Chapter 1. Introduction Magnetic Fusion Technology

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1. Introduction Magnetic Fusion Technology Chapter 1. Introduction Magnetic Fusion Technology Thomas J. Dolan NPRE 421 University of Illinois 2011 dolan 2010 1 Some Forms of Energy Dolan - Energy Sources 2 Some Forms of Energy Dolan - Energy Sources 3 Energy usage in the USA Industrial 41 % Transportation 25 % Residential 19 % Commercial 14 % Dolan - Energy Sources 4 Energy to agriculture and manufacturing ~ 8 Joules (tractor, chemicals, transportation) One Joule of food Processing energy costs are > 30% of following product costs: •steel •aluminum •glass •cement •paper. dolan 2010 5 GDP vs. Energy Cosumption 103 $/cap 60 50 40 30 20 10 0 0 2 4 6 8 10 12 kW/cap AG = Argentina, AL = Australia, AU = Austria, BR = Brazil, CA = Canada, CH = China, CZ = Czech, DE = Germany, FR = France, GR = Greece, HU = Hungary, ID = Indonesia, IN = India, .IR = Iran, IT = Italy, JA = Japan, MX = Mexico, NO = Norway, PK = Pakistan, RU = Russia, SA = South Africa, SP = Spain, SW = Sweden, SZ = Switzerland, TU = Turkey, UK = United Kingdom, US = USA. dolan 2010 6 International Energy Outlook W 25 n, T n, oo 20 20 TW sumpti 15 y Con 10 gg Ener 5 0 1980 1990 2000 2010 2020 2030 Year dolan 2010 7 World energy resources Power Limits, TW Renewable Energy Resources Current Ultimately Solar 13.5 1580 Biomass 1.74 8.56 Wind 0090.09 130 Wave and Tidal 0.05 1-10 Hydro 0.75 11 Geothermal 0.01 0.3 Organic Waste 0.02 0.1 dolan 2010 8 World energy resources ELiitEnergy Limits Recoverable Fossil Fuels Joule TW-years Coal and Lignite (9.09E11 ton) 2.4x1022 753 Crude Oil (1.34E12 barrels) 7.9x1021 249 Natural Gas (1.7E14 m^3) 6.6x1021 208 Tar-Sand Oil (3. 7E12 barrels) 2. 2x1012 703 Shale Oil (3.33E12 barrels) 1.9x1022 613 dolan 2010 9 World energy resources Nuclear Fission Fuels Joule * TW-years U-235 (3. 88E4 tonnes) 2. 5x1021 95 U-238 (5.43E6 tonnes) 3.5x1023 13000 Th-232 (2.57E6 tonnes) 1.7x1023 6300 Nuclear Fusion Fuels Joule TW-years Lithium in ocean (2.3E14 tonnes) 1.4*1031 4.2*10^11 Lithium on land (2. 84E7 tonnes) 17*101.7*1024 5. 2*10^4 Deuterium (5.17E13 tonnes) 1.6*1031 5.1*10^11 dolan 2010 10 Why develop fusion reactors? dolan 2010 11 Fusion reactions power the sun and other stars Dolan - Energy Sources 12 World energy flows, TW Mankind uses ~ 20 TW dolan 2010 13 Mass per nucleon vs. atomic number E = Mc2 Fe dolan 2010 14 Why develop fusion reactors? Deuterium & lithium are • Abundant 1 L(H2O) = 300 L(gasoline) • Cheap • Available to all nations. Safe – no supercriticality or meltdown hazard Materials No fission fragments or actinides No high level radioactive waste (but much low level radioactivity) Recycling of tritium, lithium and vanadium Fusion could help reduce pollution competition for fossil fuels threa t o f war Dolan - Energy Sources 15 Temperature units T K kT J k = 1.381x10-23 J/K kT/e eV e = 1. 602x10-19 C It is common to speak of T in units of kVkeV. 