Process Analytics in Ethylene Oxide and Ethylene Glycol Plants Chemical Industry

Total Page:16

File Type:pdf, Size:1020Kb

Process Analytics in Ethylene Oxide and Ethylene Glycol Plants Chemical Industry Case Study Process Analytics in Ethylene Oxide and Ethylene Glycol Plants Chemical Industry Perfect solutions from Siemens Process Analytics Ethylene Oxide (EO) Ethylene oxide, C2H4O, under normal conditions, is a colorless, flammable gas. It is very toxic and carcinogen. Industrial production started in 1925 using the chlorohydrin process and was improved in 1931 by introducing the much more economic direct catalytic oxidation method. Currently, almost all ethylene oxide production plants are based on the direct oxidation process with air or oxygen using a silver based catalyst. CO 2 and water are produced as by-products of the reaction. Because EO reacts readily with many chemicals, it is one of the most versatile intermediates in the production of several industrial chemicals, the most notable of which is ethylene glycol. It is also used as a sterilant for medical equipment. However, most of it is converted into products such as fibers, foils, bottles, plasiticizers, solvents, antifreezes, cosmetics, sport articles, CDs etc. Ethylene Glycol (EG) Ethylene glycol (C2H4(OH)2) is produced from ethylene oxide through a catalytic reaction with water at higher temperature resulting in a yield of mono-ethylene glycol (MEG), known as glycol, and the by-products di-ethylene glycol (DEG) and tri-ethylene glycol (TEG). Ethylene glycol is commonly used as an antifreeze agent in automobile cooling systems. It is also used in deicing solutions for aircraft and boats. Other uses include solvents for the paint and plastic industry, and hydraulic brake fluids. In pure form it is a colorless clear liquid with a sweet taste and a slightly syrupy texture. If ingested, ethylene glycol can damage the kidneys, heart and nervous system. Integrated EO/EG plants Modern EO/EG plants are highly integrated units where part or all of the EO produced in the EO section can be recovered as glycols, if desired, in the glycol section. Plant integration allows for significant savings in utilities as well for the recovery of all bleed streams as high-grade-products instead of lower grade products in the case of non-integrated plants. usa.siemens.com/analyticalproducts Ethylene Oxide and Ethylene Glycols Ethylene oxide production Ethylene The major production steps of the oxygen- 1 Ethylene 7 CO based EO process are: 2 oxide r Oxygen 8 6 • Ethylene (acc. to IUPAC: Ethene) and Mixe oxygen are mixed with recycle gas and, Plant 2 removal removal after adding a moderating substance 2 2 area CO Chloroethane CO such as chloro-ethane, fed into a multi- EO purification 9 tubular reactor. There, ethylene oxide Natural gas 5 Crude EO (EO) is selectively produced utilizing a 3 8 silver-based catalyst at 200 to 300 °C r and 10-20 bar. Along with ethylene oxide (80-85 %), CO2, H2O and heat are Steam r Acqueous EO to Stripper glycol section generated. Reaction heat is recovered by Reacto boiling water at elevated pressure on the Water EO absorbe reactors shellside. It is used at different locations of the plant. 4 + ½ O C H O • EO contained in the reactor product gas 2 2 4 CH 2 = CH 2 enters the EO absorber section where EO Cycle gas + 3 O2 2 CO 2 + 2 H2O is scrubbed from the gas by water. The EO-containing water is concentrated by stripping producing crude EO which is Fig. 1: Ethylene oxide production process with measuring points (see details in table 1) suitable for feeding directly to a glycol producing plant. When pure EO is the desired final product, the crude EO is fed Natural gas, however, is commonly CO2 and water will occur explosively. to a purification column. contaminated with gaseous sulfur Process operation is desired under • The cycle gas leaving the absorber is fed compounds that are known as poison to conditions which will maximize the to the CO2 removal section, where CO2 the silver catalysts. conversion of ethylene to ethylene oxide (a by-product of the EO reaction) is • Catalyst selectivity is an important yet avoid safety problems. In order to find recovered. Some of the CO2 remains in parameter in EO production and should such an optimum, gases such as nitrogen the cycle gas and returns to the EO be as high as possible. Usually, during and methane are fed to the cycle gas and reactor. catalytic processes, other competing mixed with the reaction by-product reactions can take place, and reactants carbon dioxide, and argon, which enters as Process constraints are converted into undesired products. an impurity in the oxygen feed. The goal is The ratio between desired products and to find an optimum mixture which permits Various constraints exist regarding safe the undesired products is called catalyst operation of the process at maximum operation, product quality and plant selectivity. Catalyst selectivity