Grandidentata in the Field at Ambient and Twice Ambient CO2 in Open

Total Page:16

File Type:pdf, Size:1020Kb

Grandidentata in the Field at Ambient and Twice Ambient CO2 in Open grandidentata in the field at ambient and twice ambient CO2 in open productivity(1-4) This observation has led to the suggestion that, by bottom root boxes filled with organic matter poor native soil. Nitrogen taking up CO2, the terrestrial biosphere might mitigate the potential was added to all root boxes at a rate equivalent to net N mineralization greenhouse warming associated with anthropogenic CO2 emissions(5). in local dry oak forests. Nitrogen added during August was enriched Whiting and Chanton(6) have found, however, that for wetlands of with N-25 to trace the flux of N within the plant-soil system. Above- and varying productivity around the world, higher net primary production is belowground growth, CO2 assimilation, and leaf N content were associated with higher emissions of methane-another important measured non- destructively over 142 d. After final destructive harvest, greenhouse gas. Here we present measurements of methane emissions roots, stems, and leaves were analyzed for total N and N-15. There was from a marsh that has been exposed to twice the present ambient no CO2 treatment effect on leaf area, root length, or net assimilation concentration of atmospheric CO2. We find that over a one-week period, prior to the completion of N addition. Following the N addition, leaf N the CO2-enriched sites had significantly higher emissions of methane content increased in both CO2 treatments, but net assimilation showed than the control sites. Our results suggest that future increases in a sustained increase only in elevated CO2 grown plants. Root relative atmospheric CO2 concentration may lead to significant increases in extension rate was greater at elevated CO2, both before and after the N methane emissions from wetlands. addition. Although final root biomass was greater at elevated CO2, there was no CO2 effect on plant N uptake or allocation. While low soil N KEYWORDS: COMMUNITIES, ELEVATED CO2, ESTUARINE availability severely inhibited CO2 responses, high CO2 grown plants MARSH, FIELD, GROWTH, PLANTS, PRODUCTIVITY, RESPONSES, were more responsive to N. This differential behavior must be RICE PADDIES, WETLANDS considered in light of the temporal and spatial heterogeneity of soil resources, particularly N which often limits plant growth in temperate forests. 482 Dahlman, R.C. 1993. Co2 and plants - revisited. Vegetatio 104:339- KEYWORDS: CARBON DIOXIDE, ENRICHMENT, NITROGEN, 355. PHOTOSYNTHESIS, QUERCUS-ALBA, SEEDLING GROWTH, TREES The decade-long USA research program on the direct effects of CO2 enrichment on vegetation has achieved important milestones and has 480 produced a number of interesting and exciting findings. Research Cushman, J.C., and H.J. Bohnert. 1997. Molecular genetics of beginning in 1980 focused on field experiments to determine whether Crassulacean acid metabolism. Plant Physiology 113(3):667-676. phenomena observed in the laboratory indeed occurred in natural environments. The answer is yes. Data obtained from numerous field Most higher plants assimilate atmospheric CO2 through the C-3 studies show mixed response of crop and native species to CO2 pathway of photosynthesis using ributose-1,5-bisphosphate enrichment however. Nearly all experiments demonstrate that plants carboxylase/oxygenase (Rubisco). However, when CO2 availability is exhibit positive gain when grown at elevated CO2; although the reduced by environmental stress conditions, the incomplete magnitude varies greatly. Most crop responses range from 30 to 50 % discrimination of CO2 over O-2 by Rubisco leads to increased increase in yield. Results from long-term experiments with woody photorespiration, a process that reduces the efficiency of C-3 species and