00 Leszczynski clay pit Sample NPL-10 Slide 4, coordinates 43.0-95.0 NEP-1998-008

Marker species for DSJ-15b svarende til Tenuiplicatus Zone or younger

Atopodinium prostatum Bathonian =25,00 Leszczynski clay pit Sample NPL-18 Slide 4 Coordinates 36.0-101.0

Atopodinium prostatum Bathonian =25,00 Kawodrza clay pit Sample NPKw-1 Slide 4 Coordinates 56.6-93.7

Niels E. Poulsen 2 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark GEUS 206 Middle Jurassic of Poland

Barbatacysta creberbarbata Uppermost Bajocian =12,90 Alina clay pit Sample Np-AH Slide 3 Coordinates 58.0-105.0

Barbatacysta creberbarbata Bathonian =53,20 Sowa & Glinski clay pits Sample NPG-1 Slide 4 Coordinates 23.0-93.0

y

Carpathodinium preda Bathonian =25,00 Leszczynski clay pit Sample NPL-18 Slide 4, exterior view, coordinates 39.0-95.0 NEP-1998-021

Carpathodinium preda Bathonian =40,00 Leszczynski clay pit Sample NPL-18 Slide 4, Coordinates 39.0-95.0 Note intercalary apical plates

Carpathodinium preda Bathonian =40,00 Leszczynski clay pit Sample NPL-18 Slide 4, Coordinates 39.0-95.0 View of sulcal area

Chytroeisphaeridia chyfroeides Uppermost Bajocian =25,00 Alina clay pit Sample NP-AI-9 Slide 4 Coordinates 38.0-101.0

1

Compositosphaeridium jurassicum Bajocian =25,00 Alina clay pit Sample NP-AH Slide 4 Coordinates 42.0-95.4

Niels E. Poulsen 3 '-’-•'-"I Srn.fv of Denmark and Greenland Thoravej 8,2400 Copenhagen NV. Denmark GEUS 208 Middle Jurassic of Poland

Compositosphaeridium polonicum Bathonian =25,00 Leszczynski clay pit Sample NPL-1 Slide 4, Coordinates 48.0-93.5 NEP-1998-026

Cribroperidinium crispum Bajocian n25,00 Alina clay pit Sample NP-AH Slide 3 Coordinates 52.5-95.4

Ctenidodinium combazii Bathonian n25,00 Kawodrza clay pit Sample NPKw-1 Slide 4, coordinates 39.0-93.0 NEP-1998-018

Ctenidodinium combazii Bajocian =25,00 Alina clay pit Sample Np-At-1 Slide 3, coordinates 45.5-109.0 NEP-1998-001

Ctenidodinium combazii Bajocian =25,00 Alina clay pit Sample Np-AM Slide 3 Coordinates 48.0-103.0

Ctenidodinium combazii Bajocian n25,00 Alina clay pit Sample AM Slide 3 Coordinates 48.0-103.0

Ctenidodinium combazii Bathonian =25,00 Sowa & Glinski clay pits Sample NPC-7 Slide 4 Coordinates 32.0-95.0

Niels E. Poulsen 4 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark t-i. t ac no 4 a no co _i./c no a a nr\ cr\ c GEUS 210 Middle Jurassic of Poland

Ctenidodinium combazii Bathonian n25,00 Sowa & Glinski clay pits Sample NPE-3 Slide 4 Coordinates 57.0-101.0

Ctenidodiniun continuum Early-Middle Bathonian n25,00 Kawodrza clay pit Sample NPKw-1 Slide 4, coordinates 47.8-101.4 NEP-1998-019

Ctenidodinium continuum Bathonian n25,00 Sowa & Glinski clay pits Sample NPE-3 Slide 4 Coordinates 48.4-99.0

Ctenidodinium continuum Middle Bathonian n25,00 Faustianka clay pit Sample 7.6 m (section C) Slide 4, coordinates 44.3-103.0 Ortholux

Ctenidodinium cornigera Bathonian n25,00 Leszczynski clay pit Sample NPL-10 Slide 4 Coordinates 24.0-99.0

