Leaf Photosynthesis and Simulated Carbon Budget of Gentiana

Total Page:16

File Type:pdf, Size:1020Kb

Leaf Photosynthesis and Simulated Carbon Budget of Gentiana Journal of Plant Ecology Leaf photosynthesis and simulated VOLUME 2, NUMBER 4, PAGES 207–216 carbon budget of Gentiana DECEMBER 2009 doi: 10.1093/jpe/rtp025 straminea from a decade-long Advanced Access published on 20 November 2009 warming experiment available online at www.jpe.oxfordjournals.org Haihua Shen1,*, Julia A. Klein2, Xinquan Zhao3 and Yanhong Tang1 1 Environmental Biology Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan 2 Department of Forest, Rangeland & Watershed Stewardship, Colorado State University, Fort Collins, CO 80523, USA and 3 Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, Qinghai, China *Correspondence address. Environmental Biology Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan. Tel: +81-29-850-2481; Fax: 81-29-850-2483; E-mail: [email protected] Abstract Aims 2) Despite the small difference in the temperature environ- Alpine ecosystems may experience larger temperature increases due ment, there was strong tendency in the temperature acclima- to global warming as compared with lowland ecosystems. Informa- tion of photosynthesis. The estimated temperature optimum of tion on physiological adjustment of alpine plants to temperature light-saturated photosynthetic CO2 uptake (Amax) shifted changes can provide insights into our understanding how these ;1°C higher from the plants under the ambient regime to plants are responding to current and future warming. We tested those under the OTCs warming regime, and the Amax was sig- the hypothesis that alpine plants would exhibit acclimation in pho- nificantly lower in the warming-acclimated leaves than the tosynthesis and respiration under long-term elevated temperature, leaves outside the OTCs. and the acclimation may relatively increase leaf carbon gain under 3) Temperature acclimation of respiration was large and sig- warming conditions. nificant: the dark respiration rates of leaves developed in the warming regime were significantly lower than leaves from the Methods ambient environments. Open-top chambers (OTCs) were set up for a period of 11 years to 4) The simulated net leaf carbon gain was significantly lower artificially increase the temperature in an alpine meadow ecosystem. in the in situ leaves under the OTCs warming regime than un- We measured leaf photosynthesis and dark respiration under differ- der the ambient open regime. However, in comparison with ent light, temperature and ambient CO2 concentrations for Gentiana the assumed non-acclimation leaves, the in situ warming- straminea, a species widely distributed on the Tibetan Plateau. Max- acclimated leaves exhibited significantly higher net leaf carbon imum rates of the photosynthetic electron transport ( Jmax), RuBP car- gain. boxylation (Vcmax) and temperature sensitivity of respiration Q10 5) The results suggest that there was a strong and significant were obtained from the measurements. We further estimated the leaf temperature acclimation in physiology of G. straminea in re- carbon budget of G. straminea using the physiological parameters sponse to long-term warming, and the physiological acclima- and environmental variables obtained in the study. tion can reduce the decrease of leaf carbon gain, i.e. increase relatively leaf carbon gain under the warming condition in the Important findings alpine species. 1) The OTCs consistently elevated the daily mean air temper- ature by ;1.6°C and soil temperature by ;0.5°C during the Keywords: alpine plant d acclimation d experimental growing season. warming d open-top chamber d photosynthesis d temperature Ó The Author 2009. Published by Oxford University Press on behalf of the Institute of Botany, Chinese Academy of Sciences and the Botanical Society of China. All rights reserved. For permissions, please email: [email protected] 208 Journal of Plant Ecology understood, though a few studies suggest that the acclimation INTRODUCTION response to increasing temperature is not so