Gliese 581D Is the First Discovered Terrestrial-Mass Exoplanet in the Habitable Zone
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bayesian Analysis of the Astrobiological Implications of Life's
Bayesian analysis of the astrobiological implications of life's early emergence on Earth David S. Spiegel ∗ y, Edwin L. Turner y z ∗Institute for Advanced Study, Princeton, NJ 08540,yDept. of Astrophysical Sciences, Princeton Univ., Princeton, NJ 08544, USA, and zInstitute for the Physics and Mathematics of the Universe, The Univ. of Tokyo, Kashiwa 227-8568, Japan Submitted to Proceedings of the National Academy of Sciences of the United States of America Life arose on Earth sometime in the first few hundred million years Any inferences about the probability of life arising (given after the young planet had cooled to the point that it could support the conditions present on the early Earth) must be informed water-based organisms on its surface. The early emergence of life by how long it took for the first living creatures to evolve. By on Earth has been taken as evidence that the probability of abiogen- definition, improbable events generally happen infrequently. esis is high, if starting from young-Earth-like conditions. We revisit It follows that the duration between events provides a metric this argument quantitatively in a Bayesian statistical framework. By (however imperfect) of the probability or rate of the events. constructing a simple model of the probability of abiogenesis, we calculate a Bayesian estimate of its posterior probability, given the The time-span between when Earth achieved pre-biotic condi- data that life emerged fairly early in Earth's history and that, billions tions suitable for abiogenesis plus generally habitable climatic of years later, curious creatures noted this fact and considered its conditions [5, 6, 7] and when life first arose, therefore, seems implications. -
SIG #1:Towards a Much Needed Consensus in the Exoplanet Community
SIG #1:Towards A much Needed Consensus in the Exoplanet Community 1.0 Sun M0 M1 • O M2 M / 10 M 5 M 10 M M3 E at K = 3 m/s E at K = 10 m/s E at K = 3 m/s M5 0.1 0.1 1.0 10.0 Distance (AU) Figure 1 The Habitable Zone around main sequence stars, and the velocity semi-amplitude of the Doppler wobble induced by 5 and 10 Earth-mass planets on the star. Venus, Earth and Mars are shown as colored dots. wobble caused by a terrestrial-mass planet. RV studies have uncovered planetary systems around 20 M dwarfs to date, including the low mass planetary system around GJ581,3 and KOI-961.4 These observations⇠ suggest that, while hot Jupiters may be rare in M star systems,5 lower mass planets do exist around M stars and may be rather common. Theoretical work based on core-accretion models and simulations also predicts that short period Neptune mass planets should be common around M stars.6 Climate simulations of planets in the HZ around M stars7 show that tidal locking does not necessarily lead to atmospheric collapse The habitability of terrestrial planets around M stars has also been explored by many groups8 As seen in Figure 1, a 10 Earth-mass planets in the HZ are already detectable at more than 3σ with a velocity precision of 3m/s, and an instrument capable of 1-3m/s precision will have the sensitivity to discover terrestrial mass planets around the majority of mid-late M dwarfs. -
Mathematics for Input Space Probes in the Atmosphere of Gliese 581D
Parana Journal of Science and Education, v.2, n.5, (6-13) July 14, 2016 PJSE, ISSN 2447-6153, c 2015-2016 https://sites.google.com/site/pjsciencea/ Mathematics for input space probes in the atmosphere of Gliese 581d R. Gobato1, A. Gobato2 and D. F. G. Fedrigo3 Abstract The work is a mathematical approach to the entry of an aerospace vehicle, as a probe or capsule in the atmosphere of the planet Gliese 581d, using data collected from the results of atmospheric models of the planet. GJ581d was the first planet candidate of a few Earth masses reported in the circum-stellar habitable zone of another star. It is located in the Gliese 581 star system, is a star red dwarf about 20 light years away from Earth in the constellation Libra. Its estimated mass is about a third of that of the Sun. It has been suggested that the recently discovered exoplanet GJ581d might be able to support liquid water due to its relatively low mass and orbital distance. However, GJ581d receives 35% less stellar energy than the planet Mars and is probably locked in tidal resonance, with extremely low insolation at the poles and possibly a permanent night side. The climate that demonstrate GJ581d will have a stable atmosphere and surface liquid water for a wide range of plausible cases, making it the first confirmed super-Earth (2-10 Earth masses) in the habitable zone. According to the general principle of relativity, “All systems of reference are equivalent with respect to the formulation of the fundamental laws of physics.” In this case all the equations studied apply to the exoplanet Gliese 581d. -