Ctenidodinium cornigera Uppermost Bajocian o25,00 Aniol clay pit Sample NPX-1 Slide 4 Coordinates 39.0-97.0

Ctenidodinium cornigera Uppermost Bajocian o25, 00 Aniol clay pit Sample NPX-1 Slide 4 Coordinates 39.0-97.0

Niels E. Poulsen 5 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark GEUS 212 Middle Jurassic of Poland

Dichadogonyaulax sellwoodii Uppermost Bajocian =25,00 Aniol clay pit Sample NPA-1 Slide 4 Coordinates 40.0-99.0

Dichadogonyaulax sellwoodii Uppermost Bajocian =25,00 Aniol clay pit Sample NPX-1 Slide 4 Coordinates 58.0-97.0

Dichadogonyaulax selwoodii Bathonian =25,00 Sowa & Glinski clay pits Sample NPB-1 Slide 4 Coordinates 43.4-95.0

Dichadogonyaulax selwoodii Uppermost Bajocian =25,00 Alina clay pit Sample AH 5 Slide 4, coordinates 40.5-101.0 NEP-1998-002

Dingodinium minutum Lower-Middle Callovian ' | =25,00 Gniezdziska Quarry Sample GQ-7, marly layer, 16 m below top of Callovian Gaizes. Slide 4, coordinates 25.0-95.0. NEP-1998-039

'

Dissiliodinium erymnoteichos Bathonian =25,00 Leszczynski clay pit Sample NPL-1 Slide 4 Coordinates 31.0-97.0

Dissiliodinium hocneratum Bathonian =25,00 Leszczynski clay pit Sample NPL-10 Slide 4 Coordinates 45.0-97.0

Niels E. Poulsen 6 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark G EUS 214 Middle Jurassic of Poland

Dissiliodinium sp. Upper Bajocian =25,00 Alina clay pit Sample AH 5 Slide 4 Coordinates 525-106.8

Dissiliodinium sp.? Bathonian =25,00 Leszczynski clay pit Sample NPL-10 Slide 4 Coordinates 42.0-95.0

Dissiliodinium willei Bathonian =25,00 Sowa & Glinski clay pits Sample NPE-3 Slide 4 Coordinates 26.0-93.0

Dissiliodinium willei Uppermost Bajocian =25,00 Afina clay pit Sample Np-AM Slide 3, coordinates 36.0-107.0 NEP-1998-004

Dissiliodinium willei Uppermost Bajocian =25,00 Aniol clay pit Sample NPA-1 Slide 4 Coordinates 34.6-101.0

Ellipsiodictyum cinctum Uppermost Bajocian =40,00 Alina clay pit Sample Np-AM Slides Coordinates 21.3-96.9

Ellipsoidictyum cinctum Uppermost Bajocian =25,00 Aniol day pit Sample NPA-1 Slide 4 Coordinates 58.3-97.0

Niels E. Poulsen 7 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark GEUS 216 Middle Jurassic of Poland

Endoscrinium asymmetrichum Middle Bathonian n25,00 Faustianka clay pit Sample 6.4 m (section C) Slide 4, coordinates 30.0-96.9 Ortholux NEP-1998-011

Epiplosphaera bireticulata Lower Callovian =25,00 Gniezdziska Quarry. Sample GQ-6, ammonite layer (Calloviense Zone), 18m below top of Callovian gaizes. Slide 4, coordinates 24.9-99.0. NEP-1998-040

Epiplosphaera gochtii Bathonian =25,00 Leszczynski clay pit Sample NPL-18 Slide 4, coordinates 24.0-105.0 NEP-1998-012

Epiplosphaera gochtii Bathonian =25,00 Sowa & Glinski clay pits Sample NPG-1 Slide 4 Coordinates 38.6-95.0

Epiplosphaera reticulata Bajocian =25,00 Alina clay pit Sample NP-AI-9 Slide 4, coordinates 37.8-97.0