different among Global mean temperatures are increasing and are predicted to alpine and lowland herbaceous species (Arnone and Ko¨ rner increase further into the future (IPCC 2007). Temperature el- 1997; Collier 1996; Larigauderie and Ko¨ rner 1995). Our pri- evation will affect plant carbon budgets through its effects on mary aim was thus to assess physiological acclimation of alpine photosynthesis and respiration (e.g. Luo 2007). The change of plants and its consequence to leaf carbon gain under warming terrestrial vegetation carbon budgets can, in turn, directly conditions. We hypothesized that alpine plants would exhibit feedback to affect the CO2 concentration in the atmosphere photosynthetic and respiration acclimation to temperature el- (IPCC 2007; Luo 2007). Understanding the changes of plant evation, and the acclimation should increase the leaf carbon photosynthesis and respiration in responding to a warming en- gain. To test the hypothesis, we used one of the most common vironment is thus essential to further understand and predict species on the Qinghai-Tibetan Plateau, Gentiana straminea, the future carbon dynamics in the atmosphere (Atkin and growing within the open-top chambers (OTCs) for a period Tjoelker 2003; Dewar et al. 1999; Gunderson et al. 2000). of 11 years. Photosynthetic and respiration rates generally increase with a temporal increase of environmental temperature below the PLANT MATERIALS AND METHODS optimal temperature when other resources are not limiting Study site and plant materials (e.g. Berry and Bjo¨ rkman 1980; Hikosaka et al. 2006). The physiological processes can also result in acclimation to The field site was an alpine Kobresia humilis meadow (latitude long-term changes in the temperature environment (e.g. 37°37#N, longitude 101°12#E, altitude 3250 m), which is lo- cated at the northeastern edge of the Qinghai-Tibetan Plateau. Campbell et al. 2007; Larigauderie and Ko¨ rner 1995; Pearcy The annual mean air temperature of this site is 1.6°C and the 1977; Xiong et al. 2000; Zhou et al. 2007). The temperature sen- À annual precipitation is 562 mm (Klein et al. 2004). The OTCs, sitivity and acclimation degree of photosynthesis differ from each being 1.5 m diameter, 40 cm height and 1.0-mm thick that of respiration (Bruhn et al. 2007; Morison and Morecroft fiberglass (Solar Components Corporation, Manchester, 2006; Way and Sage 2008). Any changes in the two processes NH), were set up in 1997. Similar OTCs have been an impor- may eventually change the plant carbon budget, which alters tant method for simulating warming in the field, especially in the overall ecosystem carbon budget (Atkin et al. 2006; Dewar tundra or alpine ecosystems (Allen et al. 1992; Arft et al. 1999; et al. 1999; Loveys et al. 2002). The degree of acclimation in Ceulemans and Mousseau 1994; Walker et al. 2006). The OTCs photosynthesis and respiration is, therefore, an important de- elevated growing season averaged daily air temperature by terminant to predict the future response of ecosystems to ele- 0.6–2.0°C, and growing season averaged maximum daily air vated temperatures. Moreover, the plant-level response temperature by 1.9–7.3°C. For additional details on the study provides a mechanistic understanding that can be masked at site, the experimental design, the micro-climate effects of the the ecosystem level. treatments and the community and ecosystem responses, see Since the magnitude of photosynthetic and respiratory ac- Klein et al. (2004, 2005, 2007, 2008). climation varies with species and other environmental varia- Gentiana straminea Maximum. (Gentianaceae) is one of the bles (Berry and Bjo¨rkman 1980), these processes are still common forbs in the meadow and is a genus commonly found poorly understood, especially under field conditions and/or across the Tibetan Plateau and the Himalayan region. This spe- for long-term acclimation. Laboratory experiments, in which cies is also a medicinal plant that provides an important eco- the growth temperature often differs by 5–10°C, can provide system service in the region (Klein et al. 