ecosystems are even more variable. Huge growth responses photosynthesis. To overcome the wasteful process of photorespiration, (100 to nearly 300 % increase relative to controls) are reported from approximately 10% of higher plant species have evolved two alternate several tree experiments and the salt-marsh ecosystem experiment. Other strategies for photosynthetic CO2 assimilation, C-3 photosynthesis and results from experiments with woody species and the tundra ecosystem Crassulacean acid metabolism. Both of these biochemical pathways suggest little no effect of CO2 on physiology, growth or productivity. employ a ''CO2 pump'' to elevate intracellular CO2 concentrations in the Numerous studies of the physiology of the CO2 effect are continuing in vicinity of Rubisco, suppressing photorespiration and therefore attempts to understand controlling mechanisms and to explain the improving the competitiveness of these plants under conditions of high variable growth responses. Particular emphasis needs to be given to light intensity, high temperature, or low water availability. This CO2 physiological measures of interactions involving the CO2 effect and pump consists of a primary carboxylating enzyme, phosphoenolpyruvate other environmental influences, and to the wide-ranging observations of carboxylase. In C-4 plants, this CO2-concentrating mechanism is photosynthesis acclimation to CO2. Prospects for future research are achieved by the coordination of two carboxylating reactions that are identified. spatially separated into mesophyll and bundle-sheath cell types (for review, see R.T. Furbank, W.C. Taylor [1995] Plant Cell 7:797-802; KEYWORDS: ACCLIMATION, ATMOSPHERIC CARBON-DIOXIDE, M.S.B. Ku, Y. Kano-Murakami, M. Matsuoka [1996] Plant Physiol ELEVATED LEVELS, ENRICHMENT, GROWTH, INHIBITION, 111:949-957). In contrast, Crassulacean acid metabolism plants perform PHOTOSYNTHESIS, SEEDLINGS, SHORT- TERM, TEMPERATURE both carboxylation reactions within one cell type, but the two reactions are separated in time. Both pathways involve cell- specific changes in the expression of many genes that are not present in C-3 plants. 483 Dale, H., and M.C. Press. 1998. Elevated atmospheric CO2 influences KEYWORDS: ABSCISIC- ACID, C-3 PHOTOSYNTHESIS, CAM, the interaction between the parasitic angiosperm Orobanche minor and COMMON ICE PLANT, DIFFERENTIAL EXPRESSION, INDUCTION, its host Trifolium repens. New Phytologist 140(1):65-73. MESEMBRYANTHEMUM-CRYSTALLINUM L, NADP-MALIC ENZYME, PHOSPHOENOLPYRUVATE CARBOXYLASE, SALT The influence of the root holoparasitic angiosperm Orobanche minor STRESS Sm. on the biomass, photosynthesis, carbohydrate and nitrogen content of Trifolium repens L. was determined for plants grown at two CO2 concentrations (350 and 550 mu mol mol(-1)). Infected plants 481 accumulated less biomass than their uninfected counterparts, although Dacey, J.W.H., B.G. Drake, and M.J. Klug. 1994. Stimulation of early in the association there was a transient stimulation of growth. methane emission by carbon-dioxide enrichment of marsh vegetation. Infection also influenced biomass allocation both between tissues Nature 370(6484):47-49. (infected plants had lower root:shoot ratios) and within tissues: infected roots were considerably thicker before the point of parasite attachment THERE is substantial evidence that many plants respond to increased and thinner below. Higher concentrations of starch were also found in concentrations of atmospheric carbon dioxide by increasing their roots above the point of attachment, particularly for plants grown in elevated CO2. Elevated CO2 stimulated the growth of T. repens only difference in the degree of photoinhibition between leaves exposed to during the early stages of development. There was a significant high light in 10 or 210 mmol O-2/mol. But photoinhibition was more interaction between infection