PART II ANNEX

Project for National Water Resources Master Plan in the Republic of Final Report: Part II Master Plan

Annex 2.1.1-1 Lilongwe

Description Unit 2008 2009 2010 2011 2012 2013 Production Capacity m3/d 95,000 95,000 95,000 95,000 95,000 95,000 Abstraction Capacity m3/d 97,000 97,000 97,000 97,000 97,000 97,000 Demand m3/d 69,156 71,658 80,536 88,295 96,446 104,985 NRW m3/d 24,620 25,510 28,671 30,244 31,727 33,098 Population inh. 749,731 791,224 832,717 874,210 915,703 957,196 Served Population inh. 413,539 437,776 517,380 602,063 691,825 786,665

Description Unit 2014 2015 2016 2017 2018 2019 Production Capacity m3/d 95,000 125,000 125,000 155,000 155,000 155,000 Abstraction Capacity m3/d 97,000 107,000 107,000 137,000 137,000 137,000 Demand m3/d 113,908 123,211 131,054 138,624 146,533 154,784 NRW m3/d 34,337 35,423 37,056 38,538 40,040 41,560 Population inh. 998,689 1,040,182 1,078,879 1,117,576 1,156,274 1,194,971 Served Population inh. 886,584 991,582 1,033,447 1,075,688 1,118,306 1,161,299

Description Unit 2020 2021 2022 2023 2024 2025 Production Capacity m3/d 155,000 221,000 221,000 221,000 221,000 221,000 Abstraction Capacity m3/d 137,000 212,000 212,000 212,000 212,000 212,000 Demand m3/d 163,384 172,844 182,695 188,730 194,816 200,951 NRW m3/d 43,093 44,766 46,450 47,088 47,681 48,228 Population inh. 1,233,668 1,276,766 1,319,863 1,362,961 1,406,058 1,449,155 Served Population inh. 1,204,668 1,252,726 1,301,203 1,350,101 1,399,418 1,449,155

Description Unit 2026 2027 2028 2029 2030 2031 Production Capacity m3/d 221,000 221,000 287,000 287,000 287,000 287,000 Abstraction Capacity m3/d 212,000 212,000 287,000 287,000 287,000 287,000 Demand m3/d 208,771 216,389 224,126 231,983 239,960 248,932 NRW m3/d 50,106 51,935 53,792 55,678 57,593 59,747 Population inh. 1,492,253 1,535,350 1,578,447 1,621,545 1,664,642 1,714,570 Served Population inh. 1,492,253 1,535,350 1,578,447 1,621,545 1,664,642 1,714,570

Description Unit 2032 2033 2034 2035 Production Capacity m3/d 287,000 287,000 287,000 287,000 Abstraction Capacity m3/d 287,000 287,000 287,000 287,000 Demand m3/d 258,042 267,291 276,679 286,206 NRW m3/d 61,934 64,155 66,408 68,696 Population inh. 1,764,497 1,814,425 1,864,352 1,914,280 Served Population inh. 1,764,497 1,814,425 1,864,352 1,914,280 Source: Sogreah Report and LWB future investment plan Coverage and Expansion Plan for Lilongwe Water Supply Facilities

CTI Engineering International Co., Ltd. 1 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 2.1.1-2 Blantyre scenario1

Description Unit 2008 2009 2010 2011 2012 2013 Production Capacity m3/d 82,264 82,264 95,132 95,132 95,132 108,000 Demand m3/d 101,849 103,439 109,822 114,279 119,259 124,953 NRW m3/d 56,281 56,322 58,908 60,373 62,038 63,988 Population inh. 758,106 772,235 787,915 805,517 825,045 847,465 Served Population Inh. 491,215 497,856 542,228 589,924 641,859 699,756

Description Unit 2014 2015 2016 2017 2018 2019 Production Capacity m3/d 108,000 108,000 108,000 108,000 165,500 165,500 Demand m3/d 127,350 129,880 132,512 135,285 138,243 141,310 NRW m3/d 64,184 64,407 64,639 64,896 65,195 65,497 Population inh. 873,486 901,108 929,959 959,994 991,149 1,023,335 Served Population Inh. 723,811 749,329 776,015 803,840 832,755 862,696

Description Unit 2020 2021 2022 2023 2024 2025 Production Capacity m3/d 165,500 165,500 165,500 165,500 165,500 165,500 Demand m3/d 144,505 147,720 150,941 154,134 157,267 160,289 NRW m3/d 65,807 66,075 66,293 66,447 66,524 66,504 Population inh. 1,056,445 1,089,771 1,122,981 1,155,711 1,187,591 1,218,247 Served Population Inh. 893,574 924,808 956,116 987,191 1,017,718 1,047,372

Description Unit 2026 2027 2028 2029 2030 2031 Production Capacity m3/d 165,500 223,000 223,000 223,000 223,000 223,000 Demand m3/d 163,349 166,547 169,878 173,354 179,474 185,778 NRW m3/d 66,450 66,402 66,354 66,308 68,649 71,060 Population inh. 1,249,805 1,282,335 1,315,888 1,350,498 1,386,210 1,422,759 Served Population Inh. 1,077,945 1,109,498 1,142,077 1,175,719 1,206,522 1,238,038

Description Unit 2032 2033 2034 2035 Production Capacity m3/d 223,000 223,000 223,000 223,000 Demand m3/d 192,198 198,852 205,793 212,964 NRW m3/d 73,516 76,061 78,716 81,459 Population inh. 1,460,138 1,498,339 1,537,358 1,577,208 Served Population Inh. 1,270,256 1,303,170 1,336,774 1,371,082 Source: Sogreah Report (WB revised raw-water source option to Walker's ferry.) Coverage and Expansion Plan for Blantyre Water Supply Facilities (Scenario 1)

2 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 2.1.1-3 Blantyre scenario2

Description Unit 2008 2009 2010 2011 2012 2013 Production Capacity m3/d 82,264 82,264 95,132 95,132 95,132 108,000 Demand m3/d 101,849 102,422 107,720 111,083 86,047 90,027 NRW m3/d 56,281 55,305 56,806 57,177 28,826 29,062 Population inh. 758,106 772,235 787,915 805,517 825,045 847,465 Served Population Inh. 491,215 497,856 542,228 589,924 641,859 699,756

Description Unit 2014 2015 2016 2017 2018 2019 Production Capacity m3/d 108,000 108,000 108,000 108,000 108,000 108,000 Demand m3/d 92,047 94,482 97,242 100,313 103,692 107,304 NRW m3/d 28,881 29,009 29,369 29,924 30,644 31,491 Population inh. 873,486 901,108 929,959 959,994 991,149 1,023,335 Served Population Inh. 723,811 749,329 776,015 803,840 832,755 862,696

Description Unit 2020 2021 2022 2023 2024 2025 Production Capacity m3/d 147,000 147,000 147,000 147,000 147,000 147,000 Demand m3/d 111,145 115,122 119,215 123,385 127,602 131,628 NRW m3/d 32,447 33,477 34,567 35,698 36,859 37,843 Population inh. 1,056,445 1,089,771 1,122,981 1,155,711 1,187,591 1,218,247 Served Population Inh. 893,574 924,808 956,116 987,191 1,017,718 1,047,372

Description Unit 2026 2027 2028 2029 2030 2031 Production Capacity m3/d 147,000 147,000 186,000 186,000 186,000 186,000 Demand m3/d 135,999 140,554 145,297 150,240 155,544 161,008 NRW m3/d 39,100 40,409 41,773 43,194 44,719 46,290 Population inh. 1,249,805 1,282,335 1,315,888 1,350,498 1,386,210 1,422,759 Served Population Inh. 1,077,945 1,109,498 1,142,077 1,175,719 1,206,522 1,238,038

Description Unit 2032 2033 2034 2035 Production Capacity m3/d 186,000 186,000 186,000 186,000 Demand m3/d 166,571 172,338 178,354 184,568 NRW m3/d 47,889 49,547 51,277 53,063 Population inh. 1,460,138 1,498,339 1,537,358 1,577,208 Served Population Inh. 1,270,256 1,303,170 1,336,774 1,371,082 Source: Sogreah Report (WB revised raw-water source option to Walker's ferry, and revised NRW rate.) Coverage and Expansion Plan for Blantyre Water Supply Facilities (Scenario 2)

CTI Engineering International Co., Ltd. 3 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 2.1.1-4 Blantyre scenario3

Description Unit 2008 2009 2010 2011 2012 2013 Production Capacity m3/d 82,264 82,264 95,132 95,132 95,132 108,000 Demand m3/d 101,849 102,422 107,720 111,083 86,047 90,027 NRW m3/d 56,281 55,305 56,806 57,177 28,826 29,062 Population inh. 758,106 772,235 787,915 805,517 825,045 847,465 Served Population Inh. 491,215 497,856 542,228 589,924 641,859 699,756

Description Unit 2014 2015 2016 2017 2018 2019 Production Capacity m3/d 108,000 108,000 108,000 108,000 108,000 108,000 Demand m3/d 92,047 94,482 97,242 100,313 103,691 107,305 NRW m3/d 28,881 29,009 29,369 29,924 30,643 31,491 Population inh. 873,486 901,108 929,959 959,994 991,149 1,023,335 Served Population Inh. 723,811 749,329 776,015 803,840 832,755 862,696

Description Unit 2020 2021 2022 2023 2024 2025 Production Capacity m3/d 153,500 153,500 153,500 153,500 153,500 153,500 Demand m3/d 111,770 116,364 121,072 125,859 130,700 135,355 NRW m3/d 32,630 33,838 35,105 36,414 37,754 38,915 Population inh. 1,056,445 1,089,771 1,122,981 1,155,711 1,187,591 1,218,247 Served Population Inh. 911,276 960,062 1,008,877 1,057,532 1,105,836 1,153,600

Description Unit 2026 2027 2028 2029 2030 2031 Production Capacity m3/d 153,500 153,500 153,500 199,000 199,000 199,000 Demand m3/d 140,349 145,513 150,850 156,373 163,508 169,917 NRW m3/d 40,350 41,835 43,369 44,957 47,008 48,851 Population inh. 1,249,805 1,282,335 1,315,888 1,350,498 1,386,210 1,422,759 Served Population Inh. 1,201,922 1,250,832 1,300,352 1,350,498 1,386,210 1,422,759

Description Unit 2032 2033 2034 2035 Production Capacity m3/d 199,000 199,000 199,000 199,000 Demand m3/d 176,464 183,149 189,976 198,470 NRW m3/d 50,733 52,655 54,618 57,060 Population inh. 1,460,138 1,498,339 1,537,358 1,577,208 Served Population Inh. 1,460,138 1,498,339 1,537,358 1,577,208 Source: Sogreah Report (WB revised raw-water source option to Walker's ferry, and revised NRW rate.) Coverage and Expansion Plan for Blantyre Water Supply Facilities (Scenario 3)

4 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 2.1.1-5 Mzuzu

Description Unit 2008 2009 2010 2011 2012 2013 Production Capacity m3/day 16,100 16,100 16,100 16,100 16,100 16,100 Demand m3/day 14,714 15,590 16,477 18,026 19,639 21,319 NRW m3/day 5,304 5,421 5,520 5,867 6,206 6,534 Population No 139,031 144,518 150,222 156,141 162,293 168,688 Served Population No. 91,928 98,663 105,787 113,475 121,588 130,147

Description Unit 2014 2015 2016 2017 2018 2019 Production Capacity m3/day 16,100 61,100 61,100 61,100 61,100 61,100 Demand m3/day 23,070 24,873 26,986 29,215 31,565 34,041 NRW m3/day 6,852 7,151 7,656 8,177 8,715 9,269 Population No 175,336 182,247 189,418 196,872 204,620 212,674 Served Population No. 139,174 148,302 157,687 167,550 177,912 188,798

Description Unit 2020 2021 2022 2023 2024 2025 Production Capacity m3/day 61,100 61,100 61,100 61,100 61,100 61,100 Demand m3/day 36,648 39,098 41,681 44,400 47,264 50,278 NRW m3/day 9,840 10,349 10,874 11,415 11,972 12,544 Population No 221,046 229,734 238,764 248,151 257,909 268,052 Served Population No. 200,230 212,506 225,397 238,933 253,141 268,052

Description Unit 2026 2027 2028 2029 2030 2031 Production Capacity m3/day 61,100 61,100 61,100 61,100 90,700 90,700 Demand m3/day 52,435 54,679 57,014 59,441 61,967 64,436 NRW m3/day 12,983 13,435 13,900 14,379 14,872 15,465 Population No 277,594 287,477 297,712 308,313 319,291 329,766 Served Population No. 277,594 287,477 297,712 308,313 319,291 329,766

Description Unit 2032 2033 2034 2035 Production Capacity m3/day 90,700 90,700 90,700 90,700 Demand m3/day 66,997 69,652 72,406 75,261 NRW m3/day 16,079 16,717 17,377 18,063 Population No 340,584 351,757 363,297 375,216 Served Population No. 340,584 351,757 363,297 375,216 Source: Sogreah Report Coverage and Expansion Plan for Mzuzu Water Supply Facilities

CTI Engineering International Co., Ltd. 5 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 2.1.1-6 Zomba scenario1

Description Unit 2008 2009 2010 2011 2012 2013 Production Capacity 0 18,200 18,200 18,200 18,200 18,200 18,200 Demand m3/day 11,188 12,466 13,829 15,278 16,817 18,449 NRW m3/day 3,012 3,255 3,496 3,733 3,963 4,183 Population inh. 87,366 89,900 92,507 95,189 97,950 100,790 Served Population inh. 63,777 69,094 74,666 80,503 86,616 93,015 Served Population Availability inh. 38,703 43,413 48,512 54,023 59,971 66,380

Description Unit 2014 2015 2016 2017 2018 2019 Production Capacity 0 18,200 30,000 30,000 30,000 30,000 30,000 Demand m3/day 20,176 22,002 23,745 25,570 27,481 29,481 NRW m3/day 4,391 4,584 4,947 5,327 5,725 6,142 Population inh. 103,713 106,721 109,816 113,001 116,278 119,650 Served Population inh. 99,713 106,721 109,816 113,001 116,278 119,650 Served Population Availability inh. 73,278 80,691 87,290 94,204 101,446 109,027

Description Unit 2020 2021 2022 2023 2024 2025 Production Capacity 0 47,100 47,100 47,100 47,100 47,100 47,100 Demand m3/day 31,574 32,663 33,785 34,941 36,132 37,359 NRW m3/day 6,578 6,805 7,039 7,279 7,528 7,783 Population inh. 123,120 126,690 130,364 134,145 138,035 142,038 Served Population inh. 123,120 126,690 130,364 134,145 138,035 142,038 Served Population Availability inh. 116,964 121,622 126,453 131,462 136,654 142,038

Description Unit 2026 2027 2028 2029 2030 2031 Production Capacity 0 47,100 47,100 47,100 47,100 47,100 47,100 Demand m3/day 38,240 39,141 40,062 41,003 41,965 42,949 NRW m3/day 7,967 8,154 8,346 8,542 8,743 8,948 Population inh. 146,157 150,395 154,757 159,245 163,863 168,615 Served Population inh. 146,157 150,395 154,757 159,245 163,863 168,615 Served Population Availability inh. 146,157 150,395 154,757 159,245 163,863 168,615

Description Unit 2032 2033 2034 2035 Production Capacity 0 47,100 47,100 47,100 47,100 Demand m3/day 43,954 44,982 46,032 47,105 NRW m3/day 9,157 9,371 9,590 9,814 Population inh. 173,505 178,536 183,714 189,042 Served Population inh. 173,505 178,536 183,714 189,042 Served Population Availability inh. 173,505 178,536 183,714 189,042 Source: Project Team from 2021 to 2035, and SSI Report by 2020 Coverage and Expansion Plan for Zomba Water Supply Facilities (Scenario 1)

6 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 2.1.1-7 Zomba scenario2

Description Unit 2008 2009 2010 2011 2012 2013 Production Capacity 0 18,200 18,200 18,200 18,200 18,200 18,200 Demand m3/day 10,765 11,986 13,288 14,673 16,144 16,959 NRW m3/day 2,898 3,130 3,359 3,585 3,804 3,845 Population inh. 87,366 89,900 92,507 95,189 97,950 100,790 Served Population inh. 63,777 69,094 74,666 80,503 86,616 93,015 Served Population Availability inh. 38,703 43,413 48,512 54,023 59,971 66,380

Description Unit 2014 2015 2016 2017 2018 2019 Production Capacity 0 18,200 30,000 30,000 30,000 30,000 30,000 Demand m3/day 17,819 18,724 19,704 20,727 21,793 22,905 NRW m3/day 3,878 3,901 4,105 4,318 4,540 4,772 Population inh. 103,713 106,721 109,816 113,001 116,278 119,650 Served Population inh. 99,713 106,721 109,816 113,001 116,278 119,650 Served Population Availability inh. 73,278 80,691 87,290 94,204 101,446 109,027

Description Unit 2020 2021 2022 2023 2024 2025 Production Capacity 0 30,000 30,000 30,000 30,000 30,000 30,000 Demand m3/day 24,064 24,823 25,607 26,417 27,254 28,118 NRW m3/day 5,013 5,172 5,335 5,504 5,678 5,858 Population inh. 123,120 126,690 130,364 134,145 138,035 142,038 Served Population inh. 123,120 126,690 130,364 134,145 138,035 142,038 Served Population Availability inh. 116,964 121,622 126,453 131,462 136,654 142,038

Description Unit 2026 2027 2028 2029 2030 2031 Production Capacity 0 30,000 30,000 36,100 36,100 36,100 36,100 Demand m3/day 28,824 29,548 30,291 31,054 31,836 32,640 NRW m3/day 6,005 6,156 6,311 6,470 6,633 6,800 Population inh. 146,157 150,395 154,757 159,245 163,863 168,615 Served Population inh. 146,157 150,395 154,757 159,245 163,863 168,615 Served Population Availability inh. 146,157 150,395 154,757 159,245 163,863 168,615

Description Unit 2032 2033 2034 2035 Production Capacity 0 36,100 36,100 36,100 36,100 Demand m3/day 33,464 34,310 35,179 36,070 NRW m3/day 6,972 7,148 7,329 7,515 Population inh. 173,505 178,536 183,714 189,042 Served Population inh. 173,505 178,536 183,714 189,042 Served Population Availability inh. 173,505 178,536 183,714 189,042 Source: Project Team Coverage and Expansion Plan for Zomba Water Supply Facilities (Scenario 2)

CTI Engineering International Co., Ltd. 7 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 2.1.2-1

Description Unit 2008 2009 2010 2011 2012 2013 Loss in Production System 1000 m3/day 6 6 6 7 7 7 Volume NRW 1000 m3/day 19 20 22 24 25 27 Customer Demand 1000 m3/day 45 46 52 58 65 72 Total Raw Water Required 1000 m3/day 69 72 81 88 96 105 Capacity of Current Supply 1000 m3/day 95 95 95 95 95 95 Combined Production Capacity1000 m3/day 95 95 95 95 95 95 Combined Abstraction Capacity1000 m3/day 97 97 97 97 97 97