2008). Gentiana useful information for predicting the effects of global warming straminea grows its linear-shaped leaves diagonally from the on plant carbon budgets (see reviews from Hikosaka et al. 2006; soil surface to the top of the canopy. Its mature leaves are Medlyn et al. 2002). The information, however, can also be of 20–30 cm long. The inclination angle of fully expanded leaves limited use partly because the projected magnitude of global is 4969°, the ratio of length to width is approximately 4–5 (Cui warming in the short term is smaller than the experimental et al. 2004). conditions simulated in these laboratory studies. Therefore, understanding acclimation under field conditions with more Assessment of the micro-environmental parameter realistic temperature elevation and, if possible, under long- of inside and outside of OTCs term warming condition is needed to predict plant response We installed six quantum sensors (GaAsP Photodiode G1118, to potential climate change in the future. Hamamatsu City, Japan) on the horizontal surface at the The impact of global warming on terrestrial ecosystems has average height of the G. straminea leaves, three temperature been reported to be greater in arctic tundra and high mountain sensors (copper–constantan thermocouples) on the leaf regions than at low latitudes or altitudes (e.g. Beniston 2006; surface, three temperature sensors 20 cm above the soil Maxwell 1992; Mitchell et al. 1990). Nevertheless, plant surface and three temperature sensors (copper–constantan responses—especially ecophysiological responses to tempera- thermocouples) at a depth of 5 cm in the soil on the inside ture elevation in these cold ecosystems—have been scarcely and outside of the OTCs, respectively. All quantum sensors Shen et al. | Leaf photosynthesis response to experimental warming 209 were calibrated under sunlight and artificial shade against point in the absence of day respiration. Kc and Ko are Michaelis a standard quantum sensor (Li-Cor Model 190S, Li-Cor, constants for carboxylation and oxygenation, respectively. Lincoln, NE; Tang and Washitani 1995).
Recommended publications
  • Why Is the Alpine Flora Comparatively Robust Against Climatic Warming?
    diversity Review Why Is the Alpine Flora Comparatively Robust against Climatic Warming? Christian Körner * and Erika Hiltbrunner Department of Environmental Sciences, Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland; [email protected] * Correspondence: [email protected] Abstract: The alpine belt hosts the treeless vegetation above the high elevation climatic treeline. The way alpine plants manage to thrive in a climate that prevents tree growth is through small stature, apt seasonal development, and ‘managing’ the microclimate near the ground surface. Nested in a mosaic of micro-environmental conditions, these plants are in a unique position by a close-by neighborhood of strongly diverging microhabitats. The range of adjacent thermal niches that the alpine environment provides is exceeding the worst climate warming scenarios. The provided mountains are high and large enough, these are conditions that cause alpine plant species diversity to be robust against climatic change. However, the areal extent of certain habitat types will shrink as isotherms move upslope, with the potential areal loss by the advance of the treeline by far outranging the gain in new land by glacier retreat globally. Keywords: biodiversity; high-elevation; mountains; phenology; snow; species distribution; treeline; topography; vegetation; warming Citation: Körner, C.; Hiltbrunner, E. Why Is the Alpine Flora Comparatively Robust against 1. Introduction Climatic Warming? Diversity 2021, 13, The alpine world covers a small land fraction, simply since mountains get narrower 383. https://doi.org/10.3390/ with elevation [1]. Globally, 2.6% of the terrestrial area outside Antarctica meets the criteria d13080383 for ‘alpine’ [2,3], a terrain still including a lot of barren or glaciated areas, with the actual plant covered area closer to 2% (an example for the Eastern Alps in [4]).