and CO2 on growth, with infected plants pronounced at 10 mmol O-2/mol and 0 mu mol CO2/mol than at 210 showing a greater response, such that elevated CO2 partly alleviated the mmol O-2/mol and 50 pmol CO2/mol, i.e. when both photorespiration effects of the parasite on host growth. Elevated CO2 did not affect total and CO2 refixation are suppressed. Despite this photoprotective role of O. minor biomass per host, the number of individual parasites supported photorespiration, photoinhibition was enhanced by decreasing CO2 by each host, or their time of attachment to the host root system. concentration in bean leaves, especially at elevated (30-35 degrees Photosynthesis was stimulated by elevated CO2 but was unaffected by C)temperatures. (C) 1997 Elsevier Science Ireland Ltd. O. minor. There was no evidence of down-regulation of photosynthesis in T. repens grown at elevated CO2 in either infected or uninfected KEYWORDS: ASSIMILATION, CHLOROPHYLL FLUORESCENCE, plants. The data are discussed with regard to the influence of elevated CHLOROPLAST PROTEIN, DROUGHT, LIGHT, PHOTOCHEMICAL CO2 on other parasitic angiosperm-host associations and factors which EFFICIENCY, PHOTORESPIRATION, PHOTOSYNTHETIC control plant responses to elevated CO2. ELECTRON FLOW, PHOTOSYSTEM, WATER-STRESS KEYWORDS: CARBON DIOXIDE, GROWTH, METABOLISM, N2 FIXATION, NITROGEN, PHOTOSYNTHETIC ACCLIMATION, 487 SORGHUM, STRIGA-HERMONTHICA, TEMPERATURE, WHITE Darrah, P.R. 1996. Rhizodeposition under ambient and elevated CO2 CLOVER levels. Plant and Soil 187(2):265-275. As global CO2 levels rise, can soils store more carbon and so buffer 484 atmospheric CO2 levels? Answering this question requires a knowledge Dalen, L.S., O. Johnsen, and G. Ogner. 1997. Frost hardiness of the rates of C inputs to soil and of CO2 outputs via decomposition. development in young Picea abies seedlings under simulated autumn Below-ground inputs from roots are a major component of the C flow conditions in a phytotron - effects
Recommended publications
  • The Development and Production of Leaves and Tillers by Marandu Palisadegrass Fertilised with Nitrogen and Sulphur
    Tropical Grasslands (2010) Volume 44, 192–201 192 The development and production of leaves and tillers by Marandu palisadegrass fertilised with nitrogen and sulphur F.D. DE BONA1 AND F.A. MONTEIRO up the canopy grow (Moore and Moser 1995; Escola Superior de Agricultura ‘Luiz de McMaster 2005). Therefore, alterations in the Queiroz’ (ESALQ), Universidade de São Paulo, rates of leaf and tiller appearance directly deter- Piracicaba, Brasil mine the quantity and seasonality of the dry matter production of grasses. Plant development is influenced by many Abstract environmental factors, most notably air temper- ature (McMaster 2005; Gramig and Stoltenberg The effects of combined nitrogen and sulphur 2007). From the relationship between air tem- fertilisation on the dynamics of leaf and tiller perature and plant development emerges the con- appearance in Marandu palisadegrass (Brachiaria cept of thermal time or degree-days that consist brizantha cv. Marandu) and its impact on dry of the accumulated values of mean daily air tem- matter production were evaluated in a greenhouse perature exceeding the base temperature (Tb), the study. Grass seedlings were grown in pots filled threshold below which plant development ceases with a soil classified as an Entisol and were har- or is negligible (Wilhelm and McMaster 1995). vested after 43 days, a further 35 days and finally According to this model, the production of leaves after 48 more days. Five rates of N (0, 100, 200, per plant is commonly represented by the phyl- 300 and 400 mg/dm3) and 5 rates of S (0, 10, lochron, which is defined as the thermal time 20, 30 and 40 mg/dm3) were tested in an incom- interval between the appearance of two succes- plete factorial design with 4 replications.