1 eV = 11605 K 1 keV = 11.605 MK Dolan - Energy Sources 16 Energy released by fusion reactions D+T 4He(3.52) + n(14.1) 17.59 MeV D+D 3He(0.82) + n(2.45) 3.27 MeV D+D T(()()1.01) + H(3.02) 4.03 MeV D+3He 4He(3.66) + H(14.6) 18.3 MeV T+T n + n + 4He 11.3 MeV H+6Li 4He + 3H402MVHe 4.02 MeV H+11B 4He + 4He + 4He 8.68 MeV Dolan - Energy Sources 17 dolan 2010 18 Example Problem How many deuterium atoms are there in one liter of water, and how much energy could they produce in a cataldlyzed DD reactor (7. 2 M/dMev/deuteron )? 23 N(water) = Nav/M = (1000 g/liter) (6.02x10 molecules/mole) / (18 g/mole) = 3.34x1025 molecules/liter. Deuterium ~ 1.53x10-4 of hydrogen atoms. N(deuterium) = 2 (3.34x1025) 1.53x10‐4 = 1.02x1022 atoms The energy released is W = 1.02x1022 (7.2 MeV) 1.60x10‐13 J/MeV = 1.18x1010 J = 11.8 GJ. dolan 2010 19 Main reactions for breeding tritium fuel 6Li + n(thermal) 4He(2.05) + T(2.73) 4.78 MeV 7Li + n(fast) 4He + T + n -247MeV2.47 MeV endothermic Na tura l lithium = 7. 42% 6Li an d 92. 58% 7Li Dolan - Energy Sources 20 Catalyzed DD fuel cycle D+D 3He(0.82) + n(2.45) D + 3He 4He(3.66) + p(14.6) D+D T(1.01) + p(3.02) D+T 4He(3.54) + n(14.05) _____________________________ Net: 6D 2n + 2p + 2(4He) + 43.2 MeV dolan 2010 21 H + 6Li and H + llB reactions no neutron emission all reaction products are charged particles direct conversion to electricity but low power densities and cross sections very high temperature operation Ignition difficult or impossible Dolan - Energy Sources 22 Approximate Fuel Costs, 2009 $/GJ Fossil Fuels Crude Oil 10.18 OPEC Natural Gas 5.19 EIA Macquarie Group Coal Limited Thermal 2.6 Coke 3.82 Fission Fuels Ux Consulting Uranium Company U-235 0.2 U-238 0.0014 Los Alamos Thorium 0.066 National Laboratory Fusion Fuels Sigma-Aldrich Deuterium 0150.15 Corporation Sigma-Aldrich Lithium 0.038 Corporation dolan 2010 23 Fusion advantages over fission * No supercriticality hazard * no emergency core cooling systems * no fission products or long‐lived high‐level radioactive waste (there would still be lower‐level radioactive wastes) * possible recycling of materials (such as V‐Cr‐Ti alloy) * widespread availability and easy transport of fuels * low cost of fuels. dolan 2010 24 How can we make a fusion reactor? dolan 2010 25 Fusion Power Plant Magnetic fusion reactor power plant blanket turbine shield IHX steam generator magnet Dolan - Energy Sources 27 Need for Heating T = 10 keV (120 Million Kelvin). positive fuel ions repel each other hig h velitilocities approach close for reactions to occur. fuel becomes “plasma” = fully ionized gas, stars fluorescent lights welding arcs flames ionosphere idindus tiltrial plasma processing didevices gaseous lasers nuclear fusion experiments dolan 2010 28 Plasma requirements for a fusion reactor Heating T > 10 keV to overcome Coulomb repulsion Confinement n > 1020 m-3s “Lawson Criterion” Magnetic confinement n ~ 1020 m-3 ~ 1 s Inertial confinement