    [Show full text]
  • Stomatal Length Correlates with Elevation of Growth in Four Temperate Species† Nicholas Holland1 and Andrew D
    Article in press (2007), Journal of Sustainable Forestry [G.P. Berlyn Festschrift Special Issue, Volume 25, Issue 1-2] Stomatal length correlates with elevation of growth in four temperate species† Nicholas Holland1 and Andrew D. Richardson2,* ABSTRACT Stomatal size and density are considered two key ecophysiological parameters, because they jointly determine stomatal conductance. In the present study, we examine trends in these anatomical traits along a 660 m elevational gradient on Mt. Moosilauke, in the White Mountains of New Hampshire. Samples were collected from two broadleaf tree species (Betula papayrifera var. cordifolia and Sorbus americana) and two herbaceous understory species (Cornus canadensis and Dryopteris carthusiana). Guard cell length increased with elevation in all four species (all p ≤ 0.10), but there were no clear elevational trends in stomatal density in any of the four species (all p ≥ 0.10). A “potential conductance index” (= [guard cell length]2 × stomatal density × 10-4) was positively correlated with elevation for all species, but this trend was significant only for the two understory species (both p ≤ 0.10). Results are discussed in the context of prevailing theories to explain changes in stomatal traits with elevation. KEYWORDS. Alpine, elevation, guard cell length, leaf anatomy, montane forests, stomatal density, potential conductance index, Betula papyrifera var. cordifolia, Sorbus mericana, Cornus canadensis, Dryopteris carthusiana. 1Nicholas Holland is a Conservation Easement Stewardship Specialist at Mass Audubon, 208 South Great Road, Lincoln MA 01773. 2Andrew Richardson is a Research Scientist at the University of New Hampshire, Complex Systems Research Center, Durham NH 03824. *Corresponding author. Mailing address: USDA Forest Service, 271 Mast Road, Durham NH 03824 USA.
    [Show full text]
  • Field Measurements of Photosynthesis and Leaf Growth Rates of Three Alpine Plant Species
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1973 Field Measurements of Photosynthesis and Leaf Growth Rates of Three Alpine Plant Species Douglas A. Johnson Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Ecology and Evolutionary Biology Commons, Environmental Sciences Commons, and the Plant Sciences Commons Recommended Citation Johnson, Douglas A., "Field Measurements of Photosynthesis and Leaf Growth Rates of Three Alpine Plant Species" (1973). All Graduate Theses and Dissertations. 6269. https://digitalcommons.usu.edu/etd/6269 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. FIELD MEASUREMENTS OF PHOTOSYNTHESIS AND LEAF GROWTH RATES OF THREE ALPINE PLANT SPECIES by Douglas A. Johnson A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE 1n Range Science (Plant Ecology) Approved: UTAH STATE UNIVERSITY Logan, Utah 1973 ii ACKNOWLEDGEMENTS Grateful acknowledgement is made to Dr. Martyn M. Caldwell for his generous support in terms of time, ideas, and the prepara­ tion of this thesis. Appreciation is also extended to Drs. Herman Wiebe and Donald Sisson for their assistance in providing valuable suggestions pertaining to the fieldwork for this thesis. The assis­ tance of Kathryn Johnson, Russel 1 Moore, James Ehleringer, Dennis Ballinger, Rita Belserene, as well as the station support of the Institute of Arctic and Alpine Research, University of Colorado is sincerely appreciated.
    [Show full text]
  • Grandidentata in the Field at Ambient and Twice Ambient CO2 in Open
    grandidentata in the field at ambient and twice ambient CO2 in open productivity(1-4) This observation has led to the suggestion that, by bottom root boxes filled with organic matter poor native soil. Nitrogen taking up CO2, the terrestrial biosphere might mitigate the potential was added to all root boxes at a rate equivalent to net N mineralization greenhouse warming associated with anthropogenic CO2 emissions(5). in local dry oak forests. Nitrogen added during August was enriched Whiting and Chanton(6) have found, however, that for wetlands of with N-25 to trace the flux of N within the plant-soil system. Above- and varying productivity around the world, higher net primary production is belowground growth, CO2 assimilation, and leaf N content were associated with higher emissions of methane-another important measured non- destructively over 142 d. After final destructive harvest, greenhouse gas. Here we present measurements of methane emissions roots, stems, and leaves were analyzed for total N and N-15. There was from a marsh that has been exposed to twice the present ambient no CO2 treatment effect on leaf area, root length, or net assimilation concentration of atmospheric CO2. We find that over a one-week period, prior to the completion of N addition. Following the N addition, leaf N the CO2-enriched sites had significantly higher emissions of methane content increased in both CO2 treatments, but net assimilation showed than the control sites. Our results suggest that future increases in a sustained increase only in elevated CO2 grown plants. Root relative atmospheric CO2 concentration may lead to significant increases in extension rate was greater at elevated CO2, both before and after the N methane emissions from wetlands.