is concentrations of oxygen and ethylene efficiency in running and optimizing the optimized by adding moderating thus increasing the selectivity of the EO production process: substances such as chloro-ethane. ethylene present to ethylene oxide and, on the other side prevents from the danger of • Oxygen is required as reactant to run Control of cycle gas composition explosion. the process and added to the cycle gas. However, at a certain concentration The desired product ethylene oxide Process analyzer are used to find this level (known as flammable limit) in the represents only a relatively small optimum mixture and to keep the gas gas mixture, oxygen will cause the percentage of the total effluent stream concentrations at the predetermined levels danger of a gas explosion. Therefore, leaving the reactor. The remainder of the during the process. See table 1 for the content of oxygen in the cycle gas reactor effluent comprises several diluents measuring details. must be monitored continuously with and reaction by-products. The task of high accuracy and reliability. the diluents is to prevent the gas mixture • Methan is able to increase the to reach unwanted combustibility levels flammable limit (which is treated as during the reaction. If the flammability positive effect) and, hence, is added to limit is reached or exceeded, the cycle gas in the form of natural gas. the complete oxidation of ethylene to 2 Ethylene glycol production Sampling Point Measuring Measuring Meas. Siemens Sampling Stream Task Components Range Analyzer The aqueous EO solution from the 1 Ethylene feed Ethylene purity to avoid C2H2 % MAXUM II ethylene oxide production section is sent catalyst poisoning S compounds to the gylcol section. There, ethylene glycol (MEG, Monoethylene glycol) is 2 Cycle gas Process control CO 0 ... 5 MAXUM II produced from EO by reacting it with 2 after mixer CH 0 ... 80 water at a 10 to 1 ratio of water to EO. 4 C2H4 0 ... 40 This excess of water helps to reduce C2H6 0 ... 2 by-product formation. Some higher glycols C2H4O 0 ... 3 are produced as co-products: diethylene N2 0 ... 20 glycol (DEG) and triethylene glycol (TEG). Ar/O2 0 ... 25 The reactor product is sent to a multi- H2O 0 ... 3 effect evaporation train for removal of the C2H4 0 ... 40 ULTRAMAT 6 water from the glycols in three successive CO2 0 ... 5 stages. The glycols are then sent to the Explosion protection O2 0 ... 12 OXYMAT 6 fractionation train where the MEG, DEG (LEL monitoring) O2 0 ... 12 OXYMAT 6 and TEG products are recovered and O2 0 ... 12 OXYMAT 6 purified. 3 Cycle gas Cycle gas composition Cl-HCs MAXUM II at reactor inlet CI-Hcs Final product samples are collected from the overhead or side stream of the 4 Cycle gas at Process control CO 0 ... 5 MAXUM II purification towers (fractionators). A 2 reactor outlet CH 0 ... 80 variety of process analysis are performed, 4 C2H4 0 ... 40 including water content, MEG, DEG or TEG C2H6 0 ... 2 (see table 2). Other measurements are C2H4O 0 ... 3 color, acidity, aldehyde impurity content N2 0 ... 20 and TOC (fig. 2). The product must meet Ar/O2 0 ... 25 sales specifications prior to being released H2O 0 ... 3 for shipment to customers. Otherwise the Explosion protection O2 0 ... 12 OXYMAT 6 product is normally reprocessed. (LEL monitoring) O2 0 ... 12 OXYMAT 6 O2 0 ... 12 OXYMAT 6 5 EO absorber Cycle gas composition: C2H4 0 ... 40 MAXUM II overhead Process control C2H6 0 ... 2 C2H4O 0 ... 0,05 Ar/O2 0 ... 30 CO2 0 ... 30 H2O 0 ... 10 6 EO product Product quality Formaldehyde MAXUM II Acetaldehyde C2H4, CO2, H2O 7 CO2 absorber Cycle gas composition C2H4 0 ... 40 MAXUM II overhead C2H6 0 ... 2 CvH4O 0 ... 0,05 Ar/O2 0 ... 30 CO2 0 ... 30 H2O 0 ... 10 8 EO to glycol Aldehyde content Aldehyde TPA section 9 Plant area Waste water monitoring EO in water MAXUM II TOC TPA Fig. 2: TOC system (ULTRAMAT 6 Table1: Ethylene oxide process, measuring points (TPA: Third Party Analyzer) based third party analyzer) 3 Process Gas Chromatography The MAXUM gas chromatograph fullfills the requirements for glycols quality control Aqueous Recycle water perfectly: ethylene oxide Steam Water MEG DEG TEG • Accurate analysis by optimized injection: Water Injection module with best evaporization 3 characteristics for high boiling samples (MEG, boiling point 194-205°C, DEG: Plant 242-247°C, TEG: 278°C) avoid area discrimination effect or hydration to r 4 r water. • Repeatable analysis by interference free Reakto Reacto Evaporator Evaporator Evaporator Fractionator Fractionator Fractionator Fractionator separation. Safe separation of trace components is performed by elimination 1 2 of main components by heart-cut. Used analyitcal tools: Siemens live switching in combination with capillary columns. MEG/DEG/TEG: Monoethylene glycol / Diethylene glycol / Triethylene glycol Verification of the results by additional control parameter: cut-rest of main component, GC oven and ambient temperature.
