Article The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal Forest Bram Hadiwijaya 1 , Steeve Pepin 2, Pierre-Erik Isabelle 1,3 and and Daniel F. Nadeau 1,* 1 CentrEau—Water Research Center, Department of Water and Civil Engineering, Université Laval, 1065 avenue de la Médecine, Québec, QC G1V 0A6, Canada;
[email protected] (B.H.);
[email protected] (P.-E.I.) 2 Centre de Recherche et d’Innovation sur les Végétaux, Department of Soil and Agri-Food Engineering, Université Laval, 2480 boulevard Hochelaga, Québec, QC G1V 0A6, Canada;
[email protected] 3 Premier Tech, 1 avenue Premier, Rivière-du-Loup, QC G5R 6C1, Canada * Correspondence:
[email protected] Received: 31 January 2020; Accepted: 19 February 2020; Published: 21 February 2020 Abstract: Humid boreal forests are unique environments characterized by a cold climate, abundant precipitation, and high evapotranspiration. Transpiration (ET), as a component of evapotranspiration (E), behaves differently under wet and dry canopy conditions, yet very few studies have focused on the dynamics of transpiration to evapotranspiration ratio (ET/E) under transient canopy wetness states. This study presents field measurements of ET/E at the Montmorency Forest, Québec, Canada: a balsam fir boreal forest that receives ∼ 1600 mm of precipitation annually (continental subarctic climate; Köppen classification subtype Dfc). Half-hourly observations of E and ET were obtained over two growing seasons using eddy-covariance and sap flow (Granier’s constant thermal dissipation) methods, respectively, under wet and dry canopy conditions. A series of calibration experiments were performed for sap flow, resulting in species-specific calibration coefficients that increased estimates of sap flux density by 34% ± 8%, compared to Granier’s original coefficients.