n ~ 1029 m-3 ~ 1 ns Dolan - Energy Sources 29 Confinement Long enough for a few percent of the fuel to “burn”. * solid walls. Low‐temperature plasmas, such as fluorescent lights. * gravity. Stars * inertia. Laser beams fuel pellet extremely high density. Inertia limits expansion rate for times ~ 1 ns. * electrostatic fields. Spherical High voltage grids * magnetic fields. Lorentz force F = electrons and ions spiral around B field lines. * electromagnetic waves. Radiofrequency waves and microwaves dolan 2010 30 Toroidal magnetic field dolan 2010 31 Plasma energy loss mechanisms Plasma flow along B – open magnetic systems Plasma Drift across B, caused by E, B, magnetic field curvature, … Heat Transport – conduction and convection Radiat io n Losses– line radi atio n aadnd bberem sstasstrahlu n g radi ati on Magnetohydrodynamic (MHD) instabilities (plasma shape) driven by gradients of pressure or current density Microinstabilities –interactions of particles and waves Charge exchange (neutralization of hot ions, allowing their escape) dolan 2010 32 Plasma Heating Methods Ohmic Compression Charged particle injection Alpha particle heating Neutral beam injection Radiowave and microwave heating dolan 2010 33 Plasma beta = (plasma p)/(gpressure)/(magnetic field p)pressure) 2 = p/(B /2o) If B = 1 Tesla, then 2 B /2o = 0.4 MPa = 4 atmospheres dolan 2010 34 Energy gain ratio Q Q = (fusion pp)ower) / ((pinput pp)ower) Q ≈ 5(nT) / [ 5x1021 -nT ] n = fuel ion density, m-3 T = ion temperature, keV = energy confinemen t time, s dolan 2010 35 Energy gain ratio vs. triple product 1000 Q 100 10 1 0.1 012345 nTt , 1021 m-3keV-s dolan 2010 36 Typical values for triple product * magnetic confinement fusion: n ~ 1020 m‐3, T ~ 10 keV, ~ 1s. * inertial confinement fusion: n ~ 1029 m‐3, T ~ 10 keV, ~ 1 ns. dolan 2010 37 Reaction Rate with Two Maxwellian Distributions r(x,t) = n1(x,t) n2(x,t) <v> If nD = nT = ½ n, then 2 r=¼nr = ¼ n <v>DT Dolan 2010 38 Interactions among like particles N = n(n-1)/2 ≈ n2/2 if n>>1 For DD reactions r = (½)n2 <v> Dolan 2010 39 Fusion Power Density nD = nT = ½ n 2 PDT = (¼) n <v>WDT 2 PDD = Pf = (½)n [<v>ddnWddn + <v>ddpWddp] 2 ≈ (½) n <v>ddWdd 2 Pcat ≈ (½) n <v>ddWcat The factor of ½ avoids counting the same DD reaction twice. Catalyzed DD fuel cycle D+D 3He(0.82) + n(2.45) D + 3He 4He (3. 66) + p (14. 6) D+D T(1.01) + p(3.02) D+T 4He(3.54) + n(14.05) _____________________________ Net: 6D 2n + 2p + 2(4He) + 43.2 MeV Each DD reaction results in consumption of 3 deuterons, yielding 21.6 MeV = 3.46x10‐12 J. dolan 2010 41 Reaction rate Parameters <v> 1. D+T 2. D+3He 3. D+DH+T 4TT4. T+T 5. T+3He 6. H+11B Dolan 2010 42 Reaction Rate Parameters 3 3 TkeVT, keV <v>DT, m /s <v>DD, m /s 8 5.94E-23 6.90E-25 10 1.09E-22 1.21E-24 15 2.65E-22 2.97E-24 20 4.24E-22 5.16E-24 25 5.59E-22 7.60E-24 30 6.65E-22 1.02E-23 Fusion Power Density Example: n=2x1020 m-3, T = 10 keV 2 PDT = (¼) n <v>WDT 40 -22 -12 PDT = ¼ (10 ) 1.09x10 2.82x10 = 7.