Description Unit 2014 2015 2016 2017 2018 2019 Loss in Production System 1000 m3/day 6 6 7 7 7 8 Volume NRW 1000 m3/day 28 29 31 32 33 34 Customer Demand 1000 m3/day 80 88 94 100 106 113 Total Raw Water Required 1000 m3/day 114 123 131 139 147 155 Capacity of Current Supply 1000 m3/day 95 95 95 95 95 95 Combined Production Capacity1000 m3/day 95 125 125 155 155 155 Combined Abstraction Capacity1000 m3/day 97 107 107 137 137 137

Description Unit 2020 2021 2022 2023 2024 2025 Loss in Production System 1000 m3/day 8 9 9 9 10 10 Volume NRW 1000 m3/day 35 36 37 38 38 38 Customer Demand 1000 m3/day 120 128 136 142 147 153 Total Raw Water Required 1000 m3/day 163 173 183 189 195 201 Capacity of Current Supply 1000 m3/day 95 95 95 95 95 95 Combined Production Capacity1000 m3/day 155 221 221 221 221 221 Combined Abstraction Capacity1000 m3/day 137 212 212 212 212 212

Description Unit 2026 2027 2028 2029 2030 2031 Loss in Production System 1000 m3/day 10 11 11 12 12 12 Volume NRW 1000 m3/day 40 41 43 44 46 47 Customer Demand 1000 m3/day 159 164 170 176 182 189 Total Raw Water Required 1000 m3/day 209 216 224 232 240 249 Capacity of Current Supply 1000 m3/day 95 95 95 95 95 95 Combined Production Capacity1000 m3/day 221 221 287 287 287 287 Combined Abstraction Capacity1000 m3/day 212 212 287 287 287 287

Description Unit 2032 2033 2034 2035 Loss in Production System 1000 m3/day 13 13 14 14 Volume NRW 1000 m3/day 49 51 53 54 Customer Demand 1000 m3/day 196 203 210 218 Total Raw Water Required 1000 m3/day 258 267 277 286 Capacity of Current Supply 1000 m3/day 95 95 95 95 Combined Production Capacity1000 m3/day 287 287 287 287 Combined Abstraction Capacity1000 m3/day 287 287 287 287 Note: The development plan of abstraction / production by 2017 is Investment Plan (2013), and 2018 to 2035 is Project Team. Source: Project Team, based on Sogreah Report (2010) and Investment Plan (2013) Supposed Water Needs and Capacities for LWB

8 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.1-1 (1/9)

Source: Project Team Results of Reservoir Operation Simulation: Without other Demands

CTI Engineering International Co., Ltd. 9 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.1-1 (2/9)

Source: Project Team Results of Reservoir Operation Simulation: Without other Demands

10 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.1-1 (3/9)

Source: Project Team Results of Reservoir Operation Simulation: Without other Demands

CTI Engineering International Co., Ltd. 11 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.1-1 (4/9)

Source: Project Team Results of Reservoir Operation Simulation: Without other Demands

12 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.1-1 (5/9

Source: Project Team Results of Reservoir Operation Simulation: Without other Demands

CTI Engineering International Co., Ltd. 13 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.1-1 (6/9)

Source: Project Team Results of Reservoir Operation Simulation: Without other Demands

14 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.1-1 (7/9)

Source: Project Team Results of Reservoir Operation Simulation: Without other Demands

CTI Engineering International Co., Ltd. 15 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.1-1 (8/9)

Source: Project Team Results of Reservoir Operation Simulation: Without other Demands

16 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.1-1 (9/9)

Source: Project Team Results of Reservoir Operation Simulation: Without other Demand

CTI Engineering International Co., Ltd. 17 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.1-2 (1/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Irrigation Water Demand

18 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.1-2 (2/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Irrigation Water Demand

CTI Engineering International Co., Ltd. 19 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.1-2 (3/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Irrigation Water Demand

20 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.1-2 (4/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Irrigation Water Demand

CTI Engineering International Co., Ltd. 21 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.1-2 (5/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Irrigation Water Demand

22 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.1-2 (6/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Irrigation Water Demand

CTI Engineering International Co., Ltd. 23 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.1-2 (7/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Irrigation Water Demand

24 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.1-2 (8/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Irrigation Water Demand

CTI Engineering International Co., Ltd. 25 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.1-2 (9/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Irrigation Water Demand

26 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.1-3 (1/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Improved Irrigation Demand

CTI Engineering International Co., Ltd. 27 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.1-3 (2/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Improved Irrigation Demand

28 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.1-3 (3/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Improved Irrigation Demand

CTI Engineering International Co., Ltd. 29 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.1-3 (4/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Improved Irrigation Demand

30 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.1-3 (5/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Improved Irrigation Demand

CTI Engineering International Co., Ltd. 31 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.1-3 (6/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Improved Irrigation Demand

32 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.1-3 (7/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Improved Irrigation Demand

CTI Engineering International Co., Ltd. 33 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.1-3 (8/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Improved Irrigation Demand

34 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.1-3 (9/9)

Source: Project Team Results of Reservoir Operation Simulation: With 2035 Improved Irrigation Demand

CTI Engineering International Co., Ltd. 35 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.2 (1/3)

WRA WRA05 WRA16 WRA07 WRA17 WRA09 WRA01 WRA14 Name Mbongozi Malenga Chasombo Chizuma Chimgonda Henga_Valley Lower_Fufu Rumphi Wovwe Bupigu Sofwe Manolo Kholombidzo Nkula Tedzani Mpatamanga Kapichira Zoa_Falls Plant Discharge [m3/s] 50.0 50.0 60.0 60.0 20.0 40.0 40.0 30.0 1.017 50.0 60.0 70.0 285.0 264.0 325.8 418.0 343.6 70.0 Flow Utilization 55.1 99.8 89.9 93.4 56.2 85.9 98.2 57.1 86.9 47.8 52.4 54.4 96.6 97.4 95.2 90.8 95.0 67.2 Factor [%] Inflow [%] 35.8 99.4 15.3 43.9 19.2 44.4 96.1 33.6 64.7 21.7 19.2 13.6 85.8 91.9 79.7 67.5 80.6 41.1 Plant Discharge [%] 99.2 100.0 34.7 35.3 20.3 93.9 93.9 83.6 48.6 28.1 31.4 23.6 88.3 88.9 76.4 71.9 75.3 22.5 50% flow [m3/s] 23.9 50.6 52.3 57.8 10.3 38.3 49.2 14.8 1.6 16.5 25.8 38.7 488.1 494.3 494.5 502.5 497.4 49.6 75% flow [m3/s] 7.2 50.1 50.6 51.1 5.6 32.9 44.2 5.9 0.8 7.5 8.5 9.4 362.8 360.5 360.6 367.8 402.9 25.3 95% flow [m3/s] 2.9 50.0 50.2 50.2 2.9 6.7 40.6 3.1 0.4 3.6 4.0 4.4 192.3 198.0 198.5 208.9 213.7 10.9 Mbongozi(WRA-05_Bua) Malenga(WRA-05_Bua) Chasombo(WRA-05_Bua) River Inflow (Natural) Power Discharge (Natural) River Inflow (Natural) Power Discharge (Natural) River Inflow (Natural) Power Discharge (Natural) Flow UF (Natural) [%] Flow UF (Natural) [%] Flow UF (Natural) [%] 200 100 200 100 200 100 180 90 180 90 180 90 160 80 160 80 160 80 140 70 140 70 140 70 120 60 120 60 120 60 100 50 100 50 100 50 80 40 80 40 80 40

Max. Plant Discharge: 50m3/s Max. Plant Discharge: 50m3/s Max. Plant Discharge: 50m3/s

Flow [m3/s] Flow Flow [m3/s] Flow 60 30 [m3/s] Flow 60 30 60 30 40 20 40 20 40 20

20 10 20 10 20 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Chizuma(WRA-05_Bua) Chimgonda(WRA-16_Dwanbezi) Henga_Valley(WRA-07_South Rukuru) River Inflow (Natural) Power Discharge (Natural) River Inflow (Natural) Power Discharge (Natural) River Inflow (Natural) Power Discharge (Natural) Flow UF (Natural) [%] Flow UF (Natural) [%] Flow UF (Natural) [%] 200 100 50 100 100 100 180 90 45 90 90 90 160 80 40 80 80 80 140 70 35 70 70 70 120 60 30 60 60 60 100 50 25 50 50 50 80 40 20 40 40 40

Max. Plant Discharge: 60m3/s Max. Plant Discharge: 20m3/s

Flow [m3/s] Flow Flow [m3/s] Flow 60 30 [m3/s] Flow 15 30 30 Max. Plant Discharge: 40m3/s 30 40 20 10 20 20 20

20 10 5 10 10 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Lower_Fufu(WRA-07_South Rukuru) Rumphi(WRA-07_South Rukuru) Wovwe(WRA-17_Wovwe) River Inflow (Natural) Power Discharge (Natural) River Inflow (Natural) Power Discharge (Natural) River Inflow (Natural) Power Discharge (Natural) Flow UF (Natural) [%] Flow UF (Natural) [%] Flow UF (Natural) [%] 100 100 100 100 20 100 90 90 90 90 18 90 80 80 80 80 16 80 70 70 70 70 14 70 60 60 60 60 12 60 50 50 50 50 10 50 40 40 40 40 8 40

Max. Plant Discharge: 30m3/s

Flow [m3/s] Flow Flow [m3/s] Flow 30 Max. Plant Discharge: 40m3/s 30 [m3/s] Flow 30 30 6 30 20 20 20 20 4 Max. Plant Discharge: 1.017m3/s 20

10 10 10 10 2 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Bupigu(WRA-09_Songwe) Sofwe(WRA-09_Songwe) Manolo(WRA-09_Songwe) River Inflow (Natural) Power Discharge (Natural) River Inflow (Natural) Power Discharge (Natural) River Inflow (Natural) Power Discharge (Natural) Flow UF (Natural) [%] Flow UF (Natural) [%] Flow UF (Natural) [%] 500 100 500 100 500 100 450 90 450 90 450 90 400 80 400 80 400 80 350 70 350 70 350 70 300 60 300 60 300 60 250 50 250 50 250 50

200 40 200 40 200 40

Flow [m3/s] Flow Flow [m3/s] Flow 150 30 [m3/s] Flow 150 30 150 Max. Plant Discharge: 70m3/s 30 Max. Plant Discharge: 60m3/s 100 Max. Plant Discharge: 50m3/s 20 100 20 100 20

50 10 50 10 50 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Kholombidzo(WRA-01_Shire) Nkula(WRA-01_Shire) Tedzani(WRA-01_Shire) River Inflow (Natural) Power Discharge (Natural) River Inflow (Natural) Power Discharge (Natural) River Inflow (Natural) Power Discharge (Natural) Flow UF (Natural) [%] Flow UF (Natural) [%] Flow UF (Natural) [%] 1,000 100 1,000 100 1,000 100 900 90 900 90 900 90 800 80 800 80 800 80 700 70 700 70 700 70 600 60 600 60 600 60 500 50 500 50 500 50

400 40 400 40 400 40

Flow [m3/s] Flow Flow [m3/s] Flow 300 30 [m3/s] Flow 300 30 300 30 200 Max. Plant Discharge: 285m3/s 20 200 Max. Plant Discharge: 264m3/s 20 200 Max. Plant Discharge: 325.8m3/s 20

100 10 100 10 100 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Mpatamanga(WRA-01_Shire) Kapichira(WRA-01_Shire) Zoa_Falls(WRA-14_Ruo) River Inflow (Natural) Power Discharge (Natural) River Inflow (Natural) Power Discharge (Natural) River Inflow (Natural) Power Discharge (Natural) Flow UF (Natural) [%] Flow UF (Natural) [%] Flow UF (Natural) [%] 1,000 100 1,000 100 500 100 900 90 900 90 450 90 800 80 800 80 400 80 700 70 700 70 350 70 600 60 600 60 300 60 500 50 500 50 250 50

400 40 400 40 200 40

Flow [m3/s] Flow Flow [m3/s] Flow 300 Max. Plant Discharge: 418m3/s 30 [m3/s] Flow 300 30 150 30 Max. Plant Discharge: 343.6m3/s Max. Plant Discharge: 70m3/s 200 20 200 20 100 20

100 10 100 10 50 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Source: Project Team Flow Duration Curves (River Inflow, Power Discharge): Without other Demands

36 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.2 (2/3)

WRA WRA05 WRA16 WRA07 WRA17 WRA09 WRA01 WRA14 Name Mbongozi Malenga Chasombo Chizuma Chimgonda Henga_Valley Lower_Fufu Rumphi Wovwe Bupigu Sofwe Manolo Kholombidzo Nkula Tedzani Mpatamanga Kapichira Zoa_Falls Plant Discharge [m3/s] 50.0 50.0 60.0 60.0 20.0 40.0 40.0 30.0 1.017 50.0 60.0 70.0 285.0 264.0 325.8 418.0 343.6 70.0 Flow Utilization 50.1 97.0 87.5 89.2 50.5 77.5 92.6 50.4 73.6 47.5 51.8 53.8 95.1 96.5 93.6 88.5 93.3 63.4 Factor [%] Inflow [%] 35.6 58.3 8.9 23.9 18.6 42.5 88.3 33.3 54.7 21.7 18.9 13.6 82.2 88.6 75.0 60.8 74.4 41.1 Plant Discharge [%] 95.0 97.2 15.0 15.6 19.7 85.6 85.8 72.5 37.8 28.1 30.8 23.3 85.8 86.7 71.1 64.4 70.3 21.7 50% flow [m3/s] 21.6 50.3 51.6 52.9 8.4 35.9 48.4 13.4 1.2 16.2 25.0 38.2 462.7 467.3 465.2 472.7 460.5 45.9 75% flow [m3/s] 1.1 49.8 50.0 50.1 3.5 29.8 43.0 1.7 0.4 7.4 7.9 8.9 333.8 326.0 323.6 329.0 342.0 19.9 95% flow [m3/s] 0.0 49.4 49.6 49.5 0.6 1.3 7.3 0.0 0.1 3.4 3.7 4.1 175.1 180.3 177.9 179.3 181.4 5.2 Mbongozi(WRA-05_Bua) Malenga(WRA-05_Bua) Chasombo(WRA-05_Bua) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) Flow UF (2035) [%] Flow UF (2035) [%] Flow UF (2035) [%] 200 100 200 100 200 100 180 90 180 90 180 90 160 80 160 80 160 80 140 70 140 70 140 70 120 60 120 60 120 60 100 50 100 50 100 50 80 40 80 40 80 40

Max. Plant Discharge: 50m3/s Max. Plant Discharge: 50m3/s Max. Plant Discharge: 50m3/s

Flow [m3/s] Flow Flow [m3/s] Flow 60 30 [m3/s] Flow 60 30 60 30 40 20 40 20 40 20

20 10 20 10 20 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Chizuma(WRA-05_Bua) Chimgonda(WRA-16_Dwanbezi) Henga_Valley(WRA-07_South Rukuru) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) Flow UF (2035) [%] Flow UF (2035) [%] Flow UF (2035) [%] 200 100 50 100 100 100 180 90 45 90 90 90 160 80 40 80 80 80 140 70 35 70 70 70 120 60 30 60 60 60 100 50 25 50 50 50 80 40 20 40 40 40

Max. Plant Discharge: 60m3/s Max. Plant Discharge: 20m3/s

Flow [m3/s] Flow Flow [m3/s] Flow 60 30 [m3/s] Flow 15 30 30 Max. Plant Discharge: 40m3/s 30 40 20 10 20 20 20

20 10 5 10 10 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Lower_Fufu(WRA-07_South Rukuru) Rumphi(WRA-07_South Rukuru) Wovwe(WRA-17_Wovwe) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) Flow UF (2035) [%] Flow UF (2035) [%] Flow UF (2035) [%] 100 100 100 100 20 100 90 90 90 90 18 90 80 80 80 80 16 80 70 70 70 70 14 70 60 60 60 60 12 60 50 50 50 50 10 50 40 40 40 40 8 40

Max. Plant Discharge: 30m3/s

Flow [m3/s] Flow Flow [m3/s] Flow 30 Max. Plant Discharge: 40m3/s 30 [m3/s] Flow 30 30 6 30 20 20 20 20 4 Max. Plant Discharge: 1.017m3/s 20

10 10 10 10 2 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Bupigu(WRA-09_Songwe) Sofwe(WRA-09_Songwe) Manolo(WRA-09_Songwe) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) Flow UF (2035) [%] Flow UF (2035) [%] Flow UF (2035) [%] 500 100 500 100 500 100 450 90 450 90 450 90 400 80 400 80 400 80 350 70 350 70 350 70 300 60 300 60 300 60 250 50 250 50 250 50

200 40 200 40 200 40

Flow [m3/s] Flow Flow [m3/s] Flow 150 30 [m3/s] Flow 150 30 150 Max. Plant Discharge: 70m3/s 30 Max. Plant Discharge: 60m3/s 100 Max. Plant Discharge: 50m3/s 20 100 20 100 20

50 10 50 10 50 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Kholombidzo(WRA-01_Shire) Nkula(WRA-01_Shire) Tedzani(WRA-01_Shire) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) Flow UF (2035) [%] Flow UF (2035) [%] Flow UF (2035) [%] 1,000 100 1,000 100 1,000 100 900 90 900 90 900 90 800 80 800 80 800 80 700 70 700 70 700 70 600 60 600 60 600 60 500 50 500 50 500 50

400 40 400 40 400 40

Flow [m3/s] Flow Flow [m3/s] Flow 300 30 [m3/s] Flow 300 30 300 30 200 Max. Plant Discharge: 285m3/s 20 200 Max. Plant Discharge: 264m3/s 20 200 Max. Plant Discharge: 325.8m3/s 20

100 10 100 10 100 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Mpatamanga(WRA-01_Shire) Kapichira(WRA-01_Shire) Zoa_Falls(WRA-14_Ruo) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) Flow UF (2035) [%] Flow UF (2035) [%] Flow UF (2035) [%] 1,000 100 1,000 100 500 100 900 90 900 90 450 90 800 80 800 80 400 80 700 70 700 70 350 70 600 60 600 60 300 60 500 50 500 50 250 50

400 40 400 40 200 40

Flow [m3/s] Flow Flow [m3/s] Flow 300 Max. Plant Discharge: 418m3/s 30 [m3/s] Flow 300 30 150 30 Max. Plant Discharge: 343.6m3/s Max. Plant Discharge: 70m3/s 200 20 200 20 100 20

100 10 100 10 50 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Source: Project Team Flow Duration Curves (River Inflow, Power Discharge): With 2035 Upstream Demand