Escharisphaeridia cf. pocockii Bathonian =25,00 Sowa & Glinski clay pits Sample NPG-1 Slide 4 Coordinates 27.5-95.0

Escharisphaeridia pelionense Upperost Bajocian =25,00 Alina clay pit Sample NP-AH Slides Coordinates 95-54

Niels E. Poulsen 8 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark GEUS Middle Jurassic of Poland

Escharisphaeridia pocockii Bathonian =25,00 Leszczynski clay pit Sample NPL-10 Slide 4 Coordinates 57.0-95.0

Escharisphaeridia pocockii Bathonian rGS.OO Leszczynski clay pit Sample NPL-10 Slide 4 Coordinates 26.0-95.0

Escharisphaeridia pocockii Callovian =25,00 Gniezdziska Quarry Sample GQ 7, marly layer, 16 m below top of Callovian Gaizes. Slide 4, coordinates 34.0-111.0. NEP-1998-046

Fromeatornatilis Uppermost Bajocian n25,00 Aniol clay pit Sample NPX-1 Slide 4 Coordinates 38.0-111.0

Gen.etsp. indet. Upper Bajocian

Pacanow Clay Pit Sample Pa1 Slide 4, coordinates 48.5-111.0 Length 40 micrometer

Gen.etsp. indet. Bathonian =25,00 Leszczynski clay pit Sample NPL-10 Slide 4 Coordinates 27.0-95.0

Gonyaulacysfa eisenackii Lower-Middle Callovian =25,00 Gniezdziska Quarry Sample GQ 7, marly layer, 16 m below top of Callovian Gaizes. Slide 4, coordinates 32.0-95.0. NEP-1998-041

Niels E. Poulsen 9 Geoloaical Survey of Denmark and Greenland. Thoravei 8.2400 Cooenhaoen NV. Denmark GEUS Middle Jurassic of Poland

Gonyaulacysta jurassica adecta Early-Middle Bathonian =25,00 Kawodrza clay pit Sample NPKw-1 Slide 4, coordinates 41.0-101.0 NEP-1998-042

Gonyaulacysta jurassica adecta Uppermost Bajocian =25,00 Alina clay pit Sample AM5 Slide 4 Coordinates 42.4-97.0

Heslertonia? pellucida Middle Bathonian =40,00 Faustianka clay pit Sample 7.6 m (section C) Slide 4, coordinates 40.5-106.8 Ortholux cf. Hapsidaulax margarethae/ apical a.pyle

Impletospaheridium polytrichum Lower Callovian =25,00 Gniezdziska Quarry Sample GQ-6, slide 4, coordinates 23.0-95.0 ammonite layer (Calloviense Zone), 18 m below top of Callovian gaizes

Impletosphaeridium polytrichum Bathonian =25,00 Leszczynski clay pit Sample NPL-10 Slide 4 Coordinates 42.0-93.0

Impletosphaeridium polytrichum Middle Bathonian =25,00 Faustianka clay pit Sample 6.4 m (section C) Slide 4, coordinates - Ortholux NEP-1998-030

Impletosphaeridium varispinosum Lower Callovian =25,00 Gniezdziska Quarry. Sample GQ-6, ammonite layer (Calloviense Zone), 18m below top of Callovian gaizes. Slide 4, coordinates 54.0-93.4. NEP-1998-029

The outcrop is situated about 25 km west of Kielce. The outcrop has been described by Drewniak and

Niels E. Poulsen 10 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark G EU S 222 Middle Jurassic of Poland

Jansonia sp. Bathonian =25,00 Kawodrza clay pit Sample NPKw-1 Slide 4, coordinates 32.0-95.0 NEP-1998-020

Kallosphaeridium capulalum Uppermost Bajocian =25,00 Alina clay pit Sample NP-AH Slides Coordinates 24.9-97.3

Kallosphaeridium hypomatum Uppermost Bajocian =25,00 Alina clay pit Sample AI-9 Slide 4 Coordinates 25.9-103.0