    [Show full text]
  • Phyllochron Responds to Acclimation to Temperature and Irradiance in Maize
    1 Phyllochron responds to acclimation to temperature and irradiance in maize. C. J. Birch1, J. Vos2, J. Kiniry3, H.J. Bos, 2 and A. Elings4 1. The University of Queensland, Gatton College, 4345, Queensland Australia, 2. Wageningen Agricultural University, Haarweg 333, Wageningen, The Netherlands. 3. United States Department of Agriculture, Grassland, Soil and Water Research Laboratory, 808 East Blackland Rd., Temple, Texas, 76502, USA 4. International Maize and Wheat Improvement Centre, Lisboa 27, Apdo Postal 6- 601, 06600 Mexico, D. F., Mexico Prepared for publication in: Field Crops Research Short Title: Phyllochron responds to acclimation and irradiance Corresponding Author: C. J. Birch, The University of Queensland, Gatton College, 4345, Queensland, Australia Phone 61 7 54601302 Fax 61 7 54601112 Email c. [email protected] 2 Abstract Crop models need accurate simulation of leaf canopy development. The thermal interval for leaf tip appearance (phyllochron) is critical for predicting the duration of vegetative development. The phyllochron in maize is shorter in temperate than in tropical and subtropical environments. As existing data has been evaluated in a narrow range of environments, the underlying mechanisms that affect phyllochron have not been adequately examined. The objectives of this study were to quantify the response of phyllochron to environmental variables and determine its stability across maize cultivars, to aid modelers in developing tools which accurately predict phenology. Maize was grown in field experiments at Wageningen, The Netherlands, Temple, Texas, USA, and three sites in Mexico, and in controlled environments at Wageningen. The experiment at Temple included grain sorghum and shading treatments to alter irradiance of the crop.
    [Show full text]
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • Birds of Jagdishpur Reservoir, Nepal Forktail 24: 115-119 (PDF, 70
    Forktail 24 (2008) SHORT NOTES 115 König, C., Weick, F. and Becking, J.-H. (1999) Owls: a guide to the owls Warburton, T. (2006) Wonderful Philippines news. World Owl Trust of the world. Robertsbridge, East Sussex, U.K.: Pica Press. Newsletter 32: 3–5. Marshall, J. T. (1978) Systematics of smaller Asian night birds based Warburton, T. (2007) The Philippine Eagle Owls do it again. World on voice. Orn. Monogr. 24. Owl Trust Newsletter 35: 22. Taylor, B. (1998) Rails: a guide to the rails, crakes, gallinules and coots of the world. Robertsbridge, UK: Pica Press. D. N. S. Allen, 97 Sussex Way, London N7 6RU, U.K. N. J. Collar, BirdLife International, Wellbrook Court, Girton Road, Cambridge CB3 0NA, U.K. Email: [email protected] Birds of Jagdishpur Reservoir, Nepal HEM SAGAR BARAL Jagdishpur Reservoir is the largest reservoir in Nepal (at sites in Nepal and the use of such information for the 2.25 km2) and is considered to be among the most conservation, management and wise use of wetlands important wetland sites in the country (Bhandari 1998, (HMGN/MFSC 2003). Ornithological surveys and HMGN/MFSC 2002). In 2003, Jagdishpur was conservation awareness programmes for local designated a Ramsar site. Despite it being listed as a key communities have been recommended as high priority wetland, not much is known about its birds or other fauna. for the conservation of Jagdishpur (Baral and Inskipp The reservoir and its surrounds are believed to provide 2005). Following these recommendations, I carried out important habitat for resident, wintering and passage surveys in 2005–2006 to gather baseline information on migrant wetland birds.