Recommended publications
  • A Brief Guide to Authors
    Latvian Journal of Chemistry, No. 1/2, 2011, 139–144. DOI 10.2478/v10161-011-0059-3 CYCLODEHYDRATION OF DIOLS IN ACIDIC IONIC LIQUIDS E. Ausekle, A. Priksane, A. Zicmanis Faculty of Chemistry, University of Latvia, Kr. Valdemara Str. 48, Riga, LV-1013 e-mail: [email protected] In the presence of sulfonic acid group functionalized Bronsted-acidic ionic liquids, cyclodehydration of 1,2-ethanediol and 1,4-butanediol is investigated. The role of structure and catalytic activity of ionic liquids on the formation of cyclic ethers: 1,4-dioxane and tetrahydrofuran – is de- termined. Key words: acidic ionic liquids, ethylene glycol, 1,4-butanediol, cyclodehydration, 1,4-dioxane, tetrahydrofuran. INTRODUCTION During the last decades, ionic liquids are extensively used in organic syn- thesis as solvents and catalysts [1, 2]. Bronsted-acidic ionic liquids (AILs) are used as substitutes of mineral and organic acids in acid-catalyzed reactions like esterification, etherification, pinacol–pinacolone rearrangement, condensation etc. [3–6]. Bronsted-acidic ionic liquids have good proton donor properties comparable with mineral acids. AILs as catalysts are non-corrosive, non-volati- le, immiscible with many organic solvents, and they can be recycled and reused [7]. To determine their productivity in diol cyclodehydration, two diols: 1,2- ethanediol (ethylene glycol) and 1,4-butanediol are used. Cyclodehydration of both diols leads to formation of industrially significant cyclic ethers: 1,4-di- oxane and tetrahydrofuran (THF). 1,4-Dioxane and THF are widely used as organic solvents. Tetrahydrofuran is a useful solvent for organic synthesis, production of natural and synthetic resins, and also is a valuable intermediate in manufacture of a number of chemicals and plastics.
    [Show full text]
  • 1,4-Dioxane Priority Existing Chemical No
    National Industrial Chemicals Notification and Assessment Scheme 1,4-Dioxane Priority Existing Chemical No. 7 __________________________________ Full Public Report June 1998 © Commonwealth of Australia 1998 ISBN 0 642 47104 5 This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from AusInfo. Requests and inquiries concerning reproduction and rights should be addressed to the Manager, Legislative Services, AusInfo, GPO Box 84, Canberra, ACT 2601. ii Priority Existing Chemical Number 7 Preface This assessment was carried out under the National Industrial Chemicals Notification and Assessment Scheme (NICNAS). This Scheme was established by the Industrial Chemicals (Notification and Assessment) Act 1989 (the Act), which came into operation on 17 July 1990. The principal aim of NICNAS is to aid in the protection of people at work, the public and the environment from the harmful effects of industrial chemicals, by assessing the risks associated with these chemicals. NICNAS is administered by the National Occupational Health and Safety Commission (NOHSC) and assessments are carried out in conjunction with Environment Australia (EA) and the Therapeutic Goods Administration (TGA), who carry out the environmental and public health assessments, respectively. NICNAS has two major programs: one focusing on the risks associated with new chemicals prior to importation or manufacture; and the other focussing on existing chemicals already in use in Australia. As there are many thousands of existing industrial chemicals in use in Australia, NICNAS has an established mechanism for prioritising and declaring chemicals as Priority Existing Chemicals (PECs). This Full Public PEC report has been prepared by the Director (Chemicals Notification and Assessment) in accordance with the Act.