Kallosphaeridium hypomatum Uppermost Bajocian =25,00 Aniol clay pit Sample NPX-1 Slide 4, coordinates 35.0-99.0 NEP-1998-032

Kallosphaeridium praussii Bathonian =25,00 Sowa & Glinski clay pits Sample NPE-3 Slide 4 Coordinates 35.0-93.0

Kallosphaeridium praussii Bathonian =25,00 Sowa & Glinski clay pits Sample NPE-3 Slide 4, coordinates 28.0-93.0 NEP-1998-031

Kallosphaeridium praussii Middle Bathonian =25,00 Faustianka clay pit Sample 6.8 m (section C) Slide 3, coordinates 29.5-95.0 Ortholux

Niels E. Poulsen 11 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark GEUS Middle Jurassic of Poland

Kalyptea stegasta Middle Bathonian n25,00 Faustianka clay pit. Sample 6.8 m (section C) Slide 4, coordinates 31.7-112.5 Ortholux coordinates 31-111 OrthoPlan NEP-1998-033

Korystocysta gochtii Uppermost Bajocian b25,00 Alina clay pit Sample AM 5 Slide 4, coordinates 35.0-109.0 NEP-1998-005

Korystocysta gochtii Bathonian =25,00 Leszczynski clay pit Sample NPL-18 Slide 4 Coordinates 26.0-97.0

Korystocysta pachyderm Bathonian =25,00 Kawodrza clay pit Sample NPKw-1 Slide 4, coordinates 23.5-99.0

Korystocysta pachyderma Upper Bajocian

Pacanow Clay Pit Sample Pa1 Slide 4, coordinates 37.0-102.8 NEP-1998-006

Korystocysta sp. Uppermost Bajocian =25,00 Alina clay pit Sample Np-AM Slide 3 Coordinates 57.0-97.0

Korystocysta sp. Uppermost Bajocian =25,00 Alina clay pit Sample Np-AM Slides Coordinates 57.0-101.0

Niels E. Poulsen 12 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark GEU S 226 Middle Jurassic of Poland

Koystocysta gochtii Bathonian =25,00 Kawodrza clay pit Sample NPKw-1 Slide 4 Coordinates 31.0-95.0

Leptodinium cf. subfile Upper Bajocian =3,00 Pacanow Clay Pit Sample Pa1 Slide 3, coordinates 51.5-95.0 NEP-1998-045

Lithodinia caytonensis Uppermost Bajocian =16,90 Alina clay pit Sample NP-AI-9 Slide 4 Coordinates 54.7-101.0

Lithodinia caytonensis Uppermost Bajocian =16,90 Alina clay pit Sample NP-AI-9 Slide 4 Coordinates 54.7-101.0

Lithodinia caytonensis Uppermost Bajocian =16,90 Specimen with pyrite casts Alina clay pit, Sample NP-AI-9 Slide 4, coordinates 37.5-101.0

Lithodinia caytonensis Callovian =25,00 Gniezdziska Quarry Sample GQ 7, slide 4, coordinates 31.0-99.0 marly layer, 16 m below top of Callovian gaizes

Lithodinia caytonensis Callovian =25,00 Gniezdziska Quarry Sample GQ 7, slide 4, coordinates 60.0-105.0 marly layer, 16 m below top of Callovian gaizes. NEP-1998-043

Niels E. Poulsen 13 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark GEUS Middle Jurassic of Poland

Lithodiniajurassica Bathonian =87,40 Leszczynski clay pit Sample NPL-18 Slide 4, coordinates 57.0-99.0 NEP-1998-044

Lithodiniajurassica Uppermost Bajocian =35,40 Aniol clay pit Sample NPX-1 Slide 4 Coordinates 37.5-928

4

Lithodiniajurassica Upper Bajocian MO,00 Pacandw Clay Pit Sample Pa1 Slide 3, coordinates 44.5-95.2

Lithodinia valensii Uppermost Bajocian =20,75 Alina clay pit Sample AM 5 Slide 4 Coordinates 26.7-97.0