Recommended publications
  • STATUS of FUSION ENERGY Impact & Opportunity for Alberta Volume II
    STATUS OF FUSION ENERGY Impact & Opportunity for Alberta Volume II Appendices Prepared by Alberta/Canada Fusion Energy Program March 2014 ALBERTA COUNCIL OF TECHNOLOGIES Gratefully acknowledges the support of: Alberta Energy Stantec Corporation University of Alberta Alberta/Canada Fusion Energy Advisory Committee Gary Albach Nathan Armstrong Brian Baudais Will Bridge Robert Fedosejevs Peter Hackett Chris Holly Jerry Keller Brian Kryska Axel Meisen Rob Pitcairn Klaas Rodenburg John Rose Glenn Stowkowy Martin Truksa Gary Woloshyniuk Perry Kinkaide Allan Offenberger A special thank you is extended to the institutions (identified in this report) that were visited and to the many persons who so graciously hosted our site visits, provided the briefing material presented in this status report and thereby assisted our fusion assessment. Report Authors Allan Offenberger Robert Fedosejevs Klaas Rodenburg Perry Kinkaide Contact: Dr. Perry Kinkaide [email protected] 780-990-5874 Dr. Allan Offenberger [email protected] 780-483-1740 i TABLE OF CONTENTS Page List of Acronyms ………………………………………………………………………….. iii List of Figures……………………………………………………………………………… iv Appendix A: Assessment of Major Global Fusion Technologies 1.0 Context - Global Energy Demand……………………………………………………… 1 1.0.1 Foreward ……………………………………………………………………… 1 1.0.2 Energy Trends………………………………………………………………… 2 1.0.3 Energy From Fusion Reactions……………………………………………… 4 1.1 Major Approaches to Fusion Energy………………………………………………….. 7 1.1.1 Introduction……………………………………………………………………. 7 1.1.2 Fusion Reactions & the Fuel Cycle………………………………………….. 8 1.1.3 IFE Approaches to Fusion…………………………………………………… 11 1.1.3.1 Introduction………………………………………………………….. 11 1.1.3.2 Indirect Drive…………………………………………………………14 1.1.3.3 Direct Drive…………………………………………………………. 16 1.1.3.4 Fast Ignition………………………………………………………… 17 1.1.3.5 Shock Ignition………………………………………………………..19 1.1.3.6 IFE Power Reactor Systems……………………………………….20 1.1.3.7 Modeling Codes…………………………………………………….
    [Show full text]
  • Nuclear Energy: Fission and Fusion
    CHAPTER 5 NUCLEAR ENERGY: FISSION AND FUSION Many of the technologies that will help us to meet the new air quality standards in America can also help to address climate change. President Bill Clinton 1 Two distinct processes involving the nuclei of atoms can be harnessed, in principle, for energy production: fission—the splitting of a nucleus—and fusion—the joining together of two nuclei. For any given mass or volume of fuel, nuclear processes generate more energy than can be produced through any other fuel-based approach. Another attractive feature of these energy-producing reactions is that they do not produce greenhouse gases (GHG) or other forms of air pollution directly. In the case of nuclear fission—a mature though controversial energy technology—electricity is generated from the energy released when heavy nuclei break apart. In the case of nuclear fusion, much work remains in the quest to sustain the fusion reactions and then to design and build practical fusion power plants. Fusion’s fuel is abundant, namely, light atoms such as the isotopes of hydrogen, and essentially limitless. The most optimistic timetable for fusion development is half a century, because of the extraordinary scientific and engineering challenges involved, but fusion’s benefits are so globally attractive that fusion R&D is an important component of today’s energy R&D portfolio internationally. Fission power currently provides about 17 percent of the world’s electric power. As of December 1996, 442 nuclear power reactors were operating in 30 countries, and 36 more plants were under construction. If fossil plants were used to produce the amount of electricity generated by these nuclear plants, more than an additional 300 million metric tons of carbon would be emitted each year.