The Search for Exoplanets
The Search for Exoplanets W Dietsch Ph.D. Formation of Solar Systems • Our solar system is not unique. • Similar processes most likely have occurred around other stars. • Assuming similar events have happened around other stars, it is useful to mention current thinking regarding the formation of a solar system. Interstellar Cloud Interstellar Cloud Collapse • Cloud begins to condense. • Can be caused by the gravity of nearby galaxies or stars. • Shock waves from supernovae can also contribute. • Collapse is slow at first but accelerates rapidly. Rotating Disk Formation • If the cloud was rotating (has angular momentum), as it concentrates it will rotate faster. • The rotation flattens the cloud and concentrates the mass in the center forming a disk. Protostar • The loss of gravitational potential energy causes heating. • Gravity compresses gas and dust in the center. • Pressure and heat increase. Fusion Begins • Heat and pressure increase. • Fusion of hydrogen to helium begins. • Solar radiation in the form of light and other EM radiation begins. Planetesimals Form • Substances condense to solid, liquid and gas depending on their proximity to the young star. • Accretion occurs and forms planetesimals. • Further growth occurs when they collide and merge. Gas Giant Formation • Usually the first planets to form. • Icy planetesimals, gas and dust accrete to form the gas giants. • Gas giants form equatorial disks which condense to form moons. Inner Planet Formation • Also formed by merging of planetesimals. • Composed primarily of refractory elements and are rocky and dense. • Most of the gas in this area accretes to the sun. Terrestrial Planets • Close to the size of Earth and have solid, rocky surfaces. -
Final Thoughts
Contents Part I Common Themes 1. The Discovery of Extraterrestrial Worlds........................ 3 Introduction ...................................................................... 3 Radial Velocity: The Pull of Extrasolar Planets .............. 5 Transit: The Shadow of a Planet Cast by Its Star ........... 11 Microlensing: The Ghosts of Hidden Worlds .................. 20 Now You See It, Now You Don’t: Formalhaut B and Beyond ................................................ 24 What Worlds Await Us? ................................................... 27 Conclusions ...................................................................... 38 2. The Formation of Stars and Planets ................................ 39 Introduction ...................................................................... 39 Gravity’s Role in Star and Planet Formation .................. 40 The Effects of Neighboring Stars ..................................... 43 Brown Dwarfs ................................................................... 44 The Planets of Red Dwarfs ............................................... 46 Alternative Routes to Rome ............................................ 47 Energy and Life ................................................................. 50 Planetary Heat .................................................................. 51 Atmosphere, Hydrosphere and Biosphere ....................... 58 Conclusions ...................................................................... 60 3. Stellar Evolution Near the Bottom of the Main Sequence -
They Played a Silly Game of Guessing and This Time They Have Definitively Got It Wrong
Digital Journal http://www.digitaljournal.com/print/article/197397 http://www.digitaljournal.com/article/197397 Posted Jun 19, 2007, updated Jun 19, 2007 Hopes Dashed For Life on Distant Planet http://www.space.com/scienceastronomy/070618_mm_gliese_581d.html They played a silly game of guessing and this time they have definitively got it wrong. Scientists thought that Gliese 581c is the so called "it planet." "No, we definitively found another planet out there that can support life," they stated. That was earlier this year. Now, based on their computer model, scientists are asking themselves why didn't they look a tiny bit closer - maybe to the right, or left of Gliese 581c, maybe at its neighbour. Turns out, Gliese 581c would be way too hot to sustain life or liquid water for that matter, but its neighbour, Gliese 581d, might be just right (or are they wrong again?). So Much Promise Gliese 581c was discovered in April and when it was discovered, more than half of the scientists held their breath. It was a promising planet. Scientists discovered a first planet which resided within a habitable zone of its star. When one mentions habitable, one means not too hot and not too cold or just simply perfect. However, the new model designed by Werner von Bloh of the Institute for Climate Impact Research in Germany and his team suggests that Gliese is no Earthly paradise. In fact, it is more like Venus. Methane and carbon dioxide reside in its atmosphere and create runway greenhouse effect which in turn warms the planet - that is, well above 212 degrees Fahrenheit. -