CTI Engineering International Co., Ltd. 37 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.2 (3/3) WRA WRA05 WRA16 WRA07 WRA17 WRA09 WRA01 WRA14 Name Mbongozi Malenga Chasombo Chizuma Chimgonda Henga_Valley Lower_Fufu Rumphi Wovwe Bupigu Sofwe Manolo Kholombidzo Nkula Tedzani Mpatamanga Kapichira Zoa_Falls Plant Discharge [m3/s] 50.0 50.0 60.0 60.0 20.0 40.0 40.0 30.0 1.017 50.0 60.0 70.0 285.0 264.0 325.8 418.0 343.6 70.0 Flow Utilization 49.8 96.7 87.4 89.1 53.2 78.6 93.1 50.6 78.4 47.5 51.9 53.8 95.2 96.6 93.6 88.8 93.6 63.4 Factor [%] Inflow [%] 35.6 68.6 8.3 23.6 18.3 40.6 88.6 33.1 56.4 21.7 18.9 13.6 82.5 89.2 75.3 61.1 75.3 41.1 Plant Discharge [%] 93.3 96.7 13.9 13.9 18.9 86.7 86.7 73.1 37.8 28.1 30.8 23.3 86.7 87.2 71.4 65.3 70.8 21.7 50% flow [m3/s] 19.9 50.3 51.5 52.4 8.5 35.1 48.7 10.5 1.3 16.2 25.3 38.2 466.0 469.3 467.2 475.6 467.3 45.9 75% flow [m3/s] 2.8 49.9 50.2 50.3 4.9 30.7 43.2 3.3 0.6 7.4 7.9 8.9 336.9 329.6 327.2 336.4 351.7 19.9 95% flow [m3/s] 0.0 41.3 49.9 49.9 2.3 3.2 8.3 1.1 0.2 3.4 3.7 4.1 176.3 181.5 180.0 183.9 186.1 5.2 Mbongozi(WRA-05_Bua) Malenga(WRA-05_Bua) Chasombo(WRA-05_Bua) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) Flow UF (2035) [%] Flow UF (2035) [%] Flow UF (2035) [%] 200 100 200 100 200 100 180 90 180 90 180 90 160 80 160 80 160 80 140 70 140 70 140 70 120 60 120 60 120 60 100 50 100 50 100 50 80 40 80 40 80 40

Max. Plant Discharge: 50m3/s Max. Plant Discharge: 50m3/s Max. Plant Discharge: 50m3/s

Flow [m3/s] Flow Flow [m3/s] Flow 60 30 [m3/s] Flow 60 30 60 30 40 20 40 20 40 20

20 10 20 10 20 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Chizuma(WRA-05_Bua) Chimgonda(WRA-16_Dwanbezi) Henga_Valley(WRA-07_South Rukuru) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) Flow UF (2035) [%] Flow UF (2035) [%] Flow UF (2035) [%] 200 100 50 100 100 100 180 90 45 90 90 90 160 80 40 80 80 80 140 70 35 70 70 70 120 60 30 60 60 60 100 50 25 50 50 50 80 40 20 40 40 40

Max. Plant Discharge: 60m3/s Max. Plant Discharge: 20m3/s

Flow [m3/s] Flow Flow [m3/s] Flow 60 30 [m3/s] Flow 15 30 30 Max. Plant Discharge: 40m3/s 30 40 20 10 20 20 20

20 10 5 10 10 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Lower_Fufu(WRA-07_South Rukuru) Rumphi(WRA-07_South Rukuru) Wovwe(WRA-17_Wovwe) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) Flow UF (2035) [%] Flow UF (2035) [%] Flow UF (2035) [%] 100 100 100 100 20 100 90 90 90 90 18 90 80 80 80 80 16 80 70 70 70 70 14 70 60 60 60 60 12 60 50 50 50 50 10 50 40 40 40 40 8 40

Max. Plant Discharge: 30m3/s

Flow [m3/s] Flow Flow [m3/s] Flow 30 Max. Plant Discharge: 40m3/s 30 [m3/s] Flow 30 30 6 30 20 20 20 20 4 Max. Plant Discharge: 1.017m3/s 20

10 10 10 10 2 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Bupigu(WRA-09_Songwe) Sofwe(WRA-09_Songwe) Manolo(WRA-09_Songwe) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) Flow UF (2035) [%] Flow UF (2035) [%] Flow UF (2035) [%] 500 100 500 100 500 100 450 90 450 90 450 90 400 80 400 80 400 80 350 70 350 70 350 70 300 60 300 60 300 60 250 50 250 50 250 50

200 40 200 40 200 40

Flow [m3/s] Flow Flow [m3/s] Flow 150 30 [m3/s] Flow 150 30 150 Max. Plant Discharge: 70m3/s 30 Max. Plant Discharge: 60m3/s 100 Max. Plant Discharge: 50m3/s 20 100 20 100 20

50 10 50 10 50 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Kholombidzo(WRA-01_Shire) Nkula(WRA-01_Shire) Tedzani(WRA-01_Shire) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) Flow UF (2035) [%] Flow UF (2035) [%] Flow UF (2035) [%] 1,000 100 1,000 100 1,000 100 900 90 900 90 900 90 800 80 800 80 800 80 700 70 700 70 700 70 600 60 600 60 600 60 500 50 500 50 500 50

400 40 400 40 400 40

Flow [m3/s] Flow Flow [m3/s] Flow 300 30 [m3/s] Flow 300 30 300 30 200 Max. Plant Discharge: 285m3/s 20 200 Max. Plant Discharge: 264m3/s 20 200 Max. Plant Discharge: 325.8m3/s 20

100 10 100 10 100 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Mpatamanga(WRA-01_Shire) Kapichira(WRA-01_Shire) Zoa_Falls(WRA-14_Ruo) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) River Inflow (2035) Power Discharge (2035) Flow UF (2035) [%] Flow UF (2035) [%] Flow UF (2035) [%] 1,000 100 1,000 100 500 100 900 90 900 90 450 90 800 80 800 80 400 80 700 70 700 70 350 70 600 60 600 60 300 60 500 50 500 50 250 50

400 40 400 40 200 40

Flow [m3/s] Flow Flow [m3/s] Flow 300 Max. Plant Discharge: 418m3/s 30 [m3/s] Flow 300 30 150 30 Max. Plant Discharge: 343.6m3/s Max. Plant Discharge: 70m3/s 200 20 200 20 100 20

100 10 100 10 50 10

Flow Utilization Factor [%] Utilization Flow Factor [%] Utilization Flow Factor 0 0 [%] Utilization Flow Factor 0 0 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Flow Exceedence porcentile [%] Flow Exceedence porcentile [%] Flow Exceedence porcentile [%]

Source: Project Team Flow Duration Curves (River Inflow, Power Discharge): With 2035 Improved Irrigation Demand

38 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.3 (1/3)

WITH 2035 demand 2 WITH 2035 demand 1 WITHOUT other demand (improved irrigation) Simulation Result 1 Simulation Result 2 Simulation Result (with 2035 upstream (2035 upsteram demand (without upstream water demand) (improved irrigation) ) demand) Max. Saf Max.Plant Annual Inflow Sufficiency Annual Inflow Sufficiency Annual Inflow Sufficiency( No Required ety Discharge Volume (2035 Volume (2035 Demand Volume Natural . No. Name Volume Le [m3/s] [M.m3/yr] Demand) [M.m3/yr] - green maize) [M.m3/yr] Condition) [M.m3/yr] vel (1) (2) (3) (4) = (3)/(2) (5) (6) = (5)/(2) (7) (8) = (7)/(2) 13 1 Kholombidzo 285.0 8,988 15,217 169.3 15,295 170.2 15,987 177.9 ## 14 2 Nkula 264.0 8,326 15,414 185.1 15,493 186.1 16,196 194.5 ## 15 3 WRA 1 Tedzani 325.8 10,274 15,353 149.4 15,433 150.2 16,214 157.8 60 16 4 Mpatamanga 418.0 13,182 15,611 118.4 15,692 119.0 16,485 125.1 60 17 5 Kapichira 343.6 10,836 15,800 145.8 15,880 146.6 16,680 153.9 60 1 6 Mbongozi 50.0 1,577 1,547 98.1 1,541 97.7 1,638 103.8 60 2 7 Malenga 50.0 1,577 1,564 99.2 1,558 98.8 1,633 103.6 60 WRA 5 3 8 Chasombo 60.0 1,892 1,669 88.2 1,666 88.1 1,751 92.5 60 4 9 Chizuma 60.0 1,892 1,710 90.4 1,708 90.3 1,795 94.9 60 8 10 Rumphi 30.0 946 786 83.1 791 83.6 861 91.0 60 6 11 WRA 7 Henga_Valley 40.0 1,261 1,157 91.7 1,168 92.6 1,278 101.3 60 7 12 Lower_Fufu 40.0 1,261 1,570 124.5 1,582 125.4 1,686 133.6 60 10 13 Bupigu 50.0 1,577 1,076 68.3 1,076 68.3 1,082 68.6 60 11 14 WRA 9 Sofwe 60.0 1,892 1,250 66.1 1,250 66.1 1,262 66.7 60 12 15 Manolo 70.0 2,208 1,412 64.0 1,412 64.0 1,425 64.5 60 18 16 WRA 14 Zoa_Falls 70.0 2,208 3,123 141.5 3,123 141.5 3,216 145.7 60 5 17 WRA 16 Chimgonda 20.0 631 365 57.8 381 60.3 407 64.5 60 9 18 WRA 17 Wovwe 1.017 32 68 212.5 70 217.4 75 235.3 60

Total 70,559.2 70,559 94,694 134.2 95,119 134.8 99,672 141.3 60

Sufficiency of Inflow Volume [%] = Annual Inflow Volume [M.m 3/syr] / Max.Required Volume [M.m 3/yr]

WITHOUT other demand WITH 2035 demand 2 (improved irrigation) WITH 2035 demand 1 Safety Level 200 180 160 140 120 100 80

Sufficiency [%] Sufficiency 60 40 20

0

Nkula

Sofwe

Bupigu

Tedzani

Manolo

Kapichira

Rumphi

Zoa_Falls Malenga

Wovwe Chizuma

Mbongozi

Chasombo

Chimgonda

Lower_Fufu

Mpatamanga

Kholombidzo Henga_Valley WRA 1 WRA 5 WRA 7 WRA 9 WRA WRA WRA 14 16 17

Source: Project Team Summary of Preliminary Evaluation Results (Inflow Volume to the Reservoir)

CTI Engineering International Co., Ltd. 39 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.3 (2/3)

WITH 2035 demand 2 WITH 2035 demand 1 WITHOUT other demand (improved irrigation) Simulation Result 1 Simulation Result 2 Simulation Result (without (with 2035 upstream (2035 upsteram demand upstream water demand) demand) (improved irrigation) )

Max. Annual Average Annual Average Max.Plant Sufficiency Annual Average Sufficiency Sufficiency No Required Power Discharge Power Discharge Discharge (2035 Power Discharge (2035 (Natural Volume Volume Volume . No. WRA Name 3 3 [m /s] 3 Demand) Volume [M.m /yr] Demand) 3 Condition) [M.m3/yr] [M.m /yr] [M.m /yr] (4) = (6) = (1) (2) (3) (5) (7) (8) = (7)/(2) (3)/(2) (5)/(2) 13 1 Kholombidzo 285.0 8,988 8,594 95.6 8,603 95.7 8,692 96.7 14 2 Nkula 264.0 8,326 8,016 96.3 8,024 96.4 8,105 97.3 15 3 WRA 1 Tedzani 325.8 10,274 9,604 93.5 9,619 93.6 9,768 95.1 16 4 Mpatamanga 418.0 13,182 11,752 89.1 11,783 89.4 12,057 91.5 17 5 Kapichira 343.6 10,836 10,107 93.3 10,125 93.4 10,283 94.9 1 6 Mbongozi 50.0 1,577 1,533 97.2 1,526 96.8 1,572 99.7 2 7 Malenga 50.0 1,577 1,556 98.7 1,553 98.5 1,578 100.1 WRA 5 3 8 Chasombo 60.0 1,892 1,669 88.2 1,666 88.1 1,752 92.6 4 9 Chizuma 60.0 1,892 1,684 89.0 1,682 88.9 1,762 93.1 8 10 Rumphi 30.0 946 787 83.1 792 83.7 861 91.0 6 11 WRA 7 Henga_Valley 40.0 1,261 1,153 91.4 1,160 92.0 1,229 97.4 7 12 Lower_Fufu 40.0 1,261 1,164 92.3 1,170 92.8 1,240 98.3 10 13 Bupigu 50.0 1,577 843 53.4 843 53.4 848 53.8 11 14 WRA 9 Sofwe 60.0 1,892 1,060 56.0 1,060 56.0 1,071 56.6 12 15 Manolo 70.0 2,208 1,236 56.0 1,236 56.0 1,248 56.5 18 16 WRA 14 Zoa_Falls 70.0 2,208 1,314 59.5 1,314 59.5 1,398 63.3 5 17 WRA 16 Chimgonda 20.0 631 317 50.3 334 52.9 358 56.8 9 18 WRA 17 Wovwe 1.017 32 23 71.5 24 76.3 27 85.0 Total 70,559 62,412 88.5 62,513 88.6 63,849 90.5

Sufficiency of Power Discharge Volume [%] = Annual Average Power Discharge Volume [M.m 3/yr] / Max.Required Volume [M.m 3/yr]

WITHOUT other demand WITH 2035 demand 2 (improved irrigation) WITH 2035 demand 1 Safety Level 100

80

60

40 Sufficiency [%] Sufficiency

20

0

Nkula

Sofwe

Bupigu

Tedzani

Manolo

Kapichira

Rumphi

Malenga

Zoa_Falls

Chizuma Wovwe

Mbongozi

Chasombo

Chimgonda

Lower_Fufu

Mpatamanga

Kholombidzo Henga_Valley WRA 1 WRA 5 WRA 7 WRA 9 WRA WRA WRA 14 16 17

Source: Project Team

Summary of Preliminary Evaluation Results (Power Discharge Volume)

40 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 7.4.3 (3/3)

WITH 2035 demand 2 Annual Everage Energy and Capacity Factor (C.F.) [%] WITH 2035 demand 1 WITHOUT other demand (improved irrigation)

Simulation Result 2 Simulation Result 1 Simulation Result (without Developemt Plan (2035 upsteram demand (with 2035 upstream demand) upstream water demand) (improved irrigation) Capacity S Annual Capacity Annual Annual Installed Annual Capacity Factor af C.F Average Factor (2035 Average Average Capacity Energy Factor (2035 (Natural et [%] Energy Demand) Energy Energy No. WRA Name [MW] [GWh/yr] Demand) [%] Condition) y [GWh/yr] [%] [GWh/yr] [GWh/yr] [%] L (5) = (7) = (9) = (1) (2) (3) (4) (6) (8) (4)/∑(1) ** (6)/∑(1)** (8)/∑(1)** # 1 Kholombidzo 170 1,415 95.0 1,414.8 * 95.0 1,416.5 95.1 1432.8 96.3 # # 2 Nkula 130 1,086 95.4 1,041.1 * 91.4 1,042.2 * 91.5 1055.8 * 92.7 # # 3 WRA 1 Tedzani 110.7 949 97.9 863.8 * 89.1 865.4 * 89.2 881.0 * 90.8 # # 4 Mpatamanga 228 1,156 57.9 1,634.4 81.8 1,641.1 82.2 1701.6 85.2 # # 5 Kapichira 163.8 1,326 92.4 1,268.1 * 88.4 1,272.1 * 88.7 1315.6 * 91.7 # # 6 Mbongozi 55 176 36.5 438.5 91.0 435.1 90.3 463.7 96.2 # # 7 Malenga 62 152 28.0 487.0 89.7 483.9 89.1 541.2 99.7 # WRA 5 # 8 Chasombo 55 159 33.0 332.5 69.0 331.8 68.9 357.4 74.2 # # 9 Chizuma 50 122 27.9 389.1 88.8 389.1 88.8 407.8 93.1 # # 10 Rumphi 10 36 41.1 61.4 70.1 61.8 70.5 69.3 79.1 # # 11 WRA 7 Henga_Valley 28 137 55.9 199.9 81.5 202.3 82.5 223.7 91.2 # # 12 Lower_Fufu 100 530 60.5 801.2 91.5 810.8 92.6 859.9 98.2 # # 13 Bupigu 32 110 39.2 117.9 42.1 117.9 42.1 118.6 42.3 # # 14 WRA 9 Sofwe 159 634 45.5 711.3 51.1 711.4 51.1 719.2 51.6 # # 15 Manolo 148 596 46.0 661.4 51.0 661.5 51.0 668.0 51.5 # # 16 WRA 14 Zoa_Falls 37 125 38.6 192.9 59.5 192.9 59.5 205.2 63.3 # # 17 WRA 16 Chimgonda 50 191 43.6 210.2 48.0 220.5 50.3 237.0 54.1 # # 18 WRA 17 Wovwe 4.35 38 100.0 27.2 * 71.3 29.0 * 76.1 32.3 * 84.7 # # Total 1,592.9 8,938.0 64.1 10,852.9 77.8 10,885.3 78.0 11,290.1 80.9 * : Simulated annual average energy is lower than the planned value

** Capacity Factor (C.F.) = Annual Average Energy [GWh/yr] / (Installed Capacity [MW] x 24[hr] x 365[day] /1000) x 100 [%] #

Annual Average Energy [GWh/yr] = ∑{E (t) [GWh/day] x 365 [day]} / 30 [year] Energy: E (t) [GWh/day] = P (t) [MW] x 24 [hr/day] P (t) = 9.8 x C x Hg (t) x Qp (t) / 1000 [MW] Hg (t) : Gross head [masl.] = "Reservoir Water Level (changes daily)" - "Tail Water Level (constant)" Qp : Power discharge [m3/s] C : Combined effeciency in consideration of Head loss C = Pmax / 9.8 / Hg / Qmax x 1000 = Pmax / 9.8 / (FSL - TWL) / Qmax x 1000, <--- Pmax = 9.8 x C x Hg x Qmax / 1000 FSL: Full Supply Level [masl.], TWL: Tail Water Level [masl.], Qmax: Maximum Plant Discharge [m3/s] Capacity Factor [%] = Annual Average Energy [GWh/yr] / (Installed Capacity [MW] x 24[hr] x 365[day] /1000) x 100 [%] WITHOUT other demand WITH 2035 demand 2 (improved irrigation) WITH 2035 demand 1 Safety Level 100

80

60

40

20

0

Annual Everage Energy and Capacity Factor (C.F.) [%] (C.F.) Factor Capacity and Everage Energy Annual