    [Show full text]
  • 3.Joule's Experiments
    The Force of Gravity Creates Energy: The “Work” of James Prescott Joule http://www.bookrags.com/biography/james-prescott-joule-wsd/ James Prescott Joule (1818-1889) was the son of a successful British brewer. He tinkered with the tools of his father’s trade (particularly thermometers), and despite never earning an undergraduate degree, he was able to answer two rather simple questions: 1. Why is the temperature of the water at the bottom of a waterfall higher than the temperature at the top? 2. Why does an electrical current flowing through a conductor raise the temperature of water? In order to adequately investigate these questions on our own, we need to first define “temperature” and “energy.” Second, we should determine how the measurement of temperature can relate to “heat” (as energy). Third, we need to find relationships that might exist between temperature and “mechanical” energy and also between temperature and “electrical” energy. Definitions: Before continuing, please write down what you know about temperature and energy below. If you require more space, use the back. Temperature: Energy: We have used the concept of gravity to show how acceleration of freely falling objects is related mathematically to distance, time, and speed. We have also used the relationship between net force applied through a distance to define “work” in the Harvard Step Test. Now, through the work of Joule, we can equate the concepts of “work” and “energy”: Energy is the capacity of a physical system to do work. Potential energy is “stored” energy, kinetic energy is “moving” energy. One type of potential energy is that induced by the gravitational force between two objects held at a distance (there are other types of potential energy, including electrical, magnetic, chemical, nuclear, etc).
    [Show full text]
  • Nuclear Power Reactors in California
    Nuclear Power Reactors in California As of mid-2012, California had one operating nuclear power plant, the Diablo Canyon Nuclear Power Plant near San Luis Obispo. Pacific Gas and Electric Company (PG&E) owns the Diablo Canyon Nuclear Power Plant, which consists of two units. Unit 1 is a 1,073 megawatt (MW) Pressurized Water Reactor (PWR) which began commercial operation in May 1985, while Unit 2 is a 1,087 MW PWR, which began commercial operation in March 1986. Diablo Canyon's operation license expires in 2024 and 2025 respectively. California currently hosts three commercial nuclear power facilities in various stages of decommissioning.1 Under all NRC operating licenses, once a nuclear plant ceases reactor operations, it must be decommissioned. Decommissioning is defined by federal regulation (10 CFR 50.2) as the safe removal of a facility from service along with the reduction of residual radioactivity to a level that permits termination of the NRC operating license. In preparation for a plant’s eventual decommissioning, all nuclear plant owners must maintain trust funds while the plants are in operation to ensure sufficient amounts will be available to decommission their facilities and manage the spent nuclear fuel.2 Spent fuel can either be reprocessed to recover usable uranium and plutonium, or it can be managed as a waste for long-term ultimate disposal. Since fuel re-processing is not commercially available in the United States, spent fuel is typically being held in temporary storage at reactor sites until a permanent long-term waste disposal option becomes available.3 In 1976, the state of California placed a moratorium on the construction and licensing of new nuclear fission reactors until the federal government implements a solution to radioactive waste disposal.
    [Show full text]
  • Reactor Potential for Magnetized Target Fusion
    TR.TA-A Report ISSN 1102-2051 VETENSKAP OCH ISRN KTH/ALF/--01/2--SE 1ONST KTH-ALF--01-2 KTH Reactor Potential for Magnetized Target Fusion Jon-Erik Dahlin Research and Training programme on CONTROLLED THERMONUCLEAR FUSION AND PLASMA PHYSICS (Association EURATOM/NFR) FUSION PLASMA PHYSICS ALFV N LABORATORY ROYAL INSTITUTE OF TECHNOLOGY SE-100 44 STOCKHOLM SWEDEN PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK TRITA-ALF-2001-02 ISRN KTH/ALF/--01/2--SE Reactor Potential for Magnetized Target Fusion J.-E. Dahlin VETENSKAP OCH KONST Stockholm, June 2001 The Alfven Laboratory Division of Fusion Plasma Physics Royal Institute of Technology SE-100 44 Stockholm, Sweden (Association EURATOM/NFR) Printed by Alfven Laboratory Fusion Plasma Physics Division Royal Institute of Technology SE-100 44 Stockholm Abstract Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and mag- netic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system.