    [Show full text]
  • Pollination Ecology of an Alpine Fell-Field Community in the North
    Oavid C.,Shaw d,o Ronald J. Taylor D.o".tr.a'l,o, Boroq, Wo F W.' r'o .t,.o, L 86 g.d !4o11lo 98ll5 Polljnation Ecologyof an Alpine Fell-FieldCommunity in the North Cascades Abstract 'ruh-!f '{ rlr loliiirlion.''1!1og\of an alpir tul]ficld lo.areit ir LheNIounr Ilater areaoJ washingtonStar. ras ronducred iru.nsth' Lumtrrr''ol l93l llllhation svndrocsGtraregie!)ofth.dorrinanrptantswerearemophrrv.g,ine.arjze.t.nlomoph ilr' and sl"ializ'd ent'nophilv lrs.cr 'Ihe !isitationsro ptantspecies werc q"-tir;,"t "".l i"""",g prenorog! nut $as denrin,n"u. inldtant pollinrrorsrere t,unblcl,rs, srrplid nr"., -a ,,-*"ri iii"., "i'];,". ,",0",,,,,"" $ere hurrerliesand p'imitivf llic' Plantserhitririne specializ*1 entornophily appearcdro oinin;e comperi,i"' l, .""p"-,r"" of ltowerjng NIanyot rheplants lrhiliring rinrcs. gL:neralizedenrooopt,ili norercrt s1mhron",.r,, p".r,.,p.f* ' "r" .,\ ,,",a*,arion to alra.t h.ge nunbcrs 1. 1, ,..r.,i,.. 1 , r-t'^\ .,.,4Lhi F tt,{pr: Introduction rcducrng competition for pollinators. Foraging behavior of flies and butterflies is variable Pollin.rriuner-ul'rgr i. a rapidh gror.ing -uh- anJ "olJ-fa.lrr,,rrnJ' lesslell known (Proctor and yco l9?3, Faegri dr- inline.l bi,,log\.rccen \ e,ndVand"r Pijl l,r7q,.In gnrreral.ili,.. proier erpanJirrglrnrrr .r nrinrarilrdc", riprir, to an .i- llo\1crj sith n,rn-con.erl,d rerarrl., Jo not perimenlal science.Howerer, although therc are .peeializ".und appcarirr rlpirr,.r"ommunitie. a, number of excellent tcxts, c.g., Faegri and earll in the season.Buttcrflies preler tubular Vander Pijl (1979),Jones and LitJe (1983),proc- llorcrs with toncealed rcwards, have a higher tor and Yeo (1973), and Richards (1978), ancl level of floral constancythan flies, and app"ar nunrerou:arlr"ter , "nc, rningpollination biolugr.
    [Show full text]
  • Eriophorum Scheuchzeri Hoppe (White Cottongrass): a Technical Conservation Assessment
    Eriophorum scheuchzeri Hoppe (white cottongrass): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project March 2, 2006 Juanita A. R. Ladyman, Ph.D. JnJ Associates LLC 6760 S. Kit Carson Circle East Centennial, CO 80122 Peer Review Administered by Society of Conservation Biology Ladyman, J.A.R. (2006, March 2). Eriophorum scheuchzeri Hoppe (white cottongrass): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/ projects/scp/assessments/eriophorumscheuchzeri.pdf [date of access]. ACKNOWLEDGMENTS The time spent and help given by all the people and institutions mentioned in the reference section are gratefully acknowledged. I value the information provided by Jacques Cayouette, with Agriculture and Agri-food Canada, and thank him for his help. I also appreciate the access to files and the assistance given to me by Andrew Kratz, USDA Forest Service Region 2, and Chuck Davis, US Fish and Wildlife Service, both in Denver, Colorado. The information sent from Bonnie Heidel, Wyoming Natural Diversity Database; Teresa Prendusi, USDA Forest Service Region 4; Thomas A. Zanoni, New York Botanical Garden; Rusty Russell, United States National Herbarium; Ronald Hartman and Joy Handley, Rocky Mountain Herbarium at the University of Wyoming; Alan Batten, University of Alaska Museum of the North; Mary Barkworth and Michael Piep, the Intermountain Herbarium; Jennifer Penny and Marta Donovan, British Columbia Conservation Data Centre; John Rintoul, Alberta Natural Heritage Information Center; and Ann Kelsey, Garrett Herbarium, are also very much appreciated. I would also like to thank Deb Golanty, Helen Fowler Library at Denver Botanic Gardens, for her persistence in retrieving some rather obscure articles.