    [Show full text]
  • Chloroform Extracts of Ipomoea Alba and Ipomoea Tricolor Seeds Show Strong In-Vitro Antibacterial, Antifungal, and Cytotoxic Activity SIMS K
    Research Horizons Day & Research Week April 6-13, 2018 Chloroform Extracts of Ipomoea alba and Ipomoea tricolor Seeds Show Strong In-vitro Antibacterial, Antifungal, and Cytotoxic Activity SIMS K. LAWSON, MARY N. DAVIS, CAROLYN BRAZELL – Biology Department WILLIAM N. SETZER – Mentor – Chemistry Department Overview Antibiotic and antifungal resistance is a growing concern. Novel anti-tumor compounds are continuously sought after. If a novel phytochemical can be discovered with high specificity for certain types of cancer cells, then this could be an invaluable aid to oncological medicine. Plant-based drugs (phyto-pharmaceuticals) have always made up a considerable portion of our known medicines. The search for these plant medicines often begins with anthropological/ ethnobotanical research, as was the case here. Figure 2. - Ancient Olmec tribes mixed the sap of I. alba with sap from the rubber tree to make their rubber balls extra “bouncy”. Their ancient ball games were played since 1300 B.C.. Often, the losers were sacrificed, and sometimes the ball was made from a human Methods skull wrapped in rubber. Figure 1.- Morning glory (Ipomoea spp.) seeds have long been the subject of folklore, myth, and speculation. Some varieties (I. tricolor and I. Cold extractions of the ground seeds of each Ipomoea violacea) contain lysergic acid derivatives, which are known to be species were made with chloroform. Seven bacteria and hallucinogenic, and are closely related chemically to the famous LSD molecule. The Mayans are known to have used morning glory seeds during three fungi were obtained and cultured for multiple certain religious rituals. generations. Then, minimum inhibitory concentrations Table 1.- Antibacterial (MIC, μg/mL), antifungal (MIC, μg/mL), (MIC’s) of the extracts were determined against the and cytotoxic (IC50, μg/mL) activities of Ipomoea CHCl3 seed bacteria and fungi using broth microdilution (BM) extracts.
    [Show full text]
  • Status and Diversity of Wetland Birds of Basavanahalli Lake and Hiremagaluru Lake, Chikmagaluru, Karnataka, India
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391 Status and Diversity of Wetland Birds of Basavanahalli Lake and Hiremagaluru Lake, Chikmagaluru, Karnataka, India Annpurneshwari .H1, Padmini .N2 Department of Zoology IDSG Government College, Chikkamagaluru -577102, Karnataka Abstract: Wetlands are the unique and most productive ecosystem of the world .They support a wide range of flora and fauna. The present study deals with the study of the Avifaunal diversity of wetlands and adjoining area of lake. In this survey two wetlands of Chikkamagaluru have been studied which include Basavanahalli Lake, and Hiremagaluru Lake . The survey was carried for the period of 14 months i.e. from October 2016 to November 2017. During the study period forty two species of birds, belonging to thirteen families were recorded .Which includes both local and migratory birds. Birds belonging to the family Ardeidae found to be dominated by the representation of 8 species, followed by Anatidae7 species, Scolopacidae 5 species, Phalacrocracidae, Threskiornithidae and Ralidae 3species each, Ciconiidae, Laridae, Jacanidae, Charadriidae and Alcedinidae 2 species each and Podicipedidae 1 species.The study also revealed that the study sites harbor many resident as well as migratory birds. Four species like Black headed ibis(Threskiornismelanocephalus),Black tailed God wit (Limosalimosa) , Painted Stork (Mycterialeucocephala) and River tern(Sterna aurantia ) were near threatened and have a protected status under the schedule IV of Indian Wild life Protection Act,1972. Keywords: Avifauna, Wetland birds, Chikkamagaluru, Diversity, Anthropogenic 1. Introduction in the mega diversity of its flora and fauna.
    [Show full text]
  • Leaf Photosynthesis and Simulated Carbon Budget of Gentiana
    Journal of Plant Ecology Leaf photosynthesis and simulated VOLUME 2, NUMBER 4, PAGES 207–216 carbon budget of Gentiana DECEMBER 2009 doi: 10.1093/jpe/rtp025 straminea from a decade-long Advanced Access published on 20 November 2009 warming experiment available online at www.jpe.oxfordjournals.org Haihua Shen1,*, Julia A. Klein2, Xinquan Zhao3 and Yanhong Tang1 1 Environmental Biology Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan 2 Department of Forest, Rangeland & Watershed Stewardship, Colorado State University, Fort Collins, CO 80523, USA and 3 Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, Qinghai, China *Correspondence address. Environmental Biology Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan. Tel: +81-29-850-2481; Fax: 81-29-850-2483; E-mail: [email protected] Abstract Aims 2) Despite the small difference in the temperature environ- Alpine ecosystems may experience larger temperature increases due ment, there was strong tendency in the temperature acclima- to global warming as compared with lowland ecosystems. Informa- tion of photosynthesis. The estimated temperature optimum of tion on physiological adjustment of alpine plants to temperature light-saturated photosynthetic CO2 uptake (Amax) shifted changes can provide insights into our understanding how these ;1°C higher from the plants under the ambient regime to plants are responding to current and future warming. We tested those under the OTCs warming regime, and the Amax was sig- the hypothesis that alpine plants would exhibit acclimation in pho- nificantly lower in the warming-acclimated leaves than the tosynthesis and respiration under long-term elevated temperature, leaves outside the OTCs.