    [Show full text]
  • Physique Nucléaire Et De L'instrumentation Associée Introduction
    FR0108546 # DEA-DAPNIA-RA-1997-98 A il. ..33/04 -DSM Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée Introduction Motivés par la curiosité pour les connaissances fondamentales et soutenus par des investissements impor- tants, les chercheurs du vingtième siècle ont fait des découvertes scientifiques considérables, sources de retombées économiques fructueuses. Une recherche ambitieuse doit se poursuivre. Organisé pour déve- lopper les grands programmes pour le nucléaire et par le nucléaire, le CEA est bien armé pour concevoir et mettre au point les instruments destinés à explorer, en coopération avec les autres organismes de recherche, les confins de l'infiniment petit et ceux de l'infinimenf grand. La recherche fondamentale évolue et par essence ne doit pas avoir de frontières. Le Département d'astrophysique, de physique des particules, de physique nucléaire et de l'instrumentation associée (Dapnia) a été créé pour abolir les cloisons entre la physique nucléaire, la physique des particules et l'as- trophysique, tout en resserrant les liens entre physiciens, ingénieurs et techniciens au sein de la Direction des sciences de la matière (DSM). Le Dapnia est unique par sa pluridisciplinarité. Ce regroupement a permis de lancer des expériences se situant aux frontières de ces disciplines tout en favorisant de nou- velles orientations et les choix vers les programmes les plus prometteurs. Tout en bénéficiant de l'expertise d'autres départements du CEA, la recherche au Dapnia se fait princi- palement au sein de collaborations nationales et internationales. Les équipes du Dapnia, de I'IN2P3 (Institut national de physique nucléaire et de physique des particules) et de l'Insu (Institut national des sciences de l'Univers) se retrouvent dans de nombreuses grandes collaborations internationales, chacun apportant ses compétences spécifiques afin de renforcer l'impact de nos contributions.
    [Show full text]
  • Work and Energy Summary Sheet Chapter 6
    Work and Energy Summary Sheet Chapter 6 Work: work is done when a force is applied to a mass through a displacement or W=Fd. The force and the displacement must be parallel to one another in order for work to be done. F (N) W =(Fcosθ)d F If the force is not parallel to The area of a force vs. the displacement, then the displacement graph + W component of the force that represents the work θ d (m) is parallel must be found. done by the varying - W d force. Signs and Units for Work Work is a scalar but it can be positive or negative. Units of Work F d W = + (Ex: pitcher throwing ball) 1 N•m = 1 J (Joule) F d W = - (Ex. catcher catching ball) Note: N = kg m/s2 • Work – Energy Principle Hooke’s Law x The work done on an object is equal to its change F = kx in kinetic energy. F F is the applied force. 2 2 x W = ΔEk = ½ mvf – ½ mvi x is the change in length. k is the spring constant. F Energy Defined Units Energy is the ability to do work. Same as work: 1 N•m = 1 J (Joule) Kinetic Energy Potential Energy Potential energy is stored energy due to a system’s shape, position, or Kinetic energy is the energy of state. motion. If a mass has velocity, Gravitational PE Elastic (Spring) PE then it has KE 2 Mass with height Stretch/compress elastic material Ek = ½ mv 2 EG = mgh EE = ½ kx To measure the change in KE Change in E use: G Change in ES 2 2 2 2 ΔEk = ½ mvf – ½ mvi ΔEG = mghf – mghi ΔEE = ½ kxf – ½ kxi Conservation of Energy “The total energy is neither increased nor decreased in any process.