Lithodinia valensii Uppermost Bajocian n39,20 Aniol clay pit Sample NPA-1 Slide 4 Coordinates 49.0-111.0

Lithodinia valensii Upper Bajocian

Pacandw Clay Pit Sample Pa1 Slide 4, coordinates 52.0-106.6

Lithodinia valensii Upper Bajocian =25,00 Pacanow Clay Pit Sample Pa1 Slide 3, coordinates 48.0-103.0

Niels E. Poulsen 14 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark GEUS 230 Middle Jurassic of Poland

Lithodinia valensii Upper Bajocian =25,00 Pacanow Clay Pit Sample Pa1 Slide 4, coordinates 51.0-96.8 aff. Ambonosphaera staffinensis

Mendicodinium groenlandicum Middle Callovian =25,00 Gniezdziska Quarry Sample GQ 7, marly layer, 16 m below top of Callovian gaizes. Slide 4, coordinates 48.4-94.6. NEP-1998-047

Nannoceratopsis gracilis Uppermost Bajocian =25,00 Aniol clay pit Sample NPX-1 Slide 4, coordinates 31.5-95.0 NEP-1998-014

Nannoceratopsis gracilis Uppermost Bajocian =25,00 Aniol clay pit Sample NPX-1 Slide 4, coordinates 31.5-95.0 NEP-1998-014

Nannoceratopsis pellucida Bathonian =25,00 Sowa&Glinski clay pits Sample NPB-1 Slide 4 A: Coordinates 59.5-103.0 : " ^ :

Nannoceratopsis pellucida Callovian =25,00 Gniezdziska Quarry Sample GQ7, slide 4, coordinates 33.5-96.7 marly layer, 16 m below top of Callovian I# I gaizes. NEP-1998-013 If '1i

Nannoceratopsis raunsgaardii Uppermost Bajocian =25,00 Alina clay pit Sample AH 5 Slide 4, coordinates 35.0-109.0 NEP-1998-016

Niels E. Poulsen 15 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark GEUS 232 Middle Jurassic of Poland

Nannoceratopsis senex Bathonian =25,00 Gnaszyn clay pit Sample NPG-19 Slide 4, coordinates 39.5-107.0

Nannoceratopsis spiculata Uppermost Bajocian =25,00 Aniol clay pit Sample NPA-1 Slide 4, coordinates 55.5-105 NEP-1998-015

Omatidiumsp. Bathonian =25,00 Gnaszyn clay pit Sample NPG-23 Slide 4, coordinates 52.0-101.0

Pareodinia aphelia Upper Bajocian

Pacanow Clay Pit Sample Pa1 Slide 4, coordinates 41.0-111.0 NEP-1998-034

Pareodinia aphelia Uppermost Bajocian =25,00 Alina clay pit Sample At-15 Slide 4, coordinates 61.7-95.0 NEP-1998-035

Pareodinia aphelia Middle Bathonian =25,00 Faustianka clay pit Sample 6.8 m (section C) Slide 4, coordinates 34.1-106.5 Ortholux

Pareodinia aphelia "prolangata" Middle Bathonian =25,00 Faustianka clay pit Sample 6.8 m (section C) Slide 4, coordinates 34.1-106.5 Ortholux

Niels E. Poulsen 16 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark TAI» QQ A A Cf? Pav 4-/1R dA Oft F-Moil* non/fiVtoifQ rlk 234 GEUS Middle Jurassic of Poland

Pareodinia ceratophora Uppermost Bajocian =25,00 Alina clay pit Sample AH Slide 3, coordinates 52.7-99.0

Pareodinia ceratophora Uppermost Bajocian =25,00 Alina clay pit Sample Np-AM SlideS Coordinates 47.0-101.0

Pareodinia ceratophora Bathonian =25,00 Leszczynski clay pit Sample NPL-1 Slide 4, coordinates 27.0-109.0 NEP-1998-037

Pareodinia halosa Uppermost Bajocian =25,00 Aniol clay pit Sample NPX-1 Slide 4, coordinates 35.0-95.0 NEP-1998-036