    [Show full text]
  • Redalyc.New Records of Mining Moths from the Iberian Peninsula From
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Lastuvka, A.; Lastuvka, Z. New records of mining moths from the Iberian Peninsula from 2014 (Insecta: Lepidoptera) SHILAP Revista de Lepidopterología, vol. 42, núm. 168, diciembre, 2014, pp. 633-647 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45540983010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 633-647 New records of mining m 26/11/14 11:15 Página 633 SHILAP Revta. lepid., 42 (168), diciembre 2014: 633-647 eISSN: 2340-4078 ISSN: 0300-5267 New records of mining moths from the Iberian Peninsula from 2014 (Insecta: Lepidoptera) A. Lasˇtu˚vka & Z. Lasˇtu˚vka Abstract New records of Nepticulidae, Opostegidae, Heliozelidae, Bucculatricidae and Gracillariidae for Portugal and Spain are presented. Stigmella sakhalinella Puplesis, 1984, Ectoedemia louisella (Sircom, 1849), Bucculatrix albedinella (Zeller, 1839), B. demaryella (Duponchel, 1840), B. ulmella Zeller, 1848, B. albella Stainton, 1867, Caloptilia semifascia (Haworth, 1828), Parornix devoniella (Stainton, 1850), P. torquillella (Zeller, 1850), Phyllonorycter distentella (Zeller, 1846), P. cavella (Zeller, 1846), P. deschkai Triberti, 2007, P. acerifoliella (Zeller, 1839) and P. dubitella (Herrich-Schäffer, 1855) are new for Spain, and Stigmella sakhalinella, Bucculatrix albedinella , Caloptilia betulicola (Hering, 1928), Parornix tenella (Rebel, 1919) and Phyllonorycter ochreojunctella (Klimesch, 1942) are new for Portugal. Stigmella sakhalinella, Ectoedemia louisella, Bucculatrix albedinella , B.
    [Show full text]
  • Echinodorus Tenellus (Martius) Buchenau Dwarf Burhead
    New England Plant Conservation Program Echinodorus tenellus (Martius) Buchenau Dwarf burhead Conservation and Research Plan for New England Prepared by: Donald J. Padgett, Ph.D. Department of Biological Sciences Bridgewater State College Bridgewater, Massachusetts 02325 For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, May 2003 1 SUMMARY The dwarf burhead, Echinodorus tenellus (Mart.) Buch. (Alismataceae) is a small, aquatic herb of freshwater ponds. It occurs in shallow water or on sandy or muddy pond shores that experience seasonal drawdown, where it is most evident in the fall months. Overall, the species is widely distributed, but is rare (or only historical or extirpated) in almost every United States state in its range. This species has been documented from only four stations in New England, the northern limits of its range, with occurrences in Connecticut and Massachusetts. Connecticut possesses New England’s only extant population. The species is ranked globally as G3 (rare or uncommon), regionally by Flora Conservanda as Division 1 (globally rare) and at the regional State levels as endangered (Connecticut) or historic/presumed extirpated (Massachusetts). Threats to this species include alterations to the natural water level fluctuations, sedimentation, invasive species and their control, and off-road vehicle traffic. The conservation objectives for dwarf burhead are to maintain, protect, and study the species at its current site, while attempting to relocate historic occurrences. Habitat management, regular surveys, and reproductive biology research will be utilized to meet the overall conservation objectives.