Nkula

Sofwe

Bupigu

Tedzani

Manolo

Kapichira

Rumphi

Malenga

Zoa_Falls

Chizuma Wovwe

Mbongozi

Chasombo

Chimgonda

Lower_Fufu

Mpatamanga

Kholombidzo Henga_Valley WRA 1 WRA 5 WRA 7 WRA 9 WRA 14 WRA 16 WRA 17

Source: Project Team

Summary of Preliminary Evaluation Results (Energy Production and Capacity Factor)

CTI Engineering International Co., Ltd. 41 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 7.4.3 (4/4) Energy [GWh/yr] and Capacity Factor (C.F.) [%] Single Development Cascaded Development Simulation Result Simulation Result Developemt Plan (with 2035 upstream demand) (with 2035 upstream demand) - Single Development - - Cascaded Development - Annual S Installed Annual Capacity Factor Capacity Factor C.F Annual Average Average af Capacity Energy (2035 Demand) (Natural Condition) [%] Energy [GWh/yr] Energy et [MW] [GWh/yr] [%] [%] No. WRA Name [GWh/yr] y (5) = (7) = (1) (2) (3) (4) (6) (4)/∑(1) ** (6)/∑(1)** 13 1 Kholombidzo 170 1,415 95.0 1,415.5 95.1 1414.8 * 95.0 # 14 2 Nkula 130 1,086 95.4 1,041.1 * 91.4 1041.1 * 91.4 # 15 3 WRA 1 Tedzani 110.7 949 97.9 863.8 * 89.1 863.8 * 89.1 # 16 4 Mpatamanga 228 1,156 57.9 1,634.4 81.8 1634.4 81.8 # 17 5 Kapichira 163.8 1,326 92.4 1,268.1 * 88.4 1268.1 * 88.4 # 1 6 Mbongozi 55 176 36.5 438.5 91.0 438.5 91.0 # 2 7 Malenga 62 152 28.0 404.6 74.5 487.0 89.7 # WRA 5 3 8 Chasombo 55 159 33.0 331.9 68.9 332.5 69.0 # 4 9 Chizuma 50 122 27.9 216.6 49.4 389.1 88.8 # 8 10 Rumphi 10 36 41.1 61.4 70.1 61.4 70.1 # 6 11 WRA 7 Henga_Valley 28 137 55.9 196.6 80.2 199.9 81.5 # 7 12 Lower_Fufu 100 530 60.5 487.8 * 55.7 801.2 91.5 # 10 13 Bupigu 32 110 39.2 117.9 42.1 117.9 42.1 # 11 14 WRA 9 Sofwe 159 634 45.5 711.3 51.1 711.3 51.1 # 12 15 Manolo 148 596 46.0 661.4 51.0 661.4 51.0 # 18 16 WRA 14 Zoa_Falls 37 125 38.6 192.9 59.5 192.9 59.5 # 5 17 WRA 16 Chimgonda 50 191 43.6 210.2 48.0 210.2 48.0 # 9 18 WRA 17 Wovwe 4.35 38 100.0 27.2 * 71.3 27.2 * 71.3 # # Total 1,592.9 8,938.0 64.1 10,281.4 73.7 10,852.9 * : Simulated annual average energy is lower than the planned value Annual Energy Production [GWh/yr] 900 801.2 800 700 600 487.8 500 487.0 404.6 389.1 400 332.5 331.9 300 216.6 199.9 196.6

Energy [GWh/yr] Energy 200 100 0 Cascade Single Cascade Single Cascade Single Cascade Single Cascade Single development development development development development development development development development development (2035 plan) (no upstream (2035 plan) (no upstream (2035 plan) (no upstream (2035 plan) (no upstream (2035 plan) (no upstream dam) dam) dam) dam) dam) Malenga Chasombo Chizuma Henga_Valley Lower_Fufu Bua South Rukuru

Capacity Factor [%] Compariosn : Cascaded / Single Development = Annual Average Energy [GWh/yr] / (Installed Capacity [MW] x 24[hr] x 365[day] /1000) x 100 [%] 100 89.7 88.8 91.5 81.5 80.2 80 74.5 69.0 68.9

60 55.7 49.4

40

20 Capacity Factor (C.F.) [%] (C.F.) Factor Capacity

0 Cascade Single Cascade Single Cascade Single Cascade Single Cascade Single development development development development development development development development development development (2035 plan) (no upstream (2035 plan) (no upstream (2035 plan) (no upstream (2035 plan) (no upstream (2035 plan) (no upstream dam) dam) dam) dam) dam) Malenga Chasombo Chizuma Henga_Valley Lower_Fufu Bua South Rukuru Source: Project Team Summary of Preliminary Evaluation Results (Comparison between Cascaded and Single Development)

42 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 8.3.1-1 (1/3)

Terms of Reference for Initial Environmental Examination - Technical Specifications

CTI Engineering International Co., Ltd. 43 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 8.3.1-1 (2/3)

Terms of Reference for Initial Environmental Examination - Technical Specifications

44 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 8.3.2-1 (3/3)

Terms of Reference for Initial Environmental Examination - Technical Specifications

CTI Engineering International Co., Ltd. 45 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 8.3.3-1 (1/3) 1 Agriculture /Aquaculture Projects

1.1 Agricultural drainage projects of more than 1 ha.

1.2 Irrigation schemes designed to serve more than 10 ha.

1.3 Land development for the purposes of agriculture on greater than a 20ha landholding

1.4 Agricultural projects necessitating resettlement of 20 or more families. Any change from one agricultural land use to another on greater than a 20ha land holding.

1.5 Use of more than 1 ton of fertiliser per hectare per annum on greater than a 20 ha landholding except for lime applications.

1.6 Use of the following concentrations of pesticides on greater than a 5 ha holding: more than 5 l/ha of ultra low volume pesticides per application; or more than 1 l/ha of aerial application of pesticides; or more than 20kg/ha for each application of granular pesticides.

1.7 Construction of fish-farming or ornamental pond(s) where the capacity is greater than 100 cubic metres or where there is any direct discharge from a fishpond to a receiving water body.

1.8 Any proposal to introduce fish species in an area where they do not presently exist.

2 Projects in the Food and Beverage Production Industry Construction of new abattoir or slaughterhouse with a capacity greater than 100 animals/day and expansions to existing 2.1 abattoirs or slaughterhouse to a capacity greater than 100 animals/day. Construction of new canning and bottling operation with work space greater than 5000 square metres or expansion to an 2.2 existing canning or bottling operation to a work space greater than 5000 square metres. Construction of new breweries and distilleries with a production capacity greater than 25,000 liters per day, or expansions to 2.3 existing breweries or distilleries to a production capacity f greater than 25,000 liters per day Construction of new sugar production operations or expansions to existing sugar production operations by greater than 10%. 2.4

2.5 Construction, or expansions to, tea or coffee processing industries

3 Water Resources Development

3.1 Construction, or expansion of, groundwater utilization projects where the utilization will be greater than 15 1/s or where the well is 60 m or deeper. Construction of new water pipelines or canals longer than 1 km, or expansion to existing water pipelines or canals by longer 3.2 than 1 km, where the cross-sectional area is greater than 20 square meters and the volume of water carried will be greater than 50 cubic metres per second. 3.3 Water pumping stations adjacent to lakes, rivers, and reservoirs that withdraw more than 2 cubic meters per second.

3.4 Drinking water supply schemes to serve a population of greater than 10,000 people, or expansions of existing schemes to serve such a population, or water reticulation networks with more than 10 kilometres of pipeline.

3.5 Area of greater than 100 ha, or expansions of existing reservoirs by greater than 500,000 l or greater than 100 ha.

3.6 Construction or expansion of dams with a height of 4.5 m or higher.

4 Infrastructure Projects Construction of new sanitary sewerage works or expansion of existing sanitary sewerage works, to serve a population of more 4.1 than 5,000 people. Construction of new storm sewerage works or expansion of existing storm sewerage works, to drain an area of greater than 10 4.2 ha.

46 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Any new sewerage outfall to a receiving water body or location of sewerage systems or septic tanks within 1 km of a water 4.3 body. Construction or expansion of septic tanks servicing more than 100 people or 20 homes or which receive more than 100 cubic 4.4 meters per day of wastewater. Construction of new highways and feeder roads or expansion of existing highways and feeder roads 4.5 Construction of new airport and airstrips or expansion of existing and airstrips and their ancillary facilities 4.6 Construction of hospitals with a bed capacity of greater than 200 beds, or expansions of existing hospitals to a capacity of 4.7 greater than 200 beds

4.8 Construction of new, or expansions to existing, railway lines. Construction of new, or expansions to existing port or harbour facilities 4.9

4.10 Establishment or expansion of industrial estates

5 Waste Management Projects Establishment, or expansion, of any of the following hazardous waste management facilities: incineration plant, off-site 5.1 recovery plant, off-site waste disposal facility, off-site storage facility, landfill site Establishment, or expansion, of any of the following municipal solid waste management facilities serving a population of 5.2 greater than 1,000 people: landfill site, incineration facility, composting facility, recovery/recycling facility, waste depots/transfer stations. 5.3 Establishment, or expansion of, on-site waste treatment facilities Source: EIA Guidelines, 1997 Mandatory List of Projects that require EIA Study (List A)

CTI Engineering International Co., Ltd. 47 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 8.3.3-1 (2/3) 6 Energy generation, transmission and storage projects

6.1 Construction or expansion of electrical generating facilities designed to operate at greater than 4 MW or, in the case of hydro-electric generating facilities, where the total head is greater than 20 m or where there is a firm flow of 100 cubic metres per second Construction of electrical transmission facilities operating at a voltage of 132 kV or greater 6.2

6.3 Construction or expansion of oil and gas pipelines longer than 1 km Construction or expansion of storage facilities (excluding services station) for oil, gas, petrol or diesel located within 3 6.4 kilometres of commercial, industrial or residential areas and with a storage capacity of 500,000 litres or more

6.5 All activities associated with nuclear power development

7 Industrial Projects Construction of, and expansions to, industries involving the use, manufacturing, handling storage; transport or disposal of 7.1 hazardous or toxic chemicals as regulated under the hazardous chemicals regulation under the Environment Management Act 7.2 Construction of, or expansion to, any of the following industrial operations: tanneries, pulp and paper mills, lime plants, cement plants, all types of smelters, soap and detergent plants, fertiliser manufacturing operations Construction of textile manufacturing operations (including carpet-making) which consume greater than 5,000 square metres 7.3 of surface area, or expansions to existing textile manufacturing operations to a capacity of more than 5000 square metres

8 Mining and Quarrying Projects All mining of minerals, expansions to mines, mining exploration activity, minerals prospecting activity, quarries, gravel pits 8.1 and removal of sand or gravel from shore lines, except for those activities which have received a project specific exemption under subsection 26 (3) of the Environment Management Act signed by the Director for Environmental Affairs and co-signed by the Director of Mines 8.2 Explosives manufacturing Extraction of top soil or the expansion of such an operation, when the operation or the expansion is greater than 0.5 ha or when 8.3 the depth of a pit to burn bricks from the top soil is deeper than 3 m.

9 Forestry Projects Establishment or expansion of logging operations covering an area of greater than 50ha. 9.1 Establishment of, or expansions to existing, logging operations on hill sides with a slope of greater than 10% covering an area 9.2 of greater than 10 ha or any conversion of forested land with a slope of greater than 10% to another land use on greater than 10 ha Establishment of logging or conversion of forested land to another land use within the catchment area of reservoirs 9.3 Establishment of forest plantations of greater than 50 ha 9.4 Land Development, Housing and Human Settlement Projects 10 Establishment of, or expansion to an existing; housing development of a size greater than 5 ha or where more than 500 people 10.1 are intended to be housed Resettlement programmes for 500 or more people or the creation of refugee camps intended to shelter 500 or more people. 10.2 Filling in water bodies for the purposes of land development where the surface area of gross fill deposit is greater than 50 ha 10.3 Land reclamation projects greater than 100 ha 10.4 Remedial Flood and Erosion Control Projects 11

48 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Construction of breakwaters, seawalls, jetties, dikes and groynes of greater than 2 metres in height or 1 km in length to remedy 11.1 shoreline erosion or flooding Construction of dams or weirs with a height of greater than 2 metres, or which divert more than 20 cubic metres per second, or 11.2 any bypass channels or channel realignments to remedy riverine erosion or flooding. Shoreline stabilisation projects where the shoreline involved is greater than 50m 11.3

12 Tourism Development Projects Construction of resort facilities and hotels with a capacity of more than 50 people, or expansions to existing facilities by a 12.1 factor of greater than 50 people. Construction of safari lodges and operations with a capacity of more than 50 people, or expansions to existing facilities by 12.2 factor of greater than 50 people 12.3 Construction of marine facilities with more than 10 boat slips, or expansion of existing marine facilities by more than 10 boat slips Development of tourism master plans which have several projects associated with them. 12.4 Source: EIA Guidelines, 1997 Mandatory List of Projects that require EIA Study (List A) (cont.)

CTI Engineering International Co., Ltd. 49 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 8.3.3-1 (3/3) 13 Projects in proximity to or which have the potential to affect: Areas of unique historical, cultural, scientific or geographical significance or which have received some kind of world 13.1 heritage designation

13.2 National parks, game reserves and protected areas Wetlands. 13.3

13.4 Water bodies

13.5 Flood zones

13.6 Major sources of drinking water, including communal wells

13.7 Cemeteries or ancestral shrines

13.8 Residential, school and hospital areas, as designed in local planning documents.

14 Major Policy Reforms

For example:

14.1 Degazettement of Forestry Reserves

14.2 Changes to Zoning Plans

14.3 Proposed introduction of exotic species Source: EIA Guidelines, 1997

Mandatory List of Projects that require EIA Study (List A) (cont.)

50 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 8.3.3-2 1 Agriculture and aquaculture schemes Drainage and irrigation projects 2 Forestry and logging schemes 3

4 Industrial projects

5 Infrastructure projects

6 Land development projects Mining projects 7

8 Energy generation, transmission and use projects Tourism projects 9

10 Waste treatment and disposal projects 11 Water supply projects Health and population projects 12

13 Projects in areas protected under legislation Projects in areas containing rare or endangered flora and fauna 14

15 Projects in areas containing unique or outstanding scenery Projects in tribal habitats 16

Source: EIA Guidelines, 1997

List of Projects that may require EIA Study (List B)

CTI Engineering International Co., Ltd. 51 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 8.3.3-3

Devel. Sect Status Name of Project [River Implementing Group Category Scoping SN Code Type WRA District Outline/Scope of the Project Group1 Protected Area or G/P Name] Agency 2 for EIA for IEE N/E Neno, Purpose = E, Expansion Capacity = Proposed Forest 1 D P DP1 E Nkula upgrade [Shire] DoE 1 1 1 1 Brantyre 6MW Reserve

Purpose = E, Total Head = 40m, Neno, Proposed Forest 2 D P DP2 E Tedzani IV [Shire] DoE 1 Installed Capacity = 18MW, Firm Flow 1 1 1 Brantyre Reserve = N/A, Max. Flow = 70m3/s

Purpose = E, Total Head = 60m, Majete Game 3 D P DP3 E Kapichira III [Shire] DoE 1 Chikwawa Installed Capacity = 35MW, Firm Flow 1 1 1 Reserve = N/A, Max. Flow = 82m3/s Purpose = E, Dam Height = 24m, Total Neno, Head = 75m, Installed Capacity = Proposed Forest 4 D P DP4 N Kholombidzo [Shire] DoE 1 1 1 1 Brantyre 170MW, Firm Flow = 183m3/s, Max. Reserve Flow = 285m3/s Purpose = E, Dam height = 64m, Total Neno, Head = 62m, Installed Capacity = Proposed Forest 5 D P DP5 N Mpatamanga [Shire] DoE 1 1 1 1 Brantyre 228MW, Firm Flow = 136~170, Max. Reserve Flow = 418m3/s Purpose = E, Dam Height = 76m, Total Kasungu, Head = 143m, Installed Capacity = 6 D P DP6 N Mbongozi [Bua] DoE 5 1 1 1 Ntchisi 55MW, Firm Flow = 16.3m3/s, Max. Flow = 50m3/s Purpose = E, Dam Height = 115m, Total Kasungu, Head = 170m, Installed Capacity = Nkhotakota 7 D P DP7 N Malenga [Bua] DoE 5 1 1 1 Nkhotakota 62MW, Firm Flow = 16.6m3/s, Max. Game Reserve Flow = 50m3/s Purpose = E, Dam Height = 110m, Total Head = 122m, Installed Capacity = Nkhotakota 8 D P DP8 N Chasombo [Bua] DoE 5 Nkhotakota 1 1 1 55MW, Firm Flow = 17m3/s, Max. Game Reserve Flow = 60m3/s Purpose = E, Dam Height = 37m, Total Head = 130m, Installed Capacity = Nkhotakota 9 D P DP9 N Chizuma [Bua] DoE 5 Nkhotakota 1 1 1 50MW, Firm Flow = 18.5m3/s, Max. Game Reserve Flow = 60m3/s Purpose = E, Dam Height = 39m, Total Rumphi [South Rumphi, Head = 56m, Installed Capacity = 10 D P DP10 N DoE 7 1 1 1 Rukuru] Mzimba 10MW, Firm Flow = N/A, Max. Flow = 30m3/s Purpose = E, Dam Height = 48m, Total Henga Valley [South Head = 106m, Installed Capacity = 11 D P DP11 N DoE 7 Rumphi 1 1 1 Rukuru] 28MW, Firm Flow = N/A, Max. Flow = 40m3/s Chombe Purpose = E, Dam Height = 24m, Total Lower Fufu [South Proposed Forest Head = 346m, Installed Capacity = 12 D P DP12 N Rukuru, North DoE 7 Rumphi 1 Reserve (Intake 1 1 100MW, Firm Flow = N/A, Max. Flow Rumphi] in North Rumphi = 40m3/s River) Purpose = E, Dam Height = 101m, Total Ditto (Alternetive-1) DP12 Head = 441m, Installed Capacity = High Fufu [South DoE 7 Rumphi Alt-1 174MW, Firm Flow = N/A, Max. Flow Rukuru] = 50m3/s Purpose = E, Dam Height = 44m, Total Ditto (Alternetive-2) DP12 Head = 364m, Installed Capacity = Low Fufu [South DoE 7 Rumphi Alt-2 144MW, Firm Flow = N/A, Max. Flow Rukuru] = 50m3/s Purpose = E, Dam Height = 21m, Total Head = 76m, Installed Capacity = 13 D P DP13 N Zoa Falls [Ruo] DoE 14 Thyolo 1 1 1 37MW, Firm Flow = N/A, Max. Flow = 70m3/s

Purpose = E, Dam Height = 97m, Total Dwambazi Nkhata Chimgonda Head = 385m, Installed Capacity = Forest Reserve, 14 D P DP14 N DoE 16 Bay, 1 1 1 [Dwambazi] 50MW, Firm Flow = N/A, Max. Flow = South Viphya Nkhotakota 20m3/s Forest Reserve

Multi-Purpose = E & I & FC, Dam Upper Songwe Height = 70m, Total Head = 75m, 15 D P DP15 N DoE 9 Chitipa 1 1 1 (Bupigu) [Songwe] Installed Capacity = 32MW, Firm Flow = N/A, Max. Flow = 50m3/s

Multi-Purpose = E & I & FC, Dam Middle Songwe Height = 112m, Total Head = 315m, 16 D P DP16 N DoE 9 Chitipa 1 1 1 (Sofwe) [Songwe] Installed Capacity = 159MW, Firm Flow = N/A, Max. Flow = 60m3/s

Multi-Purpose = E & I & FC, Dam Lower Songwe Height = 140m, Total Head = 253m, 17 D P DP17 N DoE 9 Karonga 1 1 1 (Manolo) [Songwe] Installed Capacity = 148MW, Firm Flow = N/A, Max. Flow = 70m3/s

Purpose =WS, Dam Height from 20m to 25m, Targeted Yield from 4.5million to Raising of Kamuzu1 18 D G DG1 E LWB 4 Lilongwe 18million m3/year, Equivalent 1 1 1 [Lilongwe] Population to additional quantity of water intake = 200,099.