Pareodinia prolongata Lower Callovian =25,00 Gniezdziska Quarry. Sample GQ-6 , ammonite layer (Calloviense Zone), 18m below top of Callovian gaizes. Slide 4, coordinates 39.0-92.7. NEP-1998-038

Rhynchodiniopsis? regalis Upper Bajocian

Pacanow Clay Pit Sample Pa1 Slide 4, apical view, coordinates 32.5-92.8 NEP-1998-028

Schizocystia lundii

Faustianka clay pit Sample 7.6 m (section C) Slide 4, coordinates 42.2-101.0 Ortholux

Niels E. Poulsen 17 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark T*li 1 AC no 4 A OO CC -L/C no 4 A nr\ cn ChA-sll- 236 GEUS Middle Jurassic of Poland

Sirmiodiniopsis orbis Bathonian =25,00 Leszczynski clay pit Sample NPL-18 Slide 4, coordinates 35.0-99.0 NEP-1998-048

Sirmiodinium gross! Lower Callovian =25,00 Gniezdziska Quarry Sample GQ-6 , slide 4, coordinates 26.0-99.0 ammonite layer (Calloviense Zone), 18m below top of Callovian gaizes

Tubotuberella apatela Bathonian =25,00 Sowa & Glinski clay pits Sample NPG-1 Slide 4 Coordinates 37.0-101.0

Tubotuberella apatela Bathonian =25,00 Gnaszyn clay pit Sample NPG-16 Slide 4, coordinates 40.3-101.0 NEP-1998-024

Tubotuberella apatela bathonian =25,00 Kizyworzeka clay pit Sample Krz, Sec. 1,3.7 m Slide 4, coordinates 45.0-93.3

Tubotuberella dangeardii Bathonian =25,00 Gnaszyn clay pit Sample NPG-16 Slide 4, coordinates 40.5-95.0

Tubotuberella dangeardii Bathonian =25,00 Gnaszyn clay pit Sample NPG-23 Slide 4, coordinates 48.4-93.0 NEP-1998-025

Niels E. Poulsen 18 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark Tol- 4-A c ; qa-l/oq RR Fay +45 351490 Fill F-Mail- nenlSlaBUS.dk GEUS 238 Middle Jurassic of Poland

Tubotuberella dangeardii Callovian =25,00 Gniezdziska Quarry Sample GQ 7, slide 4, coordinates 27.0-97,0 marly layer, 16 m below top of Callovian gaizes

Valensiella ovula Uppermost Bajocian n40,00 Alina clay pit Sample NP-AI-9 Slide 4 Coordinates 32.0-96.9

Valensiella ovula Uppermost Bajocian =25,00 Alina clay pit Sample AMS Slide 4 Coordinates 61.0-107.0

Valvaeodinium spinosum Bathonian =25,00 Sowa & Glinski clay pits Sample NPE-3 Slide 4 Coordinates 27.0-95.0

Valvaeodinium spinosum Bathonian =25,00 Leszczynski clay pit Sample NPL-18 Slide 4, coordinates 25.5-99.4 NEP-1998-023

Wanaea acollaris Bathonian =25,00 Gnaszyn clay pit Sample NPG-23 Slide 4, coordinates 23.5-105.0

Wanaea acollaris Bathonian =25,00 Gnaszyn clay pit Sample NPG-23 Slide 4, coordinates 34.0-105.0

Niels E. Poulsen 19 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark 240 GEUS Middle Jurassic of Poland

Wanaea acollaris Bathonian n25,00 Kawodrza clay pit Sample NPKw-1 Slide 4, coordinates 58.0-93.0 NEP-1998-027

Wanaea acollaris Bathonian =25,00 Gnaszyn clay pit Sample NPG-23 Slide 4, coordinates 31.102.5

Wanaea acollaris Bathonian =25,00 Gnaszyn clay pit Sample NPG-16 Slide 4, coordinates 31.0-107.0

.j

Wanaea acollaris bathonian =25,00 Gnaszyn clay pit Sample NPG-23 Slide 4, coordinates 27.0-95.0