    [Show full text]
  • NETS 2020 Template
    بÀƵƧǘȁǞƧƊǶ §ȲȌǐȲƊǿ ƊƧDzɈȌɈǘƵwȌȌȁƊȁƮȌȁ ɈȌwƊȲȺɈǘȲȌɐǐǘƊƮɨƊȁƧǞȁǐ خȁɐƧǶƵƊȲɈƵƧǘȁȌǶȌǐǞƵȺƊȁƮ ǞȁȁȌɨƊɈǞȌȁ ǞȺ ȺȯȌȁȺȌȲƵƮ Ʀɯ ɈǘƵ ƊDz ªǞƮǐƵ yƊɈǞȌȁƊǶ ׁׂ׀ׂ y0À² ÀǘǞȺ ƧȌȁǏƵȲƵȁƧƵ خׁׂ׀ׂ ةɈǘ׀׃ƊȁƮ ɩǞǶǶƦƵ ǘƵǶƮ ǏȲȌǿȯȲǞǶ ׂ׆ɈǘٌةmƊƦȌȲƊɈȌȲɯ ɩǞǶǶ ƦƵ ǘƵǶƮ ɨǞȲɈɐƊǶǶɯ ȺȌ ɈǘƊɈ ɈǘƵ ƵȁɈǞȲƵ y0À² خƧȌǿǿɐȁǞɈɯǿƊɯȯƊȲɈǞƧǞȯƊɈƵǞȁɈǘǞȺƵɮƧǞɈǞȁǐǿƵƵɈǞȁǐ ǐȌɨخȌȲȁǶخخׁׂ׀ȁƵɈȺׂششبǘɈɈȯȺ Nuclear and Emerging Technologies for Space Sponsored by Oak Ridge National Laboratory, April 26th-30th, 2021. Available online at https://nets2021.ornl.gov Table of Contents Table of Contents .................................................................................................................................................... 1 Thanks to the NETS2021 Sponsors! ...................................................................................................................... 2 Nuclear and Emerging Technologies for Space 2021 – Schedule at a Glance ................................................. 3 Nuclear and Emerging Technologies for Space 2021 – Technical Sessions and Panels By Track ............... 6 Nuclear and Emerging Technologies for Space 2021 – Lightning Talk Final Program ................................... 8 Nuclear and Emerging Technologies for Space 2021 – Track 1 Final Program ............................................. 11 Nuclear and Emerging Technologies for Space 2021 – Track 2 Final Program ............................................. 14 Nuclear and Emerging Technologies for Space 2021 – Track 3 Final Program ............................................. 18
    [Show full text]
  • Spherical Tokamak) on the Path to Fusion Energy
    Spherical Torus (Spherical Tokamak) on the Path to Fusion Energy ST can support fast implementation of fusion Demo in unique, important ways 1) Opportunities to support the strategy of Demo after ITER 2) Important ways in which ST can do so 3) Component Test Facility for steady state integrated testing 4) Broad progress and the remaining CTF physics R&D needs Martin Peng, NSTX Program Director Fusion Power Associates Annual Meeting and Symposium Fusion: Pathway to the Future September 27-28, 2006, Washington D.C. EU-Japan plan of Broader Approach toward Demo introduces opportunities in physics and component EVEDA OAK RIDGE NATIONAL LABORATORY S. Matsuda, SOFT 2006 U. S. DEPARTMENT OF ENERGY FPA Annual Mtg & Symp, 09/27-28/2006 2 Korean fusion energy development plan introduces opportunities in accelerating fusion technology R&D OAK RIDGEGS NATIONAL Lee, US LABORATORY2006 U. S. DEPARTMENT OF ENERGY FPA Annual Mtg & Symp, 09/27-28/2006 3 We propose that ST research addresses issues in support of this strategy • Support and benefit from USBPO-ITPA activities in preparation for burning plasma research in ITER using physics breadth provided by ST. • Complement and extend tokamak physics experiments, by maximizing synergy in investigating key scientific issues of tokamak fusion plasmas • Enable attractive integrated Component Test Facility (CTF) to support Demo, by NSTX establishing ST database and example leveraging the advancing tokamak database for ITER burning plasma operation and control. ST (All) USBPO- ITPA (~2/5) Tokamak (~3/4) OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY FPA Annual Mtg & Symp, 09/27-28/2006 4 World Spherical Tokamak research has expanded to 22 experiments addressing key physics issues MAST (UK) NSTX (US) OAK RIDGE NATIONAL LABORATORY U.