    [Show full text]
  • Diethylene Glycol
    WORKPLACE ENVIRONMENTAL EXPOSURE LEVEL (2016) Diethylene Glycol I. IDENTIFICATION(1,5) manufacturing; lacquer industry; for industrial drying of gases; monomer for polyester resins and polyester polyols. Chemical Name: 2,2'-Oxybisethanol Synonyms: DEG; Diethylene Glycol; Ethylene Diglycol; 2,2' IV. ANIMAL TOXICOLOGY DATA Oxydiethanol; 2-(2-Hydroxyethoxy) Ethanol; 2,2'- Dihydroxydiethyl Ether A. Acute Toxicity and Irritancy CAS Number: 111-46-6 1. Lethality Data Molecular Formula: C4H10O3 Structural Formula: Species Route LD50 (g/kg) Mouse Oral 13.30-28.23(6-8) Rat Oral 16.56-30.21(6-11) Guinea Pigs Oral 8.68-14.00(6,8,9) Dog Oral 11.19(6) Rabbit Oral 2.69-4.92(6,8) (1-5) II. CHEMICAL AND PHYSICAL PROPERTIES Rabbit Dermal 12.5-13.3(11,17) Physical State and Appearance: Colorless viscous liquid Odor Description: No data available Oral (gavage) administration of 15 ml/kg DEG (16.76 g/kg) to (12,13) Odor Threshold: No data available 30 male Wistar rats was lethal to 20 animals within 5 days. Molecular Weight: 106.12 2. Eye Irritation Conversion Factors: 1 mg/m3 = approx. 0.227 ppm; 3 Undiluted DEG (volume not specified) instilled into the 1 ppm = approx. 4.403 mg/m conjunctival sac of rabbits, dogs, and cats produced no visible Density: 1.119 g/mL at 20°C (68°F) irritation reactions and had no effect on pupillary reaction or Boiling Point: 245°C (473°F) at 760 mmHg corneal reflexes.(7) Instillation of 0.5 ml DEG into the conjunc- Melting Point: -6.5°C (-20.3°F) tival sac of the rabbit produced little or no irritation.(18) Vapor Pressure: 0.01 mmHg at 20°C (68°F), 1 mmHg at 92°C Instillation of 0.1 ml DEG into the eyes of rabbits produced Saturated Vapor Conc: 13 ppm at 20°C (68°F) minor to moderate conjunctival irritation but no corneal injury Flash Point: 138°C (280°F) (Pensky-Martens closed cup) or iritis.
    [Show full text]
  • Alcohols & Glycols Kleinschmidt
    8/13/14 Alcohols," Glycols, &" “Cat”cols Kurt Kleinschmidt, MD Section Chief and Program Director, Medical Toxicology UT Southwestern Medical Center Dallas, Texas Alcohols and Glycols • “Iso” means branching of carbon chain • “Glycol” means 2 hydroxyl groups • Ethylene glycol Antifreeze • Propylene glycol Refrigerant • Polyalkylene glycol Refrigerant oil • Physiochemical behavior • If small hydrocarbon group, acts like water • If large hydrocarbon group, acts like the HC-group Alcohols and Glycols: Glycol Ethers • Clear, Syrupy liquid; Inoffensive odors; Low Vapor pressure; Non-flammable • Water & Organic soluble … Very Nice!...”Couplers”! • Do not bioaccumulate b/c undergo rapid hydrolysis • Rapid Dermal, inhalation, and oral absorption • Molecular Weight êèé Dermal absorption • Uses: Solvents Household cleaning products (windows) Humectant and plasticizer Semiconductor industry Brake fluid Diluent Deicers Paints and Coatings 1 8/13/14 Alcohols and Glycols: Glycol Ethers • Two groups: EG Monoalkyl Ethers base: • Ethylene glycol ethers R1OCH2CH2OR2 • Propylene glycol ethers R1=Alkyl gp; R2=H or Acetate • Ethylene Glycol Ethers • Many exist Ethylene Glycol • 2 examples……………. Methyl Ether (EGME) Ethers: R1-O-R2 Ethylene Glycol • Propylene Glycol Ethers Butyl Ether (EGBE) • Many • Example Is a 2o alcohol Propylene Glycol (On the 2nd Carbon) Monomethyl Ether Alcohols and Glycols: " Glycol Ethers Metabolism • ADH is key one: è Alkoxyacetic acids • Toxic Metabolite è Reproductive Problems Ethylene • Gap Acidosis Glycol • Minor route & Debatableè ethylene glycol Ether • Oxaluria seen after some methoxyethanol & butoxyethanol ingestions • But… Ether linkage is fairly stable Is No direct evidence to support Propylene • Its 2o –OH è ADH does NOT metabolize Glycol • CYP Metabolism è CO2 (Non-Toxic) Ethers • Replacing the ethylene glycol ethers Alcohols and Glycols " Clinical Glycol Ethers • Reproductive Not/Less • Animal studies è Reproduction Injury (Spont.