Multi-Purpose = WS+I (compensation)+FR, Dam Height = 32m, Effective Storage Capacity = 294 M m3, Targeted Yield = 218,300 (WS: Diamphwe Lower 149200 + I: 68800 + FR: 300) m3/d, 19 D G DG2 N LWB 4 Lilongwe 1 1 1 [Diamphwe] Equivalent Population to quantity of water intake for WS= 1,000,495, Irrigation Area = 1000ha (Compensation: 177 + Development: 823), Fish farm = 40000m3.

Purpose = WS, Dam Height = 25m, Effective Storage Capacity = 21 M m3, Lambilambi 20 D P DP18 N NRWB 16 Nkhata Bay Targeted Yield = 45,000 m3/d, 1 1 1 [Lambilambi] Equivalent Population to quantity of water intake = 215,811.

Multi-Purpose = WS + I(compensation), Dam Height = 24m, Effective Storage Capacity = 15 M m3, Targeted Yield = 21 D P DP19 N Lichelemu [Lichelemu] NRWB 16 Nkhata Bay 29,600 m3/d, Equivalent Population to 1 1 1 quantity of water intake = 141,955, Irrigation Area = 800ha + Future expansion plan

11 10 21 G: on-going project (include detail design or construction); P: planning phase (include F/S) Development Type: N: New, E: Expansion Purpose : E: Energy generation, I: Irrigation, FC: Flood Control, WS: Water Supply, FR: Fisheries Group of projects for For IEE Study: Group 1: Hydropower dams withTH more than 20 m or firm flow=100 m3/sec; or Multipurpose dam (area >100 ha; high=4.5 m or higher; TH>20 or firm flow=100 m3/sec) or Construction or expansion of dams with high=4.5 m or higher for WS Group 2: Hydropower or multipurpose dams located in protected area Summary Summary Categorization Projects for EIA/IEE Dams G P Total Category 1 21 21 Hydropower dams 0 14 14 Category 2 0 0 Multipurpose dams (E+I+FC) 0 3 3 Cagegory 3 0 Multipurpose dams (WS+I) 1 1 2 Total 21 21 Dam for WS only 1 1 2 Total 2 19 21 List of Dams Projects in the Water Resources Master Plan

52 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 8.3.3-4

Category Scoping Group Group Group Group Rehabilitation S/N Devel. Code Name of Project Implementing District Water Develop't Served Outline / Scope of the Project(s) for EIA for IEE Water Type Sector Status Type Agency Source Supply Population 1 2 3 4 G/P N/R (S/G) (m3/day) R1 R2 Urban Water Supply for four Cities (Lilongwe, Blantyre, Mzuzu and Zomba) Develop new groundwater borehole (+10,000 G N WSU1 LWB Lilongwe G 10,000 66,700 Develop new groundwater borehole (+10,000 m3/d) 1 1 1 1 WS m3/d) Extension TWII (purification plant: +30,000 G N WSU2 LWB Lilongwe S 30,000 200,099 Extension TWII (purification plant: +30,000 m3/d) 1 1 1 2 WS m3/d) Raising of Kamzu dam 1 and associated Raising of Kamzu dam 1 and associated rehabilitation G R WSU3 LWB Lilongwe S 30,000 200,099 1 1 1 3 WS rehabilitation works (+30,000 m3/d) works (+30,000 m3/d) Extension TWII(2nd) (purification plant: Extension TWII(2nd) (purification plant: +30,000 P N WSU4 LWB Lilongwe S 30,000 200,099 1 1 1 4 WS +30,000 m3/d) and Technical Assistance m3/d) and Technical Assistance 5 WS P R WSU5 Network improvement LWB Lilongwe - 913,785 Network improvement 1 1 1 6 WS P N WSU6 Full implementation GIS/Hydraulic Model LWB Lilongwe - - Full implementation GIS/Hydraulic Model 3 0 Phase 1, New water source Diamphwe dam Phase 1, New water source Diamphwe dam including P N WSU7 including transports system (+75,000 m3/d, LWB Lilongwe S 75,000 500,247 1 1 1 transports system (+75,000 m3/d, TW+66000 m3/d) 7 WS TW+66000 m3/d) 8 WS P N WSU8 Implementation telemetry system LWB Lilongwe - - Implementation telemetry system 1 2 1 9 WS P R WSU9 Rehabilitation of TWII LWB Lilongwe - - Rehabilitation of TWII 1 2 1 10 WS P N WSU10 Network expansion LWB Lilongwe - 1,000,495 Network expansion 1 1 1 11 WS P N WSU11 Review of water demand study LWB Lilongwe - - Review of water demand study 3 0 Phase 2, New water source Diamphwe dam Phase 2, New water source Diamphwe dam including P N WSU12 including transports system (Dam+75,000 m3/d, LWB Lilongwe S 75,000 500,247 transports system (Dam+75,000 m3/d, TW+66000 1 1 1 12 WS TW+66000 m3/d) m3/d) 13 WS P WSU13 Network improvement BWB Blantyre - 796,112 Network improvement 1 1 1 14 WS P WSU14 additional NRW reduction programme BWB Blantyre - - additional NRW reduction programme 3 0 15 WS P WSU15 Metering and Water leakage control BWB Blantyre - - Metering and Water leakage control 3 0 Phase 1, New water source from Shire River Phase 1, New water source from Shire River including P WSU16 BWB Blantyre S 39,000 287,485 1 1 1 16 WS including transports system (+39,000 m3/d) transports system (+39,000 m3/d) 17 WS P WSU17 Network expansion BWB Blantyre - 574,970 Network expansion 1 1 1 Poverty program (Kiosk and Toilet P WSU18 BWB Blantyre G - - Poverty program (Kiosk and Toilet development) 1 2 1 18 WS development) Phase 2, New water source from Shire River Phase 2, New water source from Shire River including P WSU19 BWB Blantyre S 39,000 287,485 1 1 1 19 WS including transports system (+39,000 m3/d) transports system (+39,000 m3/d) 20 WS P WSU20 Review of water demand study BWB Blantyre - - Review of water demand study 3 0 Phase 1, New water source Lambilambi dam Phase 1, New water source Lambilambi dam including P WSU21 NRWB Mzuzu S 45,000 215,811 1 1 1 21 WS including transports system (+45,000 m3/d) transports system (+45,000 m3/d) 22 WS P WSU22 Network improvement NRWB Mzuzu - 77,212 Network improvement 1 2 1 Re-examination of water demand and raw water Re-examination of water demand and raw water source P WSU23 NRWB Mzuzu - - 3 0 23 WS source study study Phase2, New water source Lichelemu dam Phase2, New water source Lichelemu dam inclusing P WSU24 NRWB Mzuzu 29,600 141,955 1 1 1 24 WS inclusing transports system (+29,600 m3/d) transports system (+29,600 m3/d) 25 WS P WSU25 Network expansion NRWB Mzuzu - 357,766 Network expansion 1 1 1 26 WS P WSU26 NRW reduction programme NRWB Mzuzu - - NRW reduction programme 3 0 27 WS G WSU27 Expansion existing TW (18,200 to 30,000 m3/d) SRWB Zomba S 11,800 61,792 Expansion existing TW (18,200 to 30,000 m3/d) 1 1 1 28 WS P WSU28 Network improvement SRWB Zomba - 157,098 Network improvement 1 1 1 Feasibility study of water demand and new raw Feasibility study of water demand and new raw water P WSU29 SRWB Zomba - - 1 1 1 29 WS water source source Raising of Mulunguzi dam and associated Raising of Mulunguzi dam and associated P WSU30 SRWB Zomba S 6,100 31,943 1 1 1 30 WS rehabilitation works (+6,100 m3/d) rehabilitation works (+6,100 m3/d) 31 WS P WSU31 Network expansion SRWB Zomba - 31,943 Network expansion 1 1 1 Capacity Building for Water demand LWB, BWB, P WSU32 4 cities - - Capacity Building for Water demand management 3 0 32 WS management NRWB, SRWB Programme for Water Saving (improvement of Programme for Water Saving (improvement of LWB, BWB, P WSU33 awareness, usage of water saving device, 4 cities - - awareness, usage of water saving device, regulation 3 0 NRWB, SRWB 33 WS regulation change, etc.) change, etc.) Improvement Programme of Water, Sanitation LWB, BWB, Improvement Programme of Water, Sanitation and P WSU34 4 cities - - 3 0 34 WS and Hygiene awareness NRWB, SRWB Hygiene awareness LWB, BWB, P WSU35 4 cities - - Maintenance Programme of Waterworks Facility 1 2 1 35 WS Maintenance Programme of Waterworks Facility NRWB, SRWB Water Supply for Towns Mzuzu, etc. 9 G WST1 Supply of Water meter & pipes NRWB Supply of Water meter & pipes for 9 distircts 3 0 36 WS districts Upgrading & Expansion for Mzimba Water G WST2 NRWB Mzimba 40000 New water intake & pipelinme 10km 1 1 1 37 WS Supply Scheme(WSS) 38 WS G WST3 Supply & Diesel Generator for Chitipa NRWB Chitipa G Supply & Diesel Generator for Borehole 3 0 39 WS G WST4 Construction/Expansion of Nkhotakota WSS NRWB Nkhotakata 1 2 1 40 WS G WST5 Expansion of Salima WSS CRWB Salima S 50000 New Intake, Treatment Plant, Transmission Pipe 1 1 1 41 WS G R WST6 Rehabilitation and Expansion of Kasungu WSS CRWB Kasungu 12700 Distibution Pipe, Water Tank and Water Point 1 1 1 42 WS G WST7 Upgrading of Mangochi WSS SRWB Mangochi 17634 1 2 1 43 WS G WST8 Construction of Balala WSS SRWB Balaka 22110 1 1 1 44 WS G WST9 Construction of Nsanje WSS SRWB Nsanje G 22000 Drilling & Transmission pipe, water Point 1 1 1 Project for the Rehabilitation and Expansion of Rehabilitation/Expantion of Water Supply Facilities P R WST10 Water Supply schemes in Local City Centers of 3 RWBs All S/G 1 2 1 (Schemes on short term target) 45 WS Malawi Feasibility Study for Water Supply F/S on Water Demand Projection, Analysis of Water P R WST11 3 RWBs All S/G 1 2 1 46 WS Improvement in Local City Centers Source(Surface & Groundwater), Planning of Facilities Water Supply for Market Center 47 WS G WSM1 Songwe WSS NRWB G 4000 Borehole & Storage Tank 1 1 1 48 WS G WSM2 Rehabilitation and Expansion of Mponela WSS CRWB G 40000 Rehabilitation, Expansion of Pipeline & Water Tank 1 2 1 49 WS G WSM3 Kochilira-Kamwendo WSS CRWB G ? 1 2 1 50 WS G WSM4 Mitundo & Linthipe CRWB G ? Borehole & Storage Tank 1 2 1 51 WS G WSM5 Construction of Lirangwe MC WSS SRWB G 7620 1 1 1 Construction of WSS for MCs (Chididi, Ntwe, G WSM6 SRWB G 60000 1 2 1 52 WS Tengani, Jali, Mayaka, Chimba, Maldeco,) 53 WS G WSM7 Construction of Neno WSS SRWB Neno S 2000 Intake 1 2 1 54 WS G WSM8 Rehabilitation/Expantion Project for Misue folo SRWB G 8000 Borehole & Storage Tank 1 1 1 Project for the improvement of Water Supply Basic Design & Implementation of Water Supply P WSM9 3 RWBs All G 1 2 1 55 WS schemes in the Market Centers of Malawi Facilities (Schemes of short term target) F/S on Water Demand Projection, Analysis of Water Feasibility Study for Water Supply P WSM10 3 RWBs All G Source(Surface & Groundwater), Planning of Facilities 1 2 1 Improvement in the Market Centers (schemes of middle & long term plan) 56 WS Water Supply to Community by Gravity Fed Scheme Rehabilitation/Expantion Project for Chikuwaka Rehabilitation & Expansion of GFS, Intake, G R WSGF1 MoAIWD S 11040 1 1 1 57 WS East Bank Transmission Pipe, Water Point Rehabilitation & Expansion of GFS, Intake, G R WSGF2 Rehabilitation/Expantion Project for Ushisya MoAIWD S 18360 1 1 1 58 WS Transmission Pipe, Water Point Rehabilitation/Expantion Project for Nkhamanga- Rehabilitation & Expansion of GFS, Intake, G R WSGF3 MoAIWD S 34200 1 1 1 59 WS Katizi Transmission Pipe, Water Point Rehabilitation & Expansion of GFS, Intake, G R WSGF4 Rehabilitation/Expantion Project for Ntonda MoAIWD S 7680 1 1 1 60 WS Transmission Pipe, Water Point Rehabilitation & Expansion of GFS, Intake, G R WSGF5 Rehabilitation/Expantion Project for Chapanga MoAIWD S 49320 1 1 1 61 WS Transmission Pipe, Water Point Rehabilitation & Expansion of GFS, Intake, Rehabilitation/Expantion Project for the Gravity- P R WSGF6 MoAIWD S Transmission Pipe, Water Point Capacity 1 2 1 fed Piped Water Supply in Rural Area 62 WS Development of WUA Water Supply to Community by Borehole District G WASH All G 940,000 Water and Sanitation 1 2 1 63 WS WSB1 Government Chitapa, Groundwater Development & management District G N/R karonga etc. G 100000 New Borehole and Rehabilitation 1 2 1 Program Government 64 WS WSB2 (27 Districts) Groundwater Development & management District G N/R All G Rehabilitation and New Construction 1 2 1 65 WS WSB3 Program Government 15 3 5 9 13 8 53 G: on-going project (include detail design or construction); P: planning phase (include F/S); N: new project; R: rehabilitation project Group of projects for For IEE Study: Group 1: Water treament plant with capacity to serve more than 10,000 people; Group 2: Water treatment plant with capacity to serve less than 10,000 people; Group 3: groundwater utilization > than 15 l/sec (1296m3/d) Group 4: groundwater utilization < than 15 l/sec (1296m3/d) Group R1: Rehabilitation, improvement or maintenance of water system (big scale activities including important civil works); Group R2: Rehabilitation, improvement or maintenance of water system (small scale activities including minor civil works)

Summary Projects Categorization for EIA/IEE Category 1 33 33 Category 2 20 20 Cagegory 3 12 - Total MP 65 Total 53 Water Supply Projects in the Water Resources Master Plan

CTI Engineering International Co., Ltd. 53 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex 8.3.3-5

Status Implementing Protected Area Category Scoping for SN Sector Code Name of Project WRA District Outline/Scope of the Project Group 1 Group 2 Group 3 G/P Agency Name for EIA IEE

Nothla/Ilora-Ngosi 1 I P I1 OPC 17 Karonga 1,200 ha, Water source: Lake Malawi 1 1 1 Irrig. Site

2 I P I2 Chikwawa OPC Salima 530 ha, Water source: Lake Malawi 1 1 1

3 I P I3 Malombe OPC Mangochi 500 ha, Water source: Lake Malombe 1 1 1 240 ha, Water source: Livunzu River, 4 I P I4 Chilengo OPC Chikhwawa 1 1 1 tributary of Shire River

5 I P I5 Mphenga Corled DOI 17 Karonga 480 ha, Water source: Wovwe River 1 1 1

6 I P I6 Timoti Irrig. Scheme DOI 17 Karonga 75 ha, Water source:Tinofi River 1 1 1

7 I P I7 Ukanga Irrig. Site DOI 17 Karonga 30 ha, Water source: Nyungwe River 1 1 1

403 ha, Water source: Limphasa River, 8 I P I8 Limphasa (Gravity) DOI 16 Mzuzu 1 1 1 Major Crop: rice Malawi Irrigation 9 I G I9 Development Support DOI - - 900 ha, to be implemented up to 2015 1 1 1 Programme Small Farms Irrigation 800 ha, to be implemented up to 2015, 10 I G I10 DOI - - 1 1 1 Project Major Crop: rice & others Agriculture 1600 ha, to be implemented up to 2015, 11 I G I11 Infrastructure Support DOI - - 1 1 1 Major Crop: Horticulture & maize Project Small holder Irrigation 12 I G I12 & Value Addition DOI - - 2050 ha, to be implemented up to 2018 1 1 1 Project

Shire Valley Irrigation 11,000 ha, to be implemented up to 2020, 13 I G I13 DOI - - 1 1 1 Project Major Crop: Sugarcane, Rice, Cotton

Shire River Basin 1,000 ha, to be implemented up to 2017, 14 I G I14 DOI - - 1 1 1 Management Project Major Crop: Sugarcane, Rice, Cotton

Songwe River Basin 1,000 ha, to be implemented up to 2020 & 15 I P I15 Development DOI - - 1,750 ha, to be implemented up to 2035, 1 1 1 Programme Major Crop: Sugarcane, Rice, Cotton

Development of 16 I P I16 Medium Scale Irrig. DOI - - 200 ha, to be implemented up to 2014 1 1 1 Project

17 I P I17 Lweya (pumping) DOI - Mzuzu 800 ha 1 1 1

17 0 0 17 G: on-going project (include detail design or construction); P: planning phase (include F/S); WRA: water resource area Group of projects for For IEE Study: Group 1: Irrigation shemes with area more than 10 has; Group 2: Irrigation shemes with area less than 10 has; Group 3: Irrigation shemes located in Protected Area or vicinity Summary Categorization Projects for EIA/IEE Category 1 17 17 Category 2 0 0 Cagegory 3 0 0 Total 17 17

List of Irrigation Projects in the Water Resources Master Plan

54 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Annex 8.3.3-6

Status Implementing Category Scoping SN Sector Type Code Name of Project WRA Outline/Scope of the Project G/P Agency for EIA for IEE Catchment area conservation and Catchment area conservation and rehabilitation (currently at study stage 1 WRM P WM WM1 LWB 4 3 0 rehabilitation where components will be determined)

The functions of three (3) existing water laboratories including the Central, 2 WRM P WQ WQ1 Strengthening of Water Laboratory MoAIWD - North and South labs will be strengthened in upgrading facilities, staffing 3 0 and capacity building of lab staff in this project

Construction of Groundwater Monitoring Approx. sixty (60) monitoring wells for monitoring groundwater fluctuation 3 WRM P GM GM1 MoAIWD All 3 0 Wells are newly constructed in all WRAs (for Research) G: on-going project (include detail design or construction); P: planning phase (include F/S); WRA: water resource area; HM: hydrological monitoring; WQ: Water Quality 0 GM: Groundwater Monitoring; WM: Watershed Management Summary Categorization Projects for EIA/IEE Category 1 0 0 Category 2 0 0 Cagegory 3 3 Total 3 0

List of Water Resources Management in the Water Resources Master Plan

CTI Engineering International Co., Ltd. 55 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Annex: Stakeholders Meetings and Workshops

(1) Schedule and Program

(a) Schedule and Program In the period from September 8 to 12, 2014, stakeholder meetings and workshops were held in Mzuzu, Zomba and Lilongwe for the North Region, South Region and Central Region following the program summarizedbelow. Table 1 Stakeholder Meeting Program for Presentation of Draft Master Plan in the Frame of IEE Date Location Program September 8, Mzuzu, Ilala - Introduction and Overall Schedule, Mr. Peaches, JICA Team Counterpart, 2014 Crest MAIWR Lodge September 10, Zomba, - Concept and Strategies of Master Plan, Mr. Morishita, JICA Team Leader 2014 Hotel - Water Supply Sector (Proposed plans), Mr. Morishita, JICA Team Leader Mason - Irrigation Sector (Proposed plan), Mr. Yamakawa, JICA Team Member gola - Initial Environmental Examination, Mr. Jara, JICA Team Member September 12, Lilongwe, Forest Reserves. Case Studies, Mr. Mchira, Local Consultant 2014 Hotel Pacifi c The lists of participants are given in Table 2 for Mzuzu workshop, Table 3 for Zomba workshop and Table 4 for Lilongwe workshop.