    [Show full text]
  • Re-Examining the Role of Nuclear Fusion in a Renewables-Based Energy Mix
    Re-examining the Role of Nuclear Fusion in a Renewables-Based Energy Mix T. E. G. Nicholasa,∗, T. P. Davisb, F. Federicia, J. E. Lelandc, B. S. Patela, C. Vincentd, S. H. Warda a York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, UK b Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH c Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK d Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LS, UK Abstract Fusion energy is often regarded as a long-term solution to the world's energy needs. However, even after solving the critical research challenges, engineer- ing and materials science will still impose significant constraints on the char- acteristics of a fusion power plant. Meanwhile, the global energy grid must transition to low-carbon sources by 2050 to prevent the worst effects of climate change. We review three factors affecting fusion's future trajectory: (1) the sig- nificant drop in the price of renewable energy, (2) the intermittency of renewable sources and implications for future energy grids, and (3) the recent proposition of intermediate-level nuclear waste as a product of fusion. Within the scenario assumed by our premises, we find that while there remains a clear motivation to develop fusion power plants, this motivation is likely weakened by the time they become available. We also conclude that most current fusion reactor designs do not take these factors into account and, to increase market penetration, fu- sion research should consider relaxed nuclear waste design criteria, raw material availability constraints and load-following designs with pulsed operation.
    [Show full text]
  • Compilation and Evaluation of Fission Yield Nuclear Data Iaea, Vienna, 2000 Iaea-Tecdoc-1168 Issn 1011–4289
    IAEA-TECDOC-1168 Compilation and evaluation of fission yield nuclear data Final report of a co-ordinated research project 1991–1996 December 2000 The originating Section of this publication in the IAEA was: Nuclear Data Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria COMPILATION AND EVALUATION OF FISSION YIELD NUCLEAR DATA IAEA, VIENNA, 2000 IAEA-TECDOC-1168 ISSN 1011–4289 © IAEA, 2000 Printed by the IAEA in Austria December 2000 FOREWORD Fission product yields are required at several stages of the nuclear fuel cycle and are therefore included in all large international data files for reactor calculations and related applications. Such files are maintained and disseminated by the Nuclear Data Section of the IAEA as a member of an international data centres network. Users of these data are from the fields of reactor design and operation, waste management and nuclear materials safeguards, all of which are essential parts of the IAEA programme. In the 1980s, the number of measured fission yields increased so drastically that the manpower available for evaluating them to meet specific user needs was insufficient. To cope with this task, it was concluded in several meetings on fission product nuclear data, some of them convened by the IAEA, that international co-operation was required, and an IAEA co-ordinated research project (CRP) was recommended. This recommendation was endorsed by the International Nuclear Data Committee, an advisory body for the nuclear data programme of the IAEA. As a consequence, the CRP on the Compilation and Evaluation of Fission Yield Nuclear Data was initiated in 1991, after its scope, objectives and tasks had been defined by a preparatory meeting.
    [Show full text]
  • Policy Brief Organisation for Economic Co-Operation and Development
    OCTOBER 2008Policy Brief ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Nuclear Energy Today Can nuclear Introduction energy help make Nuclear energy has been used to produce electricity for more than half a development century. It currently provides about 15% of the world’s supply and 22% in OECD sustainable? countries. The oil crisis of the early 1970s provoked a surge in nuclear power plant orders How safe is and construction, but as oil prices stabilised and even dropped, and enough nuclear energy? electricity generating plants came into service to meet demand, orders tailed off. Accidents at Three Mile Island in the United States (1979) and at Chernobyl How best to deal in Ukraine (1986) also raised serious questions in the public mind about nuclear with radioactive safety. waste? Now nuclear energy is back in the spotlight as many countries reassess their energy policies in the light of concerns about future reliance on fossil fuels What is the future and ageing energy generation facilities. Oil, coal and gas currently provide of nuclear energy? around two-thirds of the world’s energy and electricity, but also produce the greenhouse gases largely responsible for global warming. At the same For further time, world energy demand is expected to rise sharply in the next 50 years, information presenting all societies worldwide with a real challenge: how to provide the energy needed to fuel economic growth and improve social development while For further reading simultaneously addressing environmental protection issues. Recent oil price hikes, blackouts in North America and Europe and severe weather events have Where to contact us? also focused attention on issues such as long-term price stability, the security of energy supply and sustainable development.
    [Show full text]