    [Show full text]
  • Reassessment of 3 Tolerance Exemptions for Ethylene Glycol
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY - +,TE* sr4, WASHINGTON, D.C. 20460 Q c, OFFICE OF PREVENTION, PESTICIDES, AND TOXIC SUBSTANCES DATE: June 29,2006 ACTION MEMORANDUM SUBJECT: Reassessment of 3 Tolerance Exemptions for Ethylene Glycol, Diethylene Glycol, and the Combination of Diethylene Glycol Monomethyl Ether, Diethylene Glycol Monoethyl Ether, and Diethylene Glycol Monobutyl Ether FROM: Pauline Wagner, Chief F b.~!!<Lo 'v \ 3~~10 b Inert Ingredient Assessment Branch Registration Division (7505P) TO: Lois A. Rossi, Director Registration Division (7505P) 1. FQPA REASSESSMENT ACTION Action: Reassessment of three inert exemptions from the requirement of a tolerance. The reassessment decision is to maintain the inert tolerance exemptions "as-is." Table 1. Tolerance Exemptions Being Reassessed in this Document CM~fl,~aa,it Appeara in the CFR CAS iT01muw Registry Number @.I@,- Bxemption $in$@ Uses Name %SOa ,. Exprmsion. Antifreeze, deactivator for all pesticides 107-21-1 920 Ethylene glycol - - - used before crop emerges from soil and in 1,2-Ethanediol herbicides before or after crop emerges Deactivator, adjuvant for formulations used before crop emerges from soil and 11 1-46-6 920 Diethylene glycol --- deactivator for formulations used before Ethanol, 2,2'-oxybis- (9CI) crop emerges from soil, stabilizer Diethylene glycol 1 11-77-3 monomethyl ether Ethanol, 2-(2-methoxyethoxy)- 920 Diethylene glycol monoethyl - - - Deactivator for formulations used before 1 1 1-90-0 ether crop emerges from soil, stabilizer Ethanol, 2-(2-ethoxyethoxy)- Diethylene glycol monobutyl 112-34-5 ether Ethanol, 2-(2-butoxyethoxy)- a. Residues listed in 40 CFR 180.920 are exempted from the requirement of a tolerance when used in accordance with good agricultural practice as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops only.