(b) Schedule and Program

(i) Introduction and Overall Schedule To promote the participation of the counterpart personnel, one representative from the MAIWR explained the background of the Project and the general schedule of the Study. (ii) Concept and Strategies of the M/P Outlines of the Main concepts and strategies for the formulation of the M/P were given. (iii) Water Supply Sector (Proposed Plans) The following points summarizes the presentation:  A diagrammatic presentation the water balance condition in Malawi revealed that Lake Malawi is the big run-off storage in the country. It was learned that 23% of annual rainfall in Malawi becomes run-off. The presentator further explained the reason for uneven water condition throughout the year by pointing out that rainfall concentrates only for 5 months from November to April and rain-fed agriculture is limited to these five months. He also said that runoff follows the rainfall pattern with some time lag.  It was mentioned that irrigation is the main water user. The country faces an uneven surface water condition over the territory. The results of analysis of all 17 water resource areas are as follows: WRAs 7, 8, 14 and 16 have abundant water greater than irrigation demand; WRAs 1, 4 and 5 have water approximately equal to irrigation demand; WRAs 2, 3, 6, 9, 10 and 11 have water supply potential less than irrigation demand. Water resource areas with abundant

56 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

water or meeting irrigation demand were given priority in the short term and low cost developments such as gravity-fed irrigation with farm pond were proposed.  As proposed for urban cities, the water supply systems for the four Major Cities; namely, Lilongwe, Blantyre, Mzuzu and Zomba, were proposed to be developed based on the 20-year drought.  As for proposed projects for towns and rural areas, the following factors were considered: for Water Supply for Towns: 10-year drought; for Water Supply for Rural Areas: 5-year drought; and for Irrigation Water Supply: 5-year drought. Hydropower generation had no-design drought.  On hydropower development, the JICA Study Team stated that the project followed the Malawian policies on the sector. All existing and potential hydropower projects were outlined in the presentation.  On rural water supply, a number of challenges were presented. These include: existing condition of Market Center which currently is not known; existing condition of gravity-fed rural water schemes are not monitored; aged facilities have been damaged and not maintained by existing village organization; water source conditions have been changed, and there is possibility that water quality is not adequate. It was also revealed that there exist villages which do not have water supply schemes; around 2 million people do not have improved water sources. (iv) Irrigation Sector (Proposed Plans) The following points summarizes the presentation:  The presentator said that agricultural production comprises two main sectors: the small-scale farming sector (subsistence farming of food crops and small holder cash cropping) and the commercial sector dominated by large sugar, tobacco, tea and coffee estates. He also indicated that smallholder cropping patterns are dominated by maize mostly grown under rain-fed conditions. Other important smallholder subsistence crops include rice, groundnuts and potatoes. Tobacco, cotton and sugar are grown as cash crops on a much smaller scale than the estates.  Also presented were the existing/on-going major iIrrigation projects being implemented by the Department of Irrigation, together with Green-Belt Initiatives. He also presented the major irrigation projects to be implemented by the Department of Irrigation.  Two types of countermeasures for irrigation development were presented, i.e., non-structural measures and structural measures.  On Non-structural Measures, it is proven that water is still available at early stage of dry season. Therefore, the possibility of crop diversification, such as shift of crop cultivation and application of early cropping, was studied. He also suggested the option of water saving during dry season which under the strict water management, the rate of saving is taken to be 25%.  On Structural Measures the presentator recommended the construction of weirs.  Among the issues on Agriculture/Irrigation presented are the establishment of long term development plan; arrangement of agriculture/irrigation database including estates; the role of irrigation sector in the food security plan; Rehabilitation of existing irrigation facilities and development of irrigation reservoir/ponds; Multipurpose water development and improvement of seasonal temporary weir. (v) Initial Environmental Examination The following points summarizes the presentation: CTI Engineering International Co., Ltd. 57 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

 It was made clear for participants that the objective of IEE is to examine the current condition of the environment and how the proposed projects in the master plan may influence them. If negative impacts are forecasted by the project’s implementation, then, necessary mitigation measures will be examined.  The surface water quality was analysed in rainy and dry season and according to the results, it is not recommended for direct drinking due to the presence of faecal coliform. The lack of standards for river assessment in Malawi was also pointed out by the JICA Project Team.  The quality of groundwater from monitoring wells was also analyzed and as a result they appeared polluted with faecal coliform attributable to the introduction of wastewater from the surface into the wells due to structural failure in the wells.  It was also indicated that in rainy season, most rivers become turbid because of land erosion caused by expansion of deforestation or cultivation.  It was concluded that many of the sewage treatment plants need maintenance to improve their performance.  On domestic solid waste, the finding indicated that Lilongwe had 33% of generated solid waste collected and disposed in open dumping site which contaminates Chipeta and Chanchere streams that discharge into Nigiri River and finally discharge into Lilongwe River. It was also presented that Mzuzu had 30% of generated solid waste collected and disposed in open dumping site, the rest is disposed anywhere. A study for the construction of sanitary landfill site was prepared but rejected due to its proximity to the school. A further study in Karonga revealed that 40% of generated solid waste is disposed in open dumping site.  On agricultural field-livestock, the presenter stressed that pollution from these sources might be significant since the country has vast lands for agriculture and livestock activities. Therefore, they could be major issues in water quality management. Nevertheless, there is no information or study and measure for controlling pollution from these sources.  In terms of forest management, it was pointed out that for the case of Central Region, the conservation of the Dzalanyama Forest Reserve where Lilongwe River originates including other water courses is of very fundamental importance to assure the water source for Lilongwe City that relies on Lilongwe River. However, it was learned that deforestation is made by surrounding communities for the production of charcoal (inside the forest) and for firewood which is sold in the market places.  As for the North Region, presented was the current condition of the Karonga South Escarpment Forest Reserve which has relation to Mkungwe, North Rukuru, Lwasha, and Chilambilo river basins. Presently, there are no direct initiatives to protect these catchment areas. The loss of forest coverage is estimated in 30% of the total forest reserve by illegal wood trading and charcoal burning.  As for the South Region, also presented was a case study on the current condition of Michuru Forest Reserve which has relation to the Mulunguzi, Namanyazi and Chileka river basins. This forest reserve also faced with problems of deforestation.  It was also presented that the projects proposed in the master plan will benefit two main sectors; namely, water supply and irrigation. As for water supply, high positive impacts are expected through the project implementation on the current health level of the population. As for irrigation, the socio-economic status of the population will be highly upgraded through the increase of agricultural production and employment opportunities. In addition, food security for the population will be improved. Some adverse impacts on the environment are also expected from the project implementation, which shall be minimized through adequate mitigation measures

58 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

(2) Comments, Questions & Answers Session The following boxes reflect the essence of participation of stakeholders coming from different institutions belonging to the government, cities, towns and districts, as well as Water User Associations and others that are all related to water resources development and management: Item Box 1: Water Supply Sector No. Comments, Questions & Answers: One participant wanted to know the differene between the 1986 master plan and the proposed master plan. He further wanted to know if there are gaps in the 1986 master plan and how these gaps will be 1 addressed in the proposed master plan. The answer to this question is that the main document has a section that compares the 1986 M/P with the proposed M/P. One participant wanted to know why the target year is up to 2035 and not 2050. He asked this question bearing in mind that the shorter target year is more costly than the longer target year because the shorter will only take 20 years to start thinking of another master plan. The answer to this question is that the 2 2035 target year is optimal since it takes into consideration the country’s development plans which most of them have a 10-year period. To extend the master plan up to 2050 as suggested will leave out some social and economic factors which are very dynamic in the global world. The 20-year proposed period will take into consideration such changes and other uncertainties. One participant wanted to know if the recurrent period for drought is internationally accepted since it seems to be very short, i.e., 5 years, and wanted to know the reason why the 5-year drought is used. The answer to this question is that the 5-year drought on irrigation was arrived at after consulting the 3 Department of Irrigation which gave such a recommendation. However, it is still on the safe side as most countries including Japan use a 2-year design drought. Similarly the 20-year drought used in city water supply is again on the safer side as most countries in South East Asia use a 10-year design drought. One participant observed that the presentation focused much on water demand management and not on water supply management. It was therefore proposed by the participant that there is a need to model even the water supply management taking into consideration issues of climate change. On this 4 observation and proposal, the JICA Project Team indicated that this was just the approach where firstly the demand was calculated by estimating population increase. The supply side was also considered although it had some budgetary constraint on the cost. In other ways the focus considered the combination of both demand and supply management. It was commented that there is a need to take advantage of more water by means of rainwater 5 harvesting. One participant expressed that some plans set in the 1986 master plan are currently under implementation. The 1986 master plan also had some challenges. What criteria are going to be used in 6 order to avoid such challenges repeated in the proposed master plan? The answer to this question was that these challenges will be avoided in the proposed master plan One participant wondered whether the presented draft is the proposed master plan or the review of the 1986 master plan. The JICA Project Team replied that it is the proposed master plan because there are 7 new things in place. For instance the population, economy, agriculture, land use and the industry sector are quite different from the 1986 master plan. One participant was worried about the -24 water loss to Mozambique. He stressed that this should be 8 taken as a serious issue and the report should have measures to reduce this. Failing to solve this will lead to the retardation of social economic development of the country. One participant was quick to say that in the proper management of water resources, there is a need to dam all rivers in Malawi even if it means having five dams per river. This according to him was the only solution to conserve water within the country. To this, the JICA Team replied that the concept is 9 good; however; too much damming as proposed may have adverse effect even on Lake Malawi by disturbing the water balance. If the lake does not have enough water, pumping may be required, which is costly. Lake Malawi is also the source of water for Shire River which is the hub for hydropower in Malawi. One participant wanted to be enlightened on the recommendation for water metering system. The answer to this was that the Water Resources Act of 2013 proposes the establishment of the National 10 Water Resources Authority which will regulate the use of water in the country. Currently, the Water Resources Board is in the process of water licensing campaign in which all water users are supposed to register and be given the water-right by means of license.

CTI Engineering International Co., Ltd. 59 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Item Box 1: Water Supply Sector (Continuation) No. Comments, Questions & Answers: One participant wanted to know why hydropower has no design drought. She gave an example of Lake Malawi which dried up in 1935. She then commented that a design drought for hydropower need to be considered for fear of such circumstances that may lead to the drying of Lake Malawi. The JICA Team 11 replied that that the decision was made based on stream flow and plant factor. It was assumed that the flow is very good since it flows from Lake Malawi. However, this will be taken into consideration to cater for such unforeseen drought. On rural water supply, a participant had observed that the emphasis was to use groundwater source by 12 means of boreholes. The participant then suggested that the proposed plans should avoid this at all cost and shift to the use of gravity-fed systems. On energy, one participant wanted to know why coal fired plants were suggested in the long term. He asked this bearing in mind that coal fired plant is an environment polluter. As the answer to this question, the JICA Team informed that this information was sourced from the Department of Energy, 13 and it is a plan of this Department. However, a recommendation will be given on the issue of pollution. As for hydropower, a hydrological analysis shall be carried out to determine the effects of hydropower in all the proposed streams. One participant wanted to know the extent to which other plans are being incorporated. He gave an example of 10-year Water and Sanitation Plan. The answer to this question was that the JICA Team had 14 consulted several documents by the government, i.e., the Malawi Growth and Development Strategy, Project documents for the National Water Development Programme 1 and 2, etc. One participant wanted to know the viability of the master plan. He asked this because other options 15 like large multipurpose dams are not supported by JICA. The answer to this question is that such decisions are made at higher levels, i.e., donors. One participant commented that that although large dam development is costly, it can be cheap in the long run especially when it is developed for multipurpose usage other than one purpose. In addition, he 16 commented that most of the time hydropower is regarded as non-consumptive user; however, if it denies other uses such as irrigation, it will then be regarded as consumptive user. One participant wanted to find out the criteria used on options for design drought. In response, it was informed that the design drought was arrived at after consulting the Department of Irrigation. It was 17 found out however that the department does not have a design drought which resulted in the department’s recommendation of the 5-year drought.

60 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Item Box 2: Irrigation Sector No. Comments, Questions & Answers: One participant wanted to find out if water efficiency was their main focus when they modelled irrigation. He asked this bearing in mind that most documents on irrigation nowadays focus much on water use efficiency giving an example of Hajira, et al, who produced a document on Irrigation water efficiency. The JICA Team replied that that there are three kinds of irrigation 1 techniques; namely, drip with 80% efficiency; sprinkler with 75% efficiency, and furrow with 48% efficiency. At present, the furrow technique is recommended because it is cheaper than the drip or sprinkler. The others may be recommended in future plans when the country has increased economic efficiency. On options for irrigation, it was observed that the presenter highlighted more on non-structural option than on structural option and one participant wanted to know why this was the case. The JICA team replied that the use of structural measures only will be costly to the country. The 2 non-structural measures were proposed in order to have some options without necessarily incurring cost. However, both structural and non-structural options are considered. For example, weirs and dams have been proposed as structural measures. This have been more highlighted in the main document. It was recommended by a participant that there is a need for strong collaboration among players 3 in order to end the completion and unharmonised policies. He gave an example of the irrigation and the water sector that they need to work in closer collaboration. On plans for irrigation, one participant wondered why the Shire River and Lake Malawi are to be used in the long run and not now. It was answered that Lake Malawi is located on higher 4 elevation and this will need pumping which is costly at present. It may be recommended to be used in future when the GDP of the country has increased. At the moment it was proposed that dam development which may not be costly should be done in tributaries. The Deputy Director of Irrigation wanted to find out why Water Resources Area 6 is very 5 expensive if we are to embark on irrigation. It was answered that the presented information need to be checked because there was no reason given for the higher irrigation cost in WRA 6. On non-structural options for irrigation, one participant wanted to know if the April cropping proposal has taken into consideration the rainy season because it still rains during this month. It 6 was answered that this cropping option technology was adopted from Southeast Asia. In this regard it was just a proposal from the JICA team. The Director of Irrigation also wanted to find out the potential for irrigation in Malawi having been given all the parameters. It was answered that the Department of Irrigation has provided 7 48,000 ha as the potential. However, the JICA team and SMEC Consultant met to discuss the same issue. They came up to 1.2 million ha after further analysis. One participant wanted to find out why wheat was not included in the pattern as other crops. The 8 JICA Team replied that it was not included because its growth style is the same as that of green maize which was also not recommended. One participant wanted to find out why green maize was not opted in the proposed pattern. It was answered that after consulting Lilongwe ADD, it was informed that if green maize is planted in 9 April, it produces poor quality results. It was later recommended that this a need to further verify this issue because green maize is more economical and has high value. The Director of Irrigation also commented on the crop shifting patterns citing an example of 10 farmers who planted their crops in April but the yields were affected by the cold weather.

CTI Engineering International Co., Ltd. 61 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Item Box 3: Initial Environmental Examination No. Comments, Questions & Answers: One participant wanted to find out if there is a backup evidence of groundwater contamination as presented. He asked this due to the fact that in Malawi it is assumed that groundwater sources are not contaminated. The JICA team replied that the survey was done on monitoring wells and not on 1 operational wells. This survey was done in 2010 when all sampled monitoring wells had no culverts to protect them from surface water runoff. The contamination could be attributed to surface water runoff. The fact that groundwater resources in Malawi are not contaminated can still hold except for a few places where there are high iron concentrations The participants from MAIWD indicated that currently the monitoring wells are well protected and 2 that a new analysis should be conducted in order to check the water quality again. One participant commented on the bad status of surface water quality and water disposal in Malawi. She proposed that the master plan should recommend the use of technologies, i.e., wastewater recycling as in Japan. She also emphasized that there is a need for awareness and change of people’s 3 attitude on the environment. The JICA team replied that recycling as done in Japan can be considered in the future because of its cost implication; as for domestic wastes, the level of collection must be improved in the cities and the construction of proper disposal sites must be encouraged. One participant wanted to know why in the analysis the Nigerians water quality standards was used instead of using such standards as Zambian or those of other neighbouring countries. The JICA team 2 stated that Malawi presently do not have such standards on surface water quality and the Nigerian standards was considered only for reference. One participant was concerned on the results of the water quality in the country. He suggested that 3 relevant authorities should take this issue on higher levels and this should be accompanied by relevant legislative. On the Michiru forest reserve, one participant wondered why there is no policy on the management of forest reserves. She then suggested consultation with the Blantyre City Assembly on this issue. There may also be a need to consider forests that have water catchment of interest, citing the Chikangawa 4 forest, which is the source of important rivers. On this suggestion, it was informed that the source was the district forest office and currently the plans for protection are under development and not yet finished. One participant suggested that instead of presenting Michiru forest as the case study, it should be one where there are many water-related activities such as irrigation and water supply schemes implemented. It was informed that assessment of these forests was done together with the major dams. It was also revealed that the status of the forest was linked to that of dams. For instance, Lunyangwa 5 dam located in Kaning’ina forest was a good example of proper forest management. On the other hand, Kamuzu dams 1 and 2 were in bad condition due to degradation of its upper Dzalanyama catchment. In Nkhotakota, Lake Chilingali Dam was assessed together with the Nkhotakota forest reserve. They also considered rivers and streams within the assessed forests On the rate of domestic waste collection, one participant wanted to know the formula used in arriving at such percentages. It was answered that they got the information about rate of domestic waste 6 collection from the city assembly offices. They were interested on this information because they wanted to determine the impact of uncollected waste on the water resources On water quality, one participant was worried about the shocking findings. He then requested the 7 project to provide water quality testing equipment to the districts together with the associated capacity building. It was answered that they will analyse the possibility to attend to that petition. One participant commented that the issue of buffer zone encroachment is supposed to be treated as a 8 serious issue. 9 One participant stated that there are delays in gazetting the proposed forest due to pressure of land. One participant wondered as to whether the source of Linthipe is Dzalanyama. It was then explained 10 that the two rivers, Lilongwe and Diamphwe, whose catchment is Dzalanyama are the major tributaries of Linthipe River.