    [Show full text]
  • North American Botanic Garden Strategy for Alpine Plant Conservation
    North American Botanic Garden Strategy for Alpine Plant Conservation 1 | P a g e 2019 North American Botanic Garden Strategy for Alpine Plant Conservation July 10th, 2019 Draft Authored by: Betty Ford Botanic Gardens, 522 S. Frontage Rd. E, Vail, CO 81657 Nicola Ripley, Executive Director Nanette Kuich, Education Director Dawn Welles, Ph.D. Student Antioch University New England Denver Botanic Gardens, 1007 York Street, Denver, CO 80206 Jennifer Ramp Neale, Ph.D., Director of Research & Conservation Mike Kintgen, Curator Alpine Collections 2 | P a g e Rebecca Hufft, Ph.D., Associate Director of Applied Conservation Amy Schneider, Horticulturist Introduction The North American Botanic Garden Strategy for Alpine Plant Conservation (Alpine Strategy) is a blueprint for protecting alpine plants and ecosystems in the United States and Canada, focusing on the role of botanic gardens in this effort. The strategy uses two existing templates - The Global Strategy for Plant Conservation (GSPC), first approved at the Conference of the Parties (COP) to the Convention on Biological Diversity in 2002, and the North American Botanic Garden Strategy for Plant Conservation (North American Strategy) updated in 2016. Plants that inhabit the alpine zone, defined as the treeless regions at the uppermost reaches of the mountains (Körner, 2003), are among the most vulnerable to climate change according to an assessment by the United Nations Intergovernmental Panel on Climate Change (IPCC) (Saunders, Montgomery, Easley and Spencer, 2008) and North American’s alpine zone is no exception. According to the United States Geological Survey (USGS) temperatures have increased three times the global average over the past century in the higher elevations of the western U.S.
    [Show full text]
  • Fairchild's Orchid Program
    winter 2016 Fairchild’s Orchid Program: The synergy of science education, outreach and the beauty of the world’s most coveted plant published by fairchild tropical botanic garden The Shop AT FAIRCHILD Botanical Bird Glass Plate Regular price, $18.00 Member price, $16.20 GARDENING SUPPLIES | UNIQUE TROPICAL GIFTS | APPAREL ECO-FRIENDLY AND FAIR-TraDE PRODUCTS | ACCESSORIES | BOOKS TROPICAL GOURMET FOODS | HOME DÉCOR | ORCHIDS AND MUCH MORE Shop Hours: 7:30 a.m. - 5:30 p.m. Shop online at store.fairchildonline.com fairchild tropical botanic garden Photo by Rey Longchamp/FTBG contents FEATURES PARTNERS IN PLANT OAKES AMES: A shy man with a whip- CONSERVATION HALF 26 43 sharp sense of humor matched only by his A WORLD AWAY and wife Blanche’s passion for orchids DEPARTMENTS 4 FROM THE DIRECTOR 5 FROM THE CHIEF OPERATING OFFICER 7 SCHEDULE OF EVENTS 9 GET IN ON THE CONSERVATION 11 EXPLAINING 15 VIS-A-VIS VOLUNTEERS 16 WHAT’S BLOOMING 19 THE ART IN GARTEN 26 CONSERVING 31 BOOK REVIEW 39 WHAT’S IN STORE 41 PLANT SOCIETIES 50 WHAT’S IN A NAME 52 EDIBLE GARDENING 57 BUG BEAT 58 PLANT COLLECTIONS 62 FROM THE ARCHIVES 64 GARDEN VIEWS CREATING A GARDEN CITY IN SINGAPORE 32 from the director reycinetia cumingiana, a spectacular plant in our Tropical Plant Conservatory, comes from a mountaintop rainforest in the south of Luzon, Philippines. A relative of Fthe pandan, Freycinetia is a distant cousin of palms, grasses and bromeliads. In the Garden, F. cumingiana bursts into bloom in the shortest days of winter, just as it does in its native habitat.