    [Show full text]
  • Locating and Estimating Sources of Ethylene Oxide
    United States Office of Air Quality EPA-450/4-84-007L Environmental Protection Planning And Standards Agency Research Triangle Park, NC 27711 September 1986 AIR EPA LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF ETHYLENE OXIDE L &E EPA- 450/4-84-007L September 1986 LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF ETHYLENE OXIDE U.S. Environmental Protection Agency Office of Air and Radiation Office of Air Quality Planning and Standards Research Triangle Park, North Carolina 27711 This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and approved for publication as received from the contractor. Approval does not signify that the contents necessarily reflect the views and policies of the Agency, neither does mention of trade names or commercial products constitute endorsement or recommendation for use. EPA - 450/4-84-007L TABLE OF CONTENTS Section Page 1 Purpose of Document .......................................... 1 2 Overview of Document Contents ................................ 3 3 Background ................................................... 5 Nature of Pollutant .................................... 5 Overview of Production and Use ......................... 7 References for Section 3 .............................. 14 4 Emissions from Ethylene Oxide Production .................... 16 Ethylene Oxide Production ................................... 16 References for Section 4 .................................... 33 5 Emissions from Industries Which Use Ethylene
    [Show full text]
  • Detection of Diethylene Glycol in Glycerin and Propylene Glycol by Using High Performance Thin Layer Chromatography HPTLC M.Ph
    IOSR Journal of Pharmacy Vol. 1, Issue 1, Nov.-Dec, 2012, pp. 029-034 Detection of Diethylene Glycol in Glycerin and Propylene Glycol by using high performance thin layer chromatography HPTLC M.Ph. Huda Ghanem, Prof. Mhd Ammar Alkhayat, Prof. Mhd Amer Almardini Department of pharmaceutical chemistry and quality control, College of Pharmacy, Damascus University, Syria Abstract: We were developed analytical method rapid, sensitive and easy to use to detect Diethylene glycol (DEG) in some of excipients: Glycerin, and propylene glycol by using high-performance thin-layer chromatography HPTLC with plate fluorinated: HPTLC Plate silica gel 60 F 254, and with mobile phase: acetone: toluene: 5 M ammonium hydroxide at rates 85: 5:10, respectively. And Use a scanner with wavelength: 325 nm. This method allows the detection and assay of toxic Diethylene glycol in excipients: glycerin and propylene glycol in concentrations of not less than 0.1%. This method was verified the validity of it to conduct all the constitutional requirements. Keywords: Diethylene Glycol (DEG), Propylene Glycol (PG), Glycerin, Ethylene Glycol (EG, High Performance Thin Layer Chromatography (HPTLC). Introduction: (DEG( Diethylene Glycol : DEG: ( HO-CH2-CH2-O-CH2-CH2-OH( Diethylene glycol is Organic solvent has many industrial uses (1,2). DEG is classified as toxic material, it causes when dealing with multiple systemic disorders until the occurrence of acute kidney failure and death (3,4,5). Diethylene glycol has physical and chemical properties close to the properties of glycerin and propylene glycol, which is cheaper than both glycerin and propylene glycol, thus forcing some producers and sellers to cheat them with DEG (6,7,2).
    [Show full text]
  • Diethylene Glycol
    Scientific Committee on Consumer Products SCCP OPINION ON Diethylene glycol The SCCP adopted this opinion at its 16th plenary of 24 June 2008 SCCP/1181/08 Opinion on diethylene glycol About the Scientific Committees Three independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems which may pose an actual or potential threat. They are: the Scientific Committee on Consumer Products (SCCP), the Scientific Committee on Health and Environmental Risks (SCHER) and the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) and are made up of external experts. In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Evaluation Agency (EMEA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA). SCCP Questions concerning the safety of consumer products (non-food products intended for the consumer). In particular, the Committee addresses questions related to the safety and allergenic properties of cosmetic products and ingredients with respect to their impact on consumer health, toys, textiles, clothing, personal care products, domestic products such as detergents and consumer services such as tattooing. Scientific Committee members Claire Chambers, Gisela Degen, Ruta Dubakiene, Bozena Jazwiec-Kanyion,
    [Show full text]
  • Ethylene Glycol
    ETHYLENE GLYCOL Introduction [1]: Glycols are dihydric alcohols having an aliphatic carbon chain. They have the general chemical formula CnH2n(OH)2. Ethylene glycol is the simplest and the most important of the glycols. It is a colorless, nearly odorless, sweet-tasting, hygroscopic liquid. The chemical formula of ethylene glycol is: C2H6O2. Ethylene glycol was first produced in 1859 by Wurtz. He saponified ethylene glycol diacetate with potassium hydroxide. Three years later he made ethylene glycol by hydration of ethylene oxide. This glycol encounted a commercial importance in 1925 when it was first manufactured in large scale quantities from ethylene oxide through the intermediate ethylene chlorohydrin. Some of the physical properties of the ethylene glycol are shown in Table 1.1. Ethylene glycol Molecular weight, g/gmol 62.07 Freezing point, 0C -13 Boiling point, 0C 197.2 Solubility at 200C., wt.% In water Complete Water in Complete Table 1.1 Physical properties of Ethylene glycol Ethylene glycol is relatively nonvolatile and viscous. It is also soluble in common alcohols and phenol. Manufacture [1]: I. Most of the ethylene glycol produced today is obtained by hydration of ethylene oxide. The reaction is: CH2-O-CH2 + H2O Þ CH2-OH-CH2-OH Ethylene oxide is readily converted to ethylene glycol by either of the following methods: - by the action of a dilute aqueous solution of a strong acid - by reaction with water at elevated temperature and pressure The ethylene glycol which results from these methods is concentrated by evaporations and further purified by vacuum distillations. II. A second commercial method of producing ethylene glycol is based on the reaction of formaldehyde and a mixture of carbon monoxide and water at high pressure and temperature to produce glycolic acid.