62 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Item Box 3: Initial Environmental Examination (continuation) No. Comments, Questions & Answers: One participant suggested that there is a need to consider forests that have water catchment of interest 11 citing the Chikangawa forest which is the source of important rivers. It was commented that the belief in Malawi is that the surface water is not contaminated. The JICA 12 team recommended to continue monitoring of the water resources in order to establish the trend of surface water quality. It was also commented by stakeholders that more samples need to be collected throughout Malawi in 13 order to have agood basis on the status of groundwater. It was also commented that operational boreholes could not have such alarming results since they are protected. The Director of Irrigation of MIAWD recommended that this IEE be presented during the coming Shire 14 River Basin Conference

CTI Engineering International Co., Ltd. 63 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Table 2 Attendance Sheet for Stakeholders Meeting held at Mzuzu City Item Name Institution Position No. Director of Geoffrey 1 Administr Mkandawire Council ation Karonga District 2 Cosmas Chimaliro DPD Council Likoma District 3 T.T. Gondwe DPD Council 4 Jacob Mkandawire DWDO Council Rumphi District 5 Jeston Mzumzra H/O Council 6 Peaches Phiri MoAIWD DDWR/WQ 7 Laison Mseu MoAIWD WRDOI JICA Team 8 Mortshita Kanehiro JICA Leader 9 Sebastian Jara JICA JICA Team 10 Susan Kumwenda MoAIWD HY 11 Seiichi Yamakawa JICA JICA Team Hydrological 12 A. M. Chaponda MoAIWD Officer 13 L. E. C. Chilongo NRWB Planning 14 B. C. tambala MoAIWD DWDO Chief Irrigation 15 T. M. Mpezeni MZISD Officer 16 E. M Mtambo MoAIWD RWDO (n) 17 F. Kafwala MoAIWD Water Officer 18 A. MPama Consultant Facilitator 19 T. Mchira Consultant Facilitator 20 E. R .Ngozo M&E officer Council Chitipa District 21 L. Makina EDO Council 22 O. L. Nyirenda DWDO Council Nkhata Bay District 23 KondwaniGambi DPP pep Council Mberwa District 24 L. Chimphepo EDO Council Mberwa District 25 T. Harawa DPD Council 26 A. Ungwe NRWB P I U Manager

64 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Table 3 Attendance Sheet for Stakeholder Meeting held at Zomba City Item Name Institution Position No. 1 Taziona Mchira Consultant Facilitator 2 Booker Waya Blantyre Water Board Project Manager 3 Grant Nyali DWDO 4 Susan Kumwenda MoAIWD HY 5 Peaches Phiri MoAIWD DD/WQ 6 Phideria Moyo MoAIWD RIWDO (South) Nsanje District 7 Lucy Vumu DPP(rep) Council 8 James Mselela DWDO Council Thyolo District 9 Douglas Moffat DPD Council Thyolo District 10 Geoffrey Kumbuyo EDO Council 11 Steve Meja MHG- DC DWDO 12 Aubrey Mwamadi ACLO Council Phalombe District 13 Patron Kalonga DWDO Council 14 Lesten Waya Zumulu WNA President Michael 15 DPD Chimbalanga Council JICA Team 16 Morishita Kanehiro JICA Leader 17 Seiichi Yamakawa JICA JICA Team 18 Sebastian Jara JICA JICA Team 19 Devis Bonga Zomba DWDO 20 Laison Mseu MoAIWD WRDO1 21 Henry Chitema Neno DC DPD 22 Golcen Ajasi Neno Water DWDO 23 Marson Magombo CZ DC ASDPD 24 Alex Musicha CZ Water DWDO 25 Edgar Chihana DPD Council 26 Kadzokoyo F Mangochi DPD 27 K. Andreah DWDO Council Mwanza District 28 W.C. Botha Ag DWDO Council 29 Arthur Mpama Consultant Facilitator 30 Precious Kantsitsi BTD Council DPD 31 Max Mbulaje BTD Council EDO 32 Tamala Zembeni BTDC- Water DWDO 33 Daniel Nyangwa Council A/E Irrigation Chikwawa District 34 Kelvin K. Phiri Miso( Rep DPD) Council Chikwawa District 35 Banda Lester DHO (Rep) Council 36 Davis Kamendo Irrigation Officer IO 37 Grey Kwenda DPD Council

CTI Engineering International Co., Ltd. 65 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Table 4 Attendance Sheet for Stakeholder Meeting held at Lilongwe City No Name Institution Position 1 Peter Chipeta MoAIWD RWDO Ncheu District 2 L.K.Mjumira DPD council 3 Peaches Phiri MoAIWD DD/WR/WQ 4 Laison Mseu MoAIWD WRDOI 5 Seiichi Yamakawa JICA JICA Team 6 Morishita Kanehiro JICA JICA Team Leader 7 Sebastian Jara JICA JICA Team 8 Susan Kumwenda MoAIWD HY 9 Timothy Banda DWDODWDO Coouncil 10 Waki Chungwa DWDO council 11 Prince Munthali MoAIWD Ass DWDO 12 Trevor Beaumont SMEC Team Leader 13 Solomoni kalmia MoAIWD WRE 14 Rodric kumkwezu MoAIWD WRDO 15 E. Bulukutu Dowa D C DPD 16 O. Nkhuwa MoAIWD DWO 17 G. Mhango DPD Councilt 18 T. Mchira Consultant Facilitator 19 P. N .Moyo NS WATT DWD 20 T. Phiri Facilitator Facilitator 21 M.G.M. Nkhata MoAIWD ChgRo 22 Arthur Mpama Consultant Facilitator Network Tech 23 Amosi Mlongola LWB Engineer Hydrological 24 J.M. m’bama MoAIWD officer Hydrological 25 J. Khoza MoAIWD Officer 26 C. Jana MoAIWD AdIS 27 Geoffrey Mamba MoAIWD DIS Hydrological 28 Piasi Kaunda MoAIWD Officer 29 E. Chiundila MoAIWD Hydrologist

66 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part I Existing Condition in the Republic of Malawi

Source: MoNREE Figure 2.8.1 Organizational Structure for EIA Study as of 2012

 (7) Procedure for EIA The current procedure for conducting EIA in Malawi starts with the submission of the outline of the project by the developer to EAD. Then, the EAD confirms whether the project is prescribed or not under the Environmental Management Act, if not, no further action concerning EIA requirements need to be undertaken; if yes, then a Project Brief must be submitted to EAD with the payment of MK 50,000 in concept of review fee. When the Director of EAD receives the Project Brief, he refers it to the Technical Committee on Environment (TCE) established under Section 16 of EMA for its revision. The TCE assess whether the project needs or not the EIA study utilizing the project screening criteria (see Annex 2.8.1-3) and then recommends the course of action to the Director of EAD. The Director then determines whether or not an EIA is required and inform to the developer. If EIA is required, then the Terms of Reference (TOR) for EIA study must be prepared in order to scope the issues to be covered in the Study. This TOR could be prepared by EAD on base of the Project Brief presented by the Developer or the Developer can prepare it in consultation with EAD to be presented conjointly with the Project Brief. In the last case, the timing process become shorter and EAD only make some few adjustments to approve the TOR. Once the TOR by EAD is approved, the execution of the EIA Study is started. Public consultation is mandatory during the EIA study implementation. The developer must meet the stakeholders to inform them about the project and to get their views on it. When the draft EIA report is completed, the proponent must submit it to EAD for review. The review is made through the following mechanism:

2-44 CTI Engineering International Co., Ltd. ORIENTAL CONSULTANTS CO., LTD. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

3.4 Meteorology and Hydrology

3.4.1 Meteorology Climate conditions of Malawi are greatly influenced by the dominant wind shift caused by Inter-Tropical Convergence Zone (ITCZ), which oscillates north and south in seasons in the African continent as shown in Figure 3.4.1. The wet season occurs from November to April when the ITCZ moves southward bringing rainfall, and the dry season occurs from May to October when the ITCZ retreats northward.

Source: Orange-Senqu website (Ker et al. 1978) Figure 3.4.1 ITCZ Variation across Africa throughout the Year Due to the topographic diversity, spatial climate condition of Malawi has complex aspects depending on altitude and topography; however, the general tendency of yearly climate condition can be described by records of the Lilongwe Climate Station. Malawi also has two distinct seasons such as wet and dry seasons following the ITCZ moving state. The climate of Malawi is categorized as sub-tropical and divided into three weather variations such as warm-wet (November to April), cool-dry winter (May to August) and hot-dry seasons (September to October). The warm-wet season is recognized as the rainy season with about 95% of annual rainfall expected. The relative humidity in the rainy season is higher than that of the dry season, while the bar chart of pan-evaporation generally yields opposite reaction to the humidity as shown in Figure 3.4.2. As for the wind direction, lying northward of the sub-tropical high-pressure belt by ITCZ, the country is affected by south-easterly winds for about six months of the year in the dry season.

Source: weatherbase (http://www.weatherbase.com), Graph made by Project Team Figure 3.4.2 Average Climate Condition at Lilongwe

CTI Engineering International Co., Ltd. 3-15 ORIENTAL CONSULTANTS CO., LTD. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

 During the drought of 1995, some 5,550 ha (or 36%) of Chongoni Forest were destroyed by forest fires caused by human activities such as hunting resulting in smoke haze and pollution.

 (2) Drought and Rainfall Figure 3.5.8 shows annual rainfall depths and occurrences of drought, which indicate that serious droughts happened in the periods after annual rainfall became lower than average.

Ave. 971mm

Source: Project Team Figure 3.5.8 Annual Rainfall Depths and Occurrences of Drought

 (3) Influence to Economic Condition The severe droughts such as the 2001/2002 and 2005/2006 greatly affected not only the agricultural sector but also the GDP. According to “Malawi Poverty and Vulnerability Assessment (WB, 2006)”, the enormous inter-annual volatility of prices can be seen between drought years although in normal years, the price variation is substantial (see Figure 3.5.9). Practically, the price of corn in August 2005 had risen to about 125 percent higher in February 2006. As mentioned in Section 2.7, the agricultural sector accounts for 41 percent of the GDP and consists mainly of smallholder farmers. Therefore, the serious drought clearly affected the GDP annual growth rate and volatility of GDP per capita as shown in Figure 3.5.10.

CTI Engineering International Co., Ltd. 3-79 ORIENTAL CONSULTANTS CO., LTD. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part I Existing Condition in the Republic of Malawi

Source: Welfare Monitoring Survey 2011 Figure 5.1.1 Type of Water Sources in Urban Areas On the other hand, piped water to houses and public tap by gravity-fed water supply cover 14.3%, and 63.0% is of borehole in rural areas. Protected dug well covers around 4.8%. (See Figure 5.1.2)

Source: Welfare Monitoring Survey in 2011 Figure 5.1.2 Type of Water Sources in Rural Areas

 1) Major Infrastructure for Water Supply There are 10 large dams for domestic water supply as listed in Table 5.1.2 and indicated in Figure 5.1.3.

5-2 CTI Engineering International Co., Ltd. ORIENTAL CONSULTANTS CO., LTD. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part I Existing Condition in the Republic of Malawi

Source: Project Team, BWB Sales data Figure 5.1.11 Level of NRW of BWB (July 2011 to June 2012)

   (vi) Water Quality The BWB has carried out operational and compliance monitoring programs to ensure compliance to water quality standards as per WHO Quality Standards and MBS’s Quality requirements. The test results for both raw and treated water showed satisfactory results of physical and chemical quality. All the samples that were collected during 2009-2010 for the monitoring of potential toxic heavy metals like phosphate and chromium in the Shire River showed no significant changes. The Ndirande-Mudi Catchment Committee was planned seedings for the protection of the Mudi dam catchment.

 (3) Mzuzu City (Mzuzu Zone of NRWB)

 1) Basic Information on Mzuzu City (Mzuzu Zone) The NRWB was established as a parastatal organization under the Waterworks Act of 1995. NRWB operates as a decentralized organization structure composed of 3 Zones and 9 Schemes. (A zone is a collection of two or more schemes.) Mzuzu zone is one of them and it is the biggest zone having the service population of 118,422. Mzuzu zone is composed of the Mzuzu and Ekwendeni schemes. (Ekwendeni Township is 24 kilometers outside Mzuzu.) The NRWB has embarked on a priority rehabilitation and expansion works (PrEw) project to rehabilitate and expand the current water supply system in Mzuzu by installing three additional water reservoirs, an additional water source and new pressure zones to boost water pressure. The supplied area covered by the Mzuzu zone is shown in Figure 5.1.12. Basic information on Mzuzu zone's water supply service is given in Table 5.1.15. On the other hand, the National Sanitation Policy places responsibility for sanitation under the water boards, but in reality, water boards are not responsible for it. However, only the NRWB among the five water boards have formulated the strategic sanitation plan for Mzuzu City, Rumphi Boma and Chintheche Centre for 2010-2025 in cooperation with MCC, etc. In total, it should be noted that the water-related sanitation component is in the process of being transferred to the NRWB.

5-20 CTI Engineering International Co., Ltd. ORIENTAL CONSULTANTS CO., LTD. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part I Existing Condition in the Republic of Malawi

Source: Project Team, (Data is Sogreah’s Report) Figure 5.1.14 Storage–Capacity Curve at Existing Lunyangwa Dam

   (ii) Water Treatment Plant, Transmission, Distribution Mzuzu Zone of NRWB had one treatment plant with a design capacity of 13,660m3/day. However, as mentioned above, NRWB had implemented rehabilitation and expansion works, which include:  Construction of a new treatment plant and rehabilitation of the existing plant  Replacement of pumps with larger capacity ones at the existing treatment plant By the above works, the design capacity of water treatment plant was planned to be updated to 24,700 m3/d (287l/s) as shown in Figure 5.1.13. In addition, these works shall include the following transmission works:  Laying of transmission mains from existing treatment plant and booster pumping stations, to service reservoirs for Katawa, MBC, Signal Hill, Lusangazi, Lunyangwa, Nkhorongo, and Dunduzu;  Construction of new booster stations and installation of new booster pumps at Katawa, MBC tank site and Lunyangwa Research Station;  Construction of Communal Water Points; and  Construction of service reservoirs at Lusangazi, MBC, Lunyangwa and Nkhorongo. From NRWB billing information, the 2009 per capita consumption for households in Mzuzu City is estimated at 110 liters per day for low density, 65 liters per day for medium density and 60 liters per day for high density residential areas.    (iii) NRW and System Faults The commissioning of the project in Mzuzu negatively impacted the level of unaccounted for water during 2011 financial year. The NRW of Mzuzu scheme is high, and was estimated as 32.5% (36.8%) during the 2010 (2011) financial year.

5-24 CTI Engineering International Co., Ltd. ORIENTAL CONSULTANTS CO., LTD. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part I Existing Condition in the Republic of Malawi

Table 5.1.30 Water Volume Produced and Billed

Item unit Daily (%)

Volume Produced m3/day 17,762 100% Commercial m3/day 1,159 7% Institutions m3/day 6,323 36% Volume 3 Billed Individual m /day 5,545 31% CWP m3/day 443 2% Total m3/day 13,470 76% Non-revenue Water m3/day - 24% Source: CRWB Annual Report 2009

Source: SRWB Annual Report 2009 Figure 5.1.22 Breakdown of Billed Water Volume by Type of Consumer (CRWB) Operation Cost is composed of 3% for chemicals, 10% for power, 7% for fuel and 41% for staff cost as shown in Figure 5.1.23.

Source: SRWB Figure 5.1.23 Breakdown of Operation Cost (CRWB)

5-44 CTI Engineering International Co., Ltd. ORIENTAL CONSULTANTS CO., LTD. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

Table 5.1.47 Access Rate of Sanitation Facilities in Malawi Malawi Type Urban Rural Lilongwe Blantyre Mzuzu Zomba Total Flush Toilet (to sewer 5.4% 26.5% 3.2% 28.7% 28.9% 10.5% 31.4% and septic tank) VIP Latrine 0.4% 0.7% 0.4% 0.0% 0.4% 0.0% 1.6% Eco-san Toilet 1.4% 0.2% 1.5% 0.0% 0.4% 1.0% 0.0% Covered Pit Latrine 4.1% 5.7% 3.9% 5.8% 10.7% 1.9% 4.9% Uncovered Pit Latrine 88.6% 66.8% 91.0% 65.5% 59.6% 86.7% 62.0% Total 100% 100% 100% 100% 100% 100% 100% (Share Rate) (30.6%) (37.1%) (29.9%) (50.8%) (39.5%) (29.4%) (28.7%) Improved Latrine 11.3% 33.1% 9.0% 34.5% 40.4% 13.4% 37.9% Sewered Population Rate Sewerage: Sewerage: Sewerage: Sewerage: Sewerage: Sewerage: Sewerage: 0.6% 2.3% 0.5% 4.7% 3.6% 0% 0.9% Source: 2011 Welfare Monitoring Survey Report

100%

90%

80% Uncovered pit latrine 70% Covered pit Latrine 60% Eco-san toilet 50% VIP latrine 40% Flush toilet (to sewer Percentage of toilet type 30% and septic tank)

20% 10%

0% Malawi Urban Rural Lilongwe Blantyre Mzuzu Zomba Total City City City City

Source: 2011 Welfare Monitoring Survey Report, NSO Figure 5.1.28 Graphical Presentation of the Access Rate of Sanitation Facilities in Malawi According to the figure above, toilet facilities that have impermeable floor and tight-fitting lid to the latrine or eco-san latrine are defined as improved sanitation. Also, basic latrine is assumed to be uncovered pit latrine (unimproved latrine). Even though there is a difference in the definition of the improved sanitation by various organizations (WHO, JMP, Malawi, etc.), the penetration rate of the improved toilet is estimated to be approximately 11%, 33% and 9% (nationwide, urban area and rural area) respectively. On the other hand, the National Census in 2008 classified toilets into six types as shown in Table 5.1.48. Results of the survey in 2008 reflect that 82.1% of people use the traditional type and 11.7% have no facility at all. The improved type, including flush toilet and VIP toilet, was 20.2%, and traditional toilet CTI Engineering International Co., Ltd. 5-61 ORIENTAL CONSULTANTS CO., LTD. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

 (4) Mzuzu and Zomba City Councils (MCC, ZCC – Urban Area)

  1) Mzuzu City Council (MCC) The Mzuzu City Council (MCC) is responsible for providing sanitation services in Mzuzu City. Percentage of toilet facility type of Mzuzu inhabitants are 17%, 2% and 80% for the flush toilet, VIP and traditional pit latrine (see Figure 5.1.31). Although there is no public sewerage system in Mzuzu City, the Army and Mzuzu Central Hospital has its own sewerage system. (They operate waste stabilization ponds individually.) Therefore, 17% inhabitants using the wet type toilet which require water for flushing, are connected to septic tanks or these two communal sewerage systems.