    [Show full text]
  • Alpine Plant Life
    Christian Korner Alpine Plant Life Functional Plant Ecology of High Mountain Ecosystems With 243 Figures, 4 Color Plates and 47 Tables Springer Contents 1 Plant ecology at high elevations 1 The concept of limitation 1 A regional and historical account 3 The challenge of alpine plant research 7 2 The alpine life zone 9 Altitudinal boundaries 9 Global alpine land area 12 Alpine plant diversity 13 Origin of alpine floras 15 Alpine growth forms 17 3 Alpine climate 21 Which alpine climate? 21 Common features of alpine climates 21 Regional features of alpine climates 26 4 The climate plants experience 31 Interactions of relief, wind and sun 31 How alpine plants influence their climate 38 5 Life under snow: protection and limitation 47 Temperatures under snow 47 Solar radiation under snow 48 Gas concentrations under snow 52 Plant responses to snowpack 54 6 Alpine soils 63 Physics of alpine soil formation 63 The organic compound 70 The interaction of organic and inorganic compounds 74 7 Alpine treelines 77 About trees and lines 77 Current altitudinal positions of climatic treelines 78 Treeline-climate relationships 80 VIII Contents Intrazonal variations and pantropical plateauing of alpine treelines 86 Treelines in the past 87 Attempts at a functional explanation of treelines 88 A hypothesis for treeline formation 95 Growth trends near treelines 97 8 Climatic stress 101 Survival of low temperature extremes 102 Avoidance and tolerance of low temperature extremes 106 Heat stress in alpine plants Ill Ultraviolet radiation - a stress factor? 114 9
    [Show full text]
  • Canopy Structure and Phenology of Alpine Tundra Vegetation
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1972 Canopy Structure and Phenology of Alpine Tundra Vegetation Marcee Fareed Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Plant Sciences Commons Recommended Citation Fareed, Marcee, "Canopy Structure and Phenology of Alpine Tundra Vegetation" (1972). All Graduate Theses and Dissertations. 6314. https://digitalcommons.usu.edu/etd/6314 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ,, rn.ea . ,1 ,.I,. "'' CANOPYSTRUCTURE AND PHENOLOGY OF ALPINE TUNDRA VEGETATION by Marcee Fareed A thesis submitted in partial fulfillment · of the requirements for the degree of MASTEROF SCIENCE in Plant Ecology Approved: MaJor Professor Committeeman ·committeeman Dean of Graduate Studies UTAHSTATE UNIVERSITY Logan, Utah 1972 ii ACKNOWLEDGEMENTS Grateful acknowledgement is made to Dr. Martyn Caldwell for his suggestions on the fieldwork and the preparatton of the thesis. Appreciation is also extended to Thomas Shoemaker and Diane and Roger Hanson for their assistance in gathering the data, and to Professor Arthur Holmgren for helping in the identification of plant species in the voucher collection. Dr. Larry Tieszen is responsible for developing the computer programs used in the analysis of the data. This study was supported by the Tundra Biome of the International Biological Program. ~~ Marcee Fareed iii TABLE OF CONTENTS Page Acknowledgements ii List of Tables .. iv Li st of Figures v Abstract vi Introduction .