    [Show full text]
  • Echinodorus Uruguayensis Arechav
    Weed Risk Assessment for United States Echinodorus uruguayensis Arechav. Department of Agriculture (Alismataceae) – Uruguay sword plant Animal and Plant Health Inspection Service April 8, 2013 Version 1 Habit of E. uruguayensis in an aquarium (source: http://www.aquariumfish.co.za/pisces/plant_detail.php?details=10). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Echinodorus uruguayensis Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use weed risk assessment (WRA)—specifically, the PPQ WRA model (Koop et al., 2012)—to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. Because the PPQ WRA model is geographically and climatically neutral, it can be used to evaluate the baseline invasive/weed potential of any plant species for the entire United States or for any area within it.
    [Show full text]
  • Reported to Have Been Five Or Six Meters High at the Advent of the Present· Residents of the Region
    THE TERTIARY LAKE BASIN AT ~FLORISSANT, COLO., BETWEEN SOUTH AND HAYDEN PAHKS.* I [With a map.] By SAMUEL H. SCUDDER. The following remarks are based upon collections. and notes made during a visit to Florissa:qt, in the summer of 1877, in compap.y ·with Messrs. Arthur Lakes, of Golden, Colo., and F. C. Bowditch, of Boston, . Mass. As five days only were spent in the place, most of the time was . given up to the collection and care of specimens, .so that only a general survey of the locality was·possible. Mr. Lakes ·especially gave himself to the· study of the geol9gy of the district, and as he was previously fttrniliar with the structure of the surrounding country, and placed his notes at my disposal, the first part of this paper should be considered our joint production. GEOLOGY. The tertiary lalw basin at Florissant, already famous for its prolific beds of plants and insects, is situated ina narrow valley high up in the mountains at the soethern extremity of the Front Range of Colorado, at no great distance from "Pike's Peak. The first, and, so fat· as I am aware, the only notice of it which has been published, is that lJy Mr. A. C. Peale, in his account of the geology of Hayden Park and the country lying between it and the upper canon of the South Platte. .t As it is brief, it is given here in full: . ''The latter [Beaver Creek] flows to the northwest, and empties into the South Platte just below the upper canon.
    [Show full text]
  • Why Is the Alpine Flora Comparatively Robust Against Climatic Warming?
    diversity Review Why Is the Alpine Flora Comparatively Robust against Climatic Warming? Christian Körner * and Erika Hiltbrunner Department of Environmental Sciences, Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland; [email protected] * Correspondence: [email protected] Abstract: The alpine belt hosts the treeless vegetation above the high elevation climatic treeline. The way alpine plants manage to thrive in a climate that prevents tree growth is through small stature, apt seasonal development, and ‘managing’ the microclimate near the ground surface. Nested in a mosaic of micro-environmental conditions, these plants are in a unique position by a close-by neighborhood of strongly diverging microhabitats. The range of adjacent thermal niches that the alpine environment provides is exceeding the worst climate warming scenarios. The provided mountains are high and large enough, these are conditions that cause alpine plant species diversity to be robust against climatic change. However, the areal extent of certain habitat types will shrink as isotherms move upslope, with the potential areal loss by the advance of the treeline by far outranging the gain in new land by glacier retreat globally. Keywords: biodiversity; high-elevation; mountains; phenology; snow; species distribution; treeline; topography; vegetation; warming Citation: Körner, C.; Hiltbrunner, E. Why Is the Alpine Flora Comparatively Robust against 1. Introduction Climatic Warming? Diversity 2021, 13, The alpine world covers a small land fraction, simply since mountains get narrower 383. https://doi.org/10.3390/ with elevation [1]. Globally, 2.6% of the terrestrial area outside Antarctica meets the criteria d13080383 for ‘alpine’ [2,3], a terrain still including a lot of barren or glaciated areas, with the actual plant covered area closer to 2% (an example for the Eastern Alps in [4]).
    [Show full text]