Wanaea acollaris Bathonian =25,00 Gnaszyn day pit Sample NPG-16 Slide 4, coordinates 34.0-103.0

Wanaea acollaris Bathonian =40,00 Kawodrza clay pit Sample NPKw-1 Slide 4, coordinates 31.0-102.8

Wanaea acollaris Early-Middle Bathonian =25,00 Kawodrza clay pit Sample NPKw-1 Slide 4, coordinates 27.0-101.0

Niels E. Poulsen 20 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark T^I. x /iror-iaoirr Fax- +45 38142050 E-Mail: [email protected] 242 GEUS Middle Jurassic of Poland

Wanaea acollaris Bathonian =25,00 Kawodrza clay pit Sample NPKw-1 Slide 4, coordinates 31.0-103.0

l Willeidinium baiocassinum Bathonian =25,00 Faustianka clay pit Section C, sample 5,6 m Slide 4, coordinates 25.0-103.0

Niels E. Poulsen 21 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark 244 GEUS Late Jurassic of Poland

Barbatacysta creberbarbatum Lower Oxfordian n25,00 Zalas quarry Za-1 (9.8 m), slide 1, coordinates 47.M08.0 0-10 cm above stromatolite at base of Cordatum Subzone

Barbatacysta pilosa Upper Oxfordian =25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper BimammatumZone) Slide 4, coordinates 24.0-95.0

Barbatacysta pilosa Middle Oxfordian =40,00 Zalas quarry Za-5 (12.0 m), slide 1, coordinates 36.0-104.8 marls between sponges, 3.5 m above base of Middle Oxfordian

cf. Eschasphaeridia pocockia Lower Oxfordian =25,00 Zalas quarry Za-3 (9.3 m) slide 1, coordinates 38.6-104.6 0-10 cm above base of Costicardia Subzone

Chytroeisphaeridia chytroeides Lower Oxfordian =25,00 Zalas quarry Za-2 (9.6 m), slide 1, coordinates 47.0-99.0 20 cm below lower stromatolite of upper Costicardia Subzone

Compositosphaeridium polinicum lowermost Middle Oxfordian =25,00 Bielawy Quarry Sample Bi-1 uppermost part of "A": Tenuicostatum Zone Slide 4, coordinates 26-95

Cribroperidinium granulatum Upper Oxfordian =25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper Bimammatum Zone) Slide 4, coordinates 25.0-93.0

Niels E. Poulsen 22 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark T-I. Coy- +AR SR -IA on F-Mail-nervfflnAUS.dk 246 GEUS Late Jurassic of Poland

Cribroperidinium granulatum Upper Oxfordian H25.00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper Bimammatum Zone). Slide 4, coordinates 22,0-98,5. NEP-1998-054

Ctenidodinium sp. Callovian-Oxfordian =25,00 Zalas quarry Slide 1

Dingodinium minutum Middle Oxfordian

Wysoka W-9-10 Slide 1,32,0-95,0

Dingodinium tuberosisn Upper Oxfordian =25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper Bimammatum Zone). Slide 4, coordinates 50,0-96,0. NEP-1998-053

Dissiliodinium globulum Upper Oxfordian =25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper BimammatimiZone) Slide 4, coordinates 57,0-97,0

Endoscrinium gateritum? Upper Oxfordian =25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper Bimammatum Zone) Slide 4, coordinates 22.0-95.0

Endoscrinium luridum Oxfordian =25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper Bimammatum Zone). Slide 4, coordinates 42.0-99.0. NEP-1998-050

Niels E. Poulsen 23 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark 248 GEUS Late Jurassic of Poland

Epiplosphaera areolata Upper Oxfordian n25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper Bimammatum Zone). Slide 4, coordinates 27.0-93.0. NEP-1998-057

l

Epiplosphaera reticulospinosa Upper Oxfordian =25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper Bimammatum Zone). Slide 4, coordinates 53-0-93.0. NEP-1998-058