    [Show full text]
  • CONSERVATION of ARCTIC FLORA and FAUNA (CAFF) FLORA GROUP Acknowledgements I
    CAFF Technical Report No. 15 September 2008 PROCEEDINGS OF THE FOURTH INTERNATIONAL WORKSHOP CONSERVATION OF ARCTIC FLORA AND FAUNA (CAFF) FLORA GROUP Acknowledgements i CAFF Designated Agencies: • Environment Canada, Ottawa, Canada • Finnish Ministry of the Environment, Helsinki, Finland • Ministry of the Environment and Nature, Greenland Homerule, Greenland (Kingdom of Denmark) • Faroese Museum of Natural History, Tórshavn, Faroe Islands (Kingdom of Denmark) • Icelandic Institute of Natural History, Reykjavik, Iceland • Directorate for Nature Management, Trondheim, Norway • Russian Federation Ministry of Natural Resources, Moscow, Russia • Swedish Environmental Protection Agency, Stockholm, Sweden • United States Department of the Interior, Fish and Wildlife Service, Anchorage, Alaska This publication should be cited as: Talbot, S.S., ed. (2008): Proceedings of the Fourth International Conservation of Arctic Flora and Fauna (CAFF) Flora Group Workshop, 15-18 May 2007, Tórshavn, Faroe Islands. CAFF Technical Report No. 15. Akureyri, Iceland. Cover photo: View from Villingadalsfjall (elevation 844m) looking south to Malinsfjall (750m) on the island of Vidoy, Faroe Islands. In the Palaeogene the island was geographically close (100-120 km) to East Greenland. Photo by Anna Maria Fosaa. For more information please contact: CAFF International Secretariat Borgir, Nordurslod 600 Akureyri, Iceland Phone: +354 462-3350 Fax: +354 462-3390 Email: [email protected] Internet: http://www.caff.is ___ CAFF Designated Area Editing: Tammy Charron Design & Layout: Tom Barry Proceedings of the Fourth International Conservation of Arctic Flora and Fauna (CAFF) Flora Group Workshop May 15-18, 2007 Tórshavn, Faroe Islands CAFF Technical Report No. 15 September 2008 Table of Contents 1 Preliminaries Welcome—H. Poulsen . .1 Introduction—S. S.
    [Show full text]
  • Canopy Photosynthesis and Carbon Gains of Two Typical Alpine Plant Communities
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 18F–044/2018/20–8–1893–1902 DOI: 10.17957/IJAB/15.0752 http://www.fspublishers.org Full Length Article Canopy Photosynthesis and Carbon Gains of Two Typical Alpine Plant Communities Rui Shi1,2, Peixi Su1*, Zijuan Zhou1, Tingting Xie3 and Xinjing Ding1,2 1Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu-730000, China 2University of Chinese Academy of Sciences, Beijing-100049, China 3Heihe Key Laboratory of Ecohydrology and Integrated River Basin Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu-730000, China *For correspondence: [email protected] Abstract The canopy photosynthesis of wetland and meadow vegetation communities on the Zoige Plateau, China, was measured to reveal photosynthetic characteristics and their responses to climate and soil factors and to analyze the daily carbon budgets. Results showed that the diurnal average of the canopy apparent photosynthetic rate (CAP) in late July exceeded that in late August by 13% (wetland) and 24% (meadow). The increased CAP indicated more vigorous growth in late July. In the same months, the CAP and CAW (canopy apparent water use efficiency) of meadow were higher than those in wetland. Meadow community had a higher carbon fixation rate, and exhibited water-saving strategy. Photosynthetically active radiations (PAR) were the main determining factor for the two communities in both July and August. The relative humidity in wetlands, compared with that of meadows, presented a relatively stronger directly negative effect on photosynthesis The daily net carbon gain of wetland were 1.72 g·m-2·d-1 in late July and 1.71 g·m-2·d-1 in late August, and the corresponding values of meadow were 2.7 g·m-2·d-1 and 2.2 g·m-2·d-1.
    [Show full text]