Esocast Episode 6: Lightest Exoplanet Found 00:00 [Visual Starts]
ESOcast Episode 6: Lightest exoplanet found 00:00 [Visual starts] [Narrator] A: Artist’s impression of Gliese 581e 1. The holy grail of current exoplanet research is the detection of a rocky, Earth-like planet in the ‘habitable zone,’ region around the host star with the right conditions for water to be liquid on their surface. The latest result from the European Southern Observatory comes closer than ever to attaining these goals. 00:25 ESOcast intro This is the ESOcast! Cutting-edge science and life behind the scenes of ESO, the European Southern Observatory. Exploring the Universe’s ultimate frontier with our host Dr. J, a.k.a. Dr. Joe Liske. 00:42 [Dr. J] 2. Hello and welcome to another episode of the ESOcast. This time we have some very exciting A: Artist’s impression of Gliese 581e news for you, it’s another major ESO discovery. We’d like to tell you about the discovery of the B: Artist’s impression of Gliese 581d smallest, or rather lightest, and possibly most Earth- like planet so far discovered outside of our own Solar System. We’d also like to report on yet another planet within the same system that has now been shown to lie within the habitable zone of its parent star, meaning that it could host liquid water and possibly even life. 01:13 [Narrator] 3. Gliese 581 is a seemingly inconspicuous red C: Zoom-in on Gliese 581e dwarf star located 20.5 light-years away in the constellation Libra, or “the Scales”. It is among the 100 closest stars to us and weighs only one third the mass of the Sun. -
Planets Galore
physicsworld.com Feature: Exoplanets Detlev van Ravenswaay/Science Photo Library Planets galore With almost 1700 planets beyond our solar system having been discovered, climatologists are beginning to sketch out what these alien worlds might look like, as David Appell reports And so you must confess Jupiters, black Jupiters or puffy Jupiters; there are David Appell is a That sky and earth and sun and all that comes to be hot Neptunes and mini-Neptunes; exo-Earths, science writer living Are not unique but rather countless examples of a super-Earths and eyeball Earths. There are planets in Salem, Oregon, class. that orbit pulsars, or dim red dwarf stars, or binary US, www. Lucretius, Roman poet and philosopher, from star systems. davidappell.com De Rerum Natura, Book II Astronomers are in heaven and planetary scien- tists have an entirely new zoo to explore. “This is the The only thing more astonishing than their diver- best time to be an exoplanetary astronomer,” says sity is their number. We’re talking exoplanets exoplanetary astronomer Jason Wright of Pennsyl- – planets around stars other than our Sun. And vania State University. “Things have really exploded they’re being discovered in Star Trek quantities: recently.” Proving the point is that a third of all 1692 as this article goes to press, and another 3845 abstracts at a recent meeting of the American Astro- unconfirmed candidates. nomical Society were related to exoplanets. The menagerie includes planets that are pink, This explosion is largely thanks to the Kepler space blue, brown or black. Some have been labelled hot observatory. -
Habitability of the Goldilocks Planet Gliese 581G: Results from Geodynamic Models
Astronomy & Astrophysics manuscript no. final c ESO 2021 August 23, 2021 Habitability of the Goldilocks planet Gliese 581g: Results from geodynamic models (Research Note) W. von Bloh1, M. Cuntz2, S. Franck1, and C. Bounama1 1 Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam, Germany e-mail: [email protected] 2 Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX 76019, USA Received ¡date¿ / Accepted ¡date¿ ABSTRACT Aims. In 2010, detailed observations have been published that seem to indicate another super-Earth planet in the system of Gliese 581 located in the midst of the stellar climatological habitable zone. The mass of the planet, known as Gl 581g, has been estimated to be between 3.1 and 4.3 M⊕. In this study, we investigate the habitability of Gl 581g based on a previously used concept that explores its long-term possibility of photosynthetic biomass production, which has already been used to gauge the principal possibility of life regarding the super-Earths Gl 581c and Gl 581d. Methods. A thermal evolution model for super-Earths is used to calculate the sources and sinks of atmospheric carbon dioxide. The habitable zone is determined by the limits of photosynthetic biological productivity on the planetary surface. Models with different ratios of land / ocean coverage are pursued. Results. The maximum time span for habitable conditions is attained for water worlds at a position of about 0.14 ± 0.015 AU, which deviates by just a few percent (depending on the adopted stellar luminosity) from the actual position of Gl 581g, an estimate that does however not reflect systematic uncertainties inherent in our model. -
An Earth-Sized Planet in the Habitable Zone of a Cool Star Authors: Elisa V