Glossodinium dimorphum Upper Oxfordian n25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper Bimammatum Zone). Slide 4, coordinates 28.0-95.0. NEP-1998-052

Gonyaulacysta centriconnata Upper Oxfordian =25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper Bimammatum Zone). Slide 4, coordinates 33,5-99,0. NEP-1998-055

Gonyaulacysta jurassica jurassica Upper Oxfordian =25,00 Wapienno (Barcin) Quarry. Sample BQ-2 from layer B2b (upper Bimammatum Zone) Slide 4, coordinates 43.0-95.7 NEP-1998-056

Gonyaulacysta jurassica jurassica Upper Oxfordian =25,00 Wapienno (Barcin) Quarry, Sample BQ-2 from layer B2b (upper Bimammatum Zone) Slide 4, coordinates 43.0-95.7 NEP-1998-056

Impletosphaeridium lumectum Oxfordian =25,00 BQ-1 3-53-96.4

Niels E. Poulsen 24 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark t—*• r.4eoo4^oo Cfi Cov 1A Ofi fifl P.A/loil' non^noitc Hk 250 GEUS Late Jurassic of Poland

Leptodinium sp. Middle Oxfordian =40,00 Wysoka W9b-8,1a Slide 1,40,0-90,0

Lithodinia arcanitabulata Upper Oxfordian =25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper BimammatumZone) Slide 4, coordinates 48,0-96,0

Occisucysta balia Oxfordian 4 ' ; - =25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper BimammatumZone) Slide 4, coordinates 37.5-99.0

Pilosidinium myriatrichum Upper Oxfordian =25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper Bimammatum Zone) Slide 4, coordinates 48.0-93.5

Rhynchodiniopsis cladophora Middle Oxfordian =25,00 Zawodzie Quarry Sample ZQ-2, marls at top of bed 2 Slide 1, coordinates 46.0-95.0

Rhynchodiniopsis cladophora Upper Oxfordian =25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper Bimammatum Zone) Slide 4, coordinates 37.0-96.0

Rhynchodiniopsis cladophora Lower Oxfordian =25,00 Zalas quarry Slide 1

Niels E. Poulsen 25 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark 252 GEUS Late Jurassic of Poland

Scriniodinium inritibile Upper Oxfordian 1*25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper Bimammaturn Zone) Slide 4, coordinates 52,0-97,0

Scriniodinium inritibile Upper Oxfordian =25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper Bimammatum Zone). Slide 4, coordinates 41,0-99,0. NEP-1998-051

Sirmiodiniopsis orbis Oxfordian =25,00 Bielawa quarry Bi-4 Slide 3, coordiates 39-96

Sirmiodinium gross! Upper Oxfordian =25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper Bimammatum Zone). Slide 4, coordinates 34.1-96.4. NEP-1998-049

Stephanelylron redcliffense Early Oxfordian

Zalas quarry Za 3 (9,3 m), 0-10 cm above base of Costicardia Subzone. Slide 1, coordinates 46,0-99,0. NEP-1998-059

Systematophora areolata Upper Oxfordian =25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper Bimammatum Zone) Slide 4, coordinates 25.0-93.0

Systematophora peniciliata Oxfordian =25,00 Wapienno (Barcin) Quarry Sample BQ-1 from B2b (below Bimammatum Zone) Slide 3, coordinates 42-102

Niels E. Poulsen 26 Geological Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark 254 GEUS Late Jurassic of Poland

Systematophora penicillata Upper Oxfordian =25,00 Wapienno (Barcin) Quarry Sample BQ-2 from layer B2b (upper BimammatumZone) Slide 4, coordinates 33,5-96.0

Trichodinium scarburghense lowermost Middle Oxfordian =25,00 Bielawy Quarry. Sample Bi-1 uppermost part of "A": Tenuicostatum Zone Slide 4, coordinates 40-95 NEP-1998-060

Niels E. Poulsen 27 Geoloaical Survey of Denmark and Greenland, Thoravej 8,2400 Copenhagen NV, Denmark 256 GEUS