    [Show full text]
  • Microfilms International
    IM w sity Microfilms International V lalj* 1.0 Itt _ to . y£ 22 £ b£ 2.0 1.1 UL 11.25 111 1.4 1.6 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS STANDARD REFERENCE MATERIAL 1010a (ANSI and ISO TEST CHART No. 2) University Microfilms Inc. 300 N. Zeeb Road, Ann Arbor, MI 48106 INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho­ tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec­ tioning the original, beginning at the upper left hand comer and continu­ ing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format.* 4. Most photographs reproduce acceptably on positive microfilm or micro­ fiche but lack clarify on xerographic copies made from the microfilm.
    [Show full text]
  • Rapid and Robust Detection Methods for Poison and Microbial Contamination
    Rapid and Robust Detection Methods for Poison and Microbial Contamination The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Hoehl, Melanie M. et al. “Rapid and Robust Detection Methods for Poison and Microbial Contamination.” Journal of Agricultural and Food Chemistry 60.25 (2012): 6349–6358. As Published http://dx.doi.org/10.1021/jf300817h Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/80863 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. 1 Rapid and robust detection methods for poison and 2 microbial contamination 3 Melanie M. Hoehl,1,2,* Peter J. Lu,3 Peter Sims,4 and Alexander H. Slocum1 4 1 Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA 5 2 Harvard-MIT Division of Health Sciences and Technology, Cambridge MA 02139 USA 6 3 Department of Physics and SEAS, Harvard University, Cambridge, MA 02138 USA 7 4 Columbia Initiative in Systems Biology, Department of Biochemistry and Molecular 8 Biophysics, Columbia University Medical Center, New York, NY 10032, USA 9 * to whom correspondence should be addressed: [email protected] 10 1 11 ABSTRACT. Real-time on-site monitoring of analytes is currently in high demand for food 12 contamination, water, medicines and ingestible household products that were never tested 13 appropriately. Here we introduce chemical methods for rapid quantification of a wide range of 14 chemical and microbial contaminations using a simple instrument.
    [Show full text]
  • Preliminary Information on Manufacturing, Processing, Distribution, Use, and Disposal: 1,4-Dioxane
    February 2017 Office of Chemical Safety and Pollution Prevention U.S. EPA Preliminary Information on Manufacturing, Processing, Distribution, Use, and Disposal: 1,4-Dioxane CASRN: 123-91-1 February 2017 Support document for Docket EPA-HQ-OPPT-2016-0723 Page 1 of 24 This document provides a preliminary public summary of available information collected by EPA’s Office of Pollution Prevention and Toxics (OPPT) in the Office of Chemical Safety and Pollution Prevention (OCSPP) on the manufacturing (including importing), processing, distribution in commerce, use, and disposal of this chemical. This is based on existing data available to EPA, including information collected under the Chemical Data Reporting rule, Toxics Release Inventory (if available), information from other Agency databases, other U.S. Government agencies, publicly available information from states, and a review of published literature. In addition, the document includes information reported to EPA by producers and users of the chemical in the United States and in other countries. This preliminary use information and any additional use information received in the docket by March 15, 2017 will inform efforts to develop the scope of the chemical risk evaluation required under section 6(b)(4) of the Toxic Substances Control Act, and will inform any risk management efforts following risk evaluation. Mention of trade names in this document does not constitute endorsement by EPA. To verify products or articles containing this chemical currently in commerce, EPA has identified several examples. Any lists are provided for informational purposes only. EPA and its employees do not endorse any of the products or companies. This document does not contain confidential business information (CBI).
    [Show full text]