Title: An Earth-sized Planet in the Habitable Zone of a Cool Star Authors: Elisa V. Quintana1,2*, Thomas Barclay2,3, Sean N. Raymond4,5, Jason F. Rowe1,2, Emeline Bolmont4,5, Douglas A. Caldwell1,2, Steve B. Howell2, Stephen R. Kane6, Daniel Huber1,2, Justin R. Crepp7, Jack J. Lissauer2, David R. Ciardi8, Jeffrey L. Coughlin1,2, Mark E. Everett9, Christopher E. Henze2, Elliott Horch10, Howard Isaacson11, Eric B. Ford12,13, Fred C. Adams14,15, Martin Still3, Roger C. Hunter2, Billy Quarles2, Franck Selsis4,5 Affiliations: 1SETI Institute, 189 Bernardo Ave, Suite 100, Mountain View, CA 94043, USA. 2NASA Ames Research Center, Moffett Field, CA 94035, USA. 3Bay Area Environmental Research Institute, 596 1st St West Sonoma, CA 95476, USA. 4Univ. Bordeaux, Laboratoire d'Astrophysique de Bordeaux, UMR 5804, F-33270, Floirac, France. 5CNRS, Laboratoire d'Astrophysique de Bordeaux, UMR 5804, F-33270, Floirac, France. 6San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA. 7University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA. 8NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Avenue Pasadena, CA 91125, USA. 9National Optical Astronomy Observatory, 950 N. Cherry Ave, Tucson, AZ 85719 10Southern Connecticut State University, New Haven, CT 06515 11University of California, Berkeley, CA, 94720, USA. 12Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA 13Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA 14Michigan Center for Theoretical Physics, Physics Department, University of Michigan, Ann Arbor, MI 48109, USA 15Astronomy Department, University of Michigan, Ann Arbor, MI 48109, USA *Correspondence to: [email protected] ! ! ! ! ! ! ! Abstract: The quest for Earth-like planets represents a major focus of current exoplanet research. -
Life on Extra-Solar Planets Leaving the Solar System 1995: 51 Pegasi
Life on extra-solar planets Leaving the solar system 1995: 51 Pegasi ! 50 Ly from Earth ! V = 5.5 ! Spectral class G2 ! Sun-like star 1995: 51 Pegasi Unseen planets around stars ! cause a Doppler wobble in the stars motion which ! results in a periodic variation in the parent star’s line of sight velocity. ! This causes the characteristic spectral absorption lines present in the star to shift their position in time with the velocity variation. ! Careful analysis of the star’s spectrum then reveals the velocity shift. ! Which reveals the unseen planet. 51 Pegasi b: a “hot Jupiter” ! 51 Peg b is a Jupiter sized planet orbiting some 0.05 AU from its parent, Sun-like star every 4 days. ! How do we know this information? ! The period of the velocity curve is the same as the orbital period. ! The amplitude of the velocity curve is equal to the max/min velocity “wobble” of the star. ! We can compute an accurate mass for the parent star from its spectral type (colour + spectrum): G2-G4. ! Given the star mass and velocity and the orbital period of the planet, we can calculate the planet mass. Masses from the Doppler technique are lower limits Hot Jupiters: a new class of planet Planetary migration Upsilon Andromedae b, c, d! Gliese 581 ! Gliese 581 is a cool, M-type star ! 30% the mass of the Sun 1 ! 20 Ly away. 2 3 Gliese 581: first planet in habitable zone 3 Earth masses 7 Earth masses 2 16 5 7 Earth masses The properties of the known exoplanets Limitations of the Doppler technique for finding planets ! The amplitude of the velocity curve is proportional to the planet mass - harder to discover small planets. -
Extrasolar Planets
Extrasolar Planets Dieter Schmitt Lecture Max Planck Institute for Introduction to Solar System Research Solar System Physics KatlenburgLindau Uni Göttingen, 8 June 2009 Outline • Historical Overview • Detection Methods • Planet Statistics • Formation of Planets • Physical Properties • Habitability Historical overview • 1989: planet / brown dwarf orbiting HD 114762 (Latham et al.) • 1992: two planets orbiting pulsar PSR B1257+12 (Wolszczan & Frail) • 1995: first planet around a solarlike star 51 Peg b (Mayor & Queloz) • 1999: first multiple planetary system with three planets Ups And (Edgar et al.) • 2000: first planet by transit method HD 209458 b (Charbonneau et al.) • 2001: atmosphere of HD 209458 b (Charbonneau et al.) • 2002: astrometry applied to Gliese 876 (Benedict et al.) • 2005: first planet by direct imaging GQ Lupi b (Neuhäuser et al.) • 2006: Earthlike planet by gravitational microlensing (Beaulieu et al.) • 2007: Gliese 581d, small exoplanet near habitability zone (Selsis et al.) • 2009: Gliese 581e, smallest exoplanet with 1.9 Earth masses (Mayor et al.) • As of 7 June 2009: 349 exoplanets in 296 systems (25 systems with 2 planets, 9 with 3, 2 with 4 and 1 with 5) www.exoplanet.eu Our Solar System 1047 MJ 0.39 AU 0.00314 MJ 1 MJ 0.30 MJ 0.046 MJ 0.054 MJ 1 AU 5.2 AU 9.6 AU 19 AU 30 AU 1 yr 11.9 yr 29.5 yr 84 yr 165 yr Definition Planet IAU 2006: • in orbit around the Sun / star • nearly spherical shape / sufficient mass for hydrostatic equilib. • cleared neighbourhood around its orbit Pluto: dwarf planet, as Ceres Brown