However, the provider for emptying Source: NSO Census (2008) service and maintenance of septic Figure 5.1.31 Type of Toilet in Mzuzu (2008) tanks is not close to Mzuzu; it comes from Lilongwe and Blantyre. Mzuzu City in cooperation with the NRWB, has formulated the Strategic Sanitation Plan for Mzuzu City, Rumphi Boma and Chintheche Center for 2010 to 2012.

Challenges 3: US-3 – for Mzuzu City

 To prepare the Sanitation/ ewerage Master Plan

  2) Zomba City Council (ZCC) The Zomba City Council (ZCC) is responsible for providing sewerage and sanitation services in Zomba City. The Zomba sewerage scheme is gravity flow system, the sewage treatment plant is operated with a conventional biological percolating filter process situated at Chikanda (Photo 5.1.16). About 20,000 people, including large institutions such as the Army, Mental Hospital, Zomba Central Prison, Zomba Central Hospital, etc., are connected to the system. (In NSO 2008 Census as shown in Figure 5.1.32, it is mentioned that residents using a flush toilet are Photo 5.1.16 22,617. However, in the 2007 Urban Profile of Zomba Municipality, it is mentioned that there are about 20,000 people using the sewerage system and another 20,000 people using the septic tank system.)

CTI Engineering International Co., Ltd. 5-69 ORIENTAL CONSULTANTS CO., LTD. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part I Existing Condition in the Republic of Malawi

The remaining population of Zomba City are connected to septic tanks or use pit latrines, etc. Septic tanks and pit latrines need to be emptied regularly. This presents various water related problems since the ZCC does not have vacuum tankers or organizations. (The emptying service and maintenance of septic tanks come from the next Blantyre city side which is serviced.) Source: NSO Census (2008) The rest of the residents particularly in THA (Traditional Figure 5.1.32 Type of Toilets in Zomba (2008) Housing Areas) use traditional pit latrines for human excreta disposal. It is estimated that about 49,000 inhabitants in Zomba use traditional pit latrines. (Census 2008: VIP latrines - 6,008; Traditional pit latrines - 49,097). The major problems in case of traditional pit latrines are offensive odor and fly breeding, and the problem in case of pit latrines including VIP is groundwater pollution.

Challenges 4: US-4 – for Zomba City

 To prepare Functional Diagnostic and Wastewater Treatment Plants and Sewer Networks and the new Sanitation/Sewerage Master Plan

 (5) Rural Area According to the Malawi Sector Performance Report in 2012, 89% of the people use improved or basic latrine. Besides, the Welfare Monitoring Survey in 2011 obtained 91% for basic latrine and 9% for improved latrine.

2.7% Flush to sewer 0.5% 3.9% 0.4%

Flush to septic tank 1.5%

Improved latrine

VIP latrine

Eco-San

Basic latrine

91.0%

Source: Welfare Monitoring Survey 2011 Figure 5.1.33 Type of Toilets in Rural Area Sanitation projects in rural areas have been implemented under the WASH project of UNICEF. The program components of the “Country Program Action Plan in Malawi 2011” of UNICEF are as follows:  Integrated Water, Sanitation and Hygiene Education Promotion  School Sanitation and Hygiene

5-70 CTI Engineering International Co., Ltd. ORIENTAL CONSULTANTS CO., LTD. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

4000 Cumulative Installed Capacity [MW] (MEIP) Annual Maximum Demand Record [MW] (SAPP) Projection 3500 MEIP-Demand Projection [MW] MEIP-Planned Capacity [MW] Short Term (Hydropower, Diesel, IAEA (moderate) 3000 demand projection [MW] Demand Side Management) MCC (accelerate) demand projection [MW] Average of IAEA & MCC demand projection [MW] 2500 Medium Term (Hydropower, Coal, Biomass, Wind, Interconnection to SAPP) 2000

1500

Electricity Supply, Demand (MW) Demand Supply, Electricity 1000 LongTerm (Hydropower, Coal, 500 Geothermal)

0 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 Year Source: Project Team based on MEIP 2011, SAPP 2009 Figure 5.4.4 Projected Demand and Planned Generation in MEIP compared with other Projections

 (3) Energy Demand Projection There are several energy demand projections as with the case of power demand projections descrived above. The energy demand projections by each organizations are shown below. Table 5.4.2 Energy Demand Forecast (GWh) Year 2010 2020 2025 2030 Source 1 MEIP 2011 - - - - 1,914 3,381 2 WB 1998 - - (Base Case) (Base Case) 5,743 9,871 16,616 - (Moderate Case) (Moderate Case) (Moderate Case) 3 IAEA 2011 6,522 1,1789 20,910 - (Reference Case) (Reference Case) (Reference Case) 1,474 3,093 6,058 10,441 (Accelerated Case) (Accelerated Case) (Accelerated Case) 4 MCC 2011 1,474 2,680 4,981 7,931 (Reference Case) (Reference Case) (Reference Case) 5 SAPP 2009 1,600 2,833 3,293 - Source: MEIP 2011: Ministry of Natural Resources, Energy and Environment (MoNREE), Malawi Electricity Investment Plan, 2011, pp.1, 2 WB 1998: World Bank (WB), Power System Development Study and Operation Study, Appendix Volume PM01, 1998, pp.6-9 IAEA 2011: International Atomic Energy Agency (IAEA), Malawi Energy Demand Assessment Report, 2011, MCC 2011: Millennium Challenge Corporation (MCC), Malawi Power System Project Studies – Phase II Draft Integrated Resource Plan (IRP) for Malawi, 2011, pp.50, 51, 128, 129 SAPP 2009: Southern African Power Pool (SAPP), Annual Report 2009, pp.34

CTI Engineering International Co., Ltd. 5-87 ORIENTAL CONSULTANTS CO., LTD. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

 (2) Yearly Pan Evaporation The average pan evaporation of the basins calculated by the Thiessen method is shown inFigure 6.1.12. The pan evaporation is changed significantly in 1980. The reason of this may be the handling of rainfall in the pan. The observation is compared with the value of reference in Nkota Kota. Data after 1980 is close to the value of reference. Therefore, data after 1980 is assumed reliable and used for the study. The reliable stations before 1980 are mainly located in the southern part and the number is small.

3,200 3,100 300 1980/11-2000/10 3,000 2,900 NkhotaKota 2,800 1971/11-1980/10 2,700 2,600 AVERAGE Evaporation 250 2,500 WRA1 Value of Reference 2,400 2,300 WRA2 2,200 WRA3 200 2,100 2,000 WRA4 1,900 WRA5 1,800 1,700 WRA6 150 1,600 WRA7 1,500 1,400 WRA8

Evaporation (mm)1,300 1,200 WRA9 100 1,100 WRA10 1,000 900 WRA11 (mm) Evaporation Pan 800 WRA14 50 700 600 WRA15 500 WRA16 400 300 WRA17 0 200 100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 0 㻝㻥㻣㻝 㻝㻥㻣㻢 㻝㻥㻤㻝 㻝㻥㻤㻢 㻝㻥㻥㻝 㻝㻥㻥㻢 Month Year

Source: Project Team Source: Project Team Figure 6.1.12 Yearly Pan Evaporation Figure 6.1.13 Comparison of Pan Evaporation of Nkhota Kota

 (3) Correlation of Pan Evaporation of Each Station The correlation between some stations is over 0.7 as shown in Table 6.1.13. Some missing data may be substituted by other station’s data. Table 6.1.13 Correlation of Pan Evaporation of Each Station Maximum Maximum Station Station Correlation Correlation SalimaAirport 0.64 M imosa 0.64 Chitedze 0.75 Makhanga 0.75 DedzaM et 0.63 NgabuM et 0.63 MonkeyBay 0.75 M angochiM et 0.75 NkhotaKotaAero 0.73 Makoka 0.73 Bvumbwe 0.70 ChichiriMet 0.70 ThyoloMet 0.66 ChilekaAirport 0.66 KIA 0.65 Chitipa 0.65 Source: Project Team 6.1.5 Comparison of Rainfall and Pan Evaporation Figure 6.1.14 and Figure 6.1.15 show the monthly evaporation and rainfall data. In the south region, maximum rainfall appears in January. In the north, rainfall in March and April is higher than in the south region. In dry season, rainfall is small at all areas. Maximum evaporation appears in October or November before wet season starts.

CTI Engineering International Co., Ltd. 6-19 Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

Station Period Q = A x (h + B) ^ C Rating No. hmax Qmax Code Start End A B C 1G1 A 1-Dec-83 31-Oct-84 438.19958 -1.479 1.3 4.931 2194 1G1 B 1-Apr-85 31-Oct-10 114.56313 -1.02 1.3 8.03 1440 Station Period Q = A x (h + B) ^ C Rating No. hmax Qmax Code Start End A B C 7G3 A 1-Nov-84 30-Sep-94 8.3031731 -0.034 2.719 0.66 2 7G3 B 1-Oct-94 30-Nov-95 15.775572 -0.157 2.8 0.444 0 7G3 C 1-Dec-95 31-Oct-11 14.34362 -0.205 2.8 0.525 1 Source: Project Team Figure 6.1.21 Rating Curve

CTI Engineering International Co., Ltd. 6-25 Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan Final Report: Part I Existing Condition in the Republic of Malawi

Table 6.1.19 Flow Regime

Maximum Standard Annaul Average annual 1/5 Annual 1/10 Annual Deviation of Station Number Q 95% Q 75% Q 50% Q 25% Q 10% Average Annual Variation WRA Average Discharge Discharge Annual Name of Year (m3/s) (m3/s) (m3/s) (m3/s) (m3/s) Flow Discharge Index Flow Volume (m3) Volume (m3) Discharge (m3/s) Volume (m3) (m3/s) Volume (m3) 1 1G1 22 253 313 377 443 509 654 384 7,373,633,748 5,846,593,357 12,118,897,642 5,042,403,630 0.42 2 2B21 4 0 0 0 2 3 22 1 41,640,911 18,398,295 0.44 3 3E3 7 0 1 2 5 11 64 4 65,420,704 130,389,340 65,044,107 0.50 4 4C2 8 1 6 14 37 94 348 34 401,630,662 1,053,621,481 861,207,645 0.82 5 5C1 11 0 1 7 41 99 416 29 490,328,379 331,584,437 920,091,362 522,467,569 0.57 6 6D10 13 0 1 7 30 65 298 22 462,372,134 432,277,686 691,373,597 227,650,381 0.33 7 7G18 22 6 12 23 67 116 196 44 1,098,825,723 852,557,054 1,375,908,149 361,712,748 0.26 8 8A5 17 3 6 10 23 39 315 20 343,847,102 199,959,514 620,079,327 395,512,528 0.64 9 9B7 13 12 17 29 67 109 400 51 994,592,477 932,026,034 1,622,467,033 742,541,879 0.46 11 11A6 5 0 0 0 0 1 31 1 7,695,043 18,804,524 12,333,331 0.66 14 14D1 5 6 12 22 48 116 633 49 943,381,296 1,525,776,394 457,142,028 0.30 15 15A8 19 0 1 1 4 10 122 5 64,186,776 47,813,004 146,440,751 87,266,764 0.60 16 16F2 9 8 17 28 43 67 152 34 670,187,330 1,079,620,954 356,168,077 0.33 17 17C6 10 1 1 2 3 5 9 2 55,491,523 40,025,318 75,883,038 21,276,853 0.28 Source: Project Team

1.0

0.9

0.8 4C2

0.7 11A6 0.6 8A5 15A8 5C1 0.5 3E3 2B21 9B7 1G1 0.4 6D10 Variation Index 16F2 0.3 17C6 14D1 0.2 7G18

0.1

0.0 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Average Annual Discharge Volume (1,000m3)

Source: Project Team Figure 6.1.24 Relation between Average Annual Discharge Volume and Variation Index

The flow exceedance of 1G1 is shown in Figure 6.1.26. For example, 95% and 10% of annual flow are 500 and 250 m3/s. The slope of this graph is small because flow is supplied from Lake Malawi throughout the year. The annual variation (Q/Qave) of 1G1 shown in Figure 6.1.26 is 0.4 to 1.8 of annual average flow. Annual flow is less than half of annual average flow at the drought of the early 1990’s.

6-30 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

6.2 Groundwater

6.2.1 Aquifer Characteristics

 (1) Aquifer Profile The land of Malawi generally is divided into three geologic terranes, the rift valley areas overlaid by thick alluvium, the plateau area composed of weathered materials, and the mountain area exposing basement rocks. Although the aquifer structures on a micro scale have never cleared yet due to poor geological investigation, the aquifer units can be considered to correspond to the three terranes on a macro scale, and that is, the distributions of aquifers are regarded as just three aquifers, the Quaternary alluvium (AL), the weathered basement (WB) and the fractured basement rock (FB) as shown in Figure 6.2.1.

Source: Project Team Figure 6.2.1 Distribution Map of Aquifers in Malawi This report mentions the detailed geologic properties of each the aquifer in Section 3.3, Hydrogeology, and the macro structure of the aquifers over the whole of Malawi for evaluating the groundwater potential across the board will be explained in this chapter. The macro structure simply can be illustrated in Figure 6.2.2. Among the three aquifers, developable aquifers are just two, the weathered basement and the alluvium. These two aquifers can be considered as permeable layers based on Darcy’s theory. On the other hand, the CTI Engineering International Co., Ltd. 6-33 Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

Source: Project Team Figure 6.2.3 Relationship between Aquifer Distributions and Borehole locations

 (2) Pumping Test A pumping test is one of the most important investigations to know the hydraulic parameters of an aquifer such as transmissivity and storativity, and decide borehole specifications during the construction period. However, there are quite a few data recording details of pumping tests on the existing borehole records or related reports in Malawi though enormous amount of boreholes have been set until now. Fortunately, parts of the borehole data cards unified in a program of NWRMP in 1986 offer the lowest information of pumping test results including borehole yield, drawdown and specific capacity, and these usable borehole data is contained in every WRA. The Project will make clear the aquifer properties based on a few boreholes have details of pumping test in the limited areas, and apply the relationship between the aquifer properties and the information of the cards nationwide. A pumping test generally leads to three significant hydraulic parameters as follows: - Specific Capacity (SC) - Transmissivity (T) - Storativity (S) The basic concepts of these parameters are shown in Figure 6.2.4 and mentioned below.

CTI Engineering International Co., Ltd. 6-35 Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan Final Report: Part I Existing Condition in the Republic of Malawi

Groundwater Table Confining Bed Water Flow Confined D Aquifer Confining Bed T = k × D SC = Q / s Where, T: Transmissivity [L2/t] Where, SC: Specific Capacity [L2 / t] k: Permeability of Aquifer [L / t] Q : Water yield [L3 / t] D: Thickness of Aquifer [L] s : Drawdown [L]

Source: Project Team Figure 6.2.4 Basic Concept of Groundwater Pumping (Left: Darcy Flow Model, Right: Drawdown mechanism in extracting water from a borehole) Specific capacity (SC), which is defined as the yield volume per unit drawdown up to the final water level in continuous pumping test, can be easily measured as an aquifer’s characteristic at a borehole. This hydraulic parameter has been accumulated in abundance in the existing records. Transmissivity (T) is defined as the flow volume through a full section of an aquifer under unit hydraulic gradient in unit time. In accordance with the Darcy’s Law, it can be led by the analysis based on well hydraulics with chronological changes of drawdown on both continuous pumping and recovery after pumping. Transmissivity leads permeability by dividing it by aquifer thickness. The past pumping tests should have set some observation wells which just measure groundwater fluctuation apart from a pumping well, in order to reject such pumping influences as well losses, surging water, fluctuations in discharge rate, and etc., but an adequate pumping test using observation wells has never been conducted even once in Malawi due to severe cost restraints. That is reason why it should be taken into consideration that the transmissivity led by analysis on the past pumping test records has no little inaccuracy. There are several methods on the analysis using pumping test results, such as the well-known Thiem’s method, Theis-type curve matching method and Jacob’s linear analytical solution. The Project adopts the Jacob’s method for transmissivity because it is rather easy and practical to be calculated on EXCEL spread sheets, and it can be analyzed from both continuous pumping test and recovery test. Transmissivity can be obtained by the following formulas by drawing a line on the section where groundwater drops/rises linearly in the fluctuation–ime passing curve with semi-logarithmic scale (see Figure 6.2.6).

6-36 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan Final Report: Part I Existing Condition in the Republic of Malawi

Δs’ s1

/LQHDU6HFWLRQ cm) : (s’ down - ΔV /LQHDU6HFWLRQ down (cm) -

s2 Draw Residual Draw Residual

t1 t2 Time (logarithmic scale) t/t’

Source: Handbook of Groundwater Hydrology, Japan1 Figure 6.2.6 Examples of Jacob’s Linear Analytical Solution on Continuous pumping and Recovery Storativity (S) is defined as the volume of water which an aquifer releases from storage per unit when groundwater head changes per unit (see the right figure of Figure 6.2.4). One of the requirements of calculating storativity is to carry out the pumping test with several observation wells, but it has never been done in Malawi yet. Therefore the Project cannot examine the storativity from the existing pumping test results. A past study2 estimates storativities of weathered basement and alluvial aquifers from soil compositions, and these probably are in the range from 5×10-3 to 10-2 in the weathered basement aquifer and 10-2 to 5×10-2 in the alluvial aquifer. However these estimates have not followed precise methods based on better knowledge of the aquifers. Accumulation of the detailed studies regarding the storativity will be desired in future.  (3) Transmissivity In Malawi, although the minimum data from the pumping tests including water yield, drawdown and specific capacity, exist on the data cards or some project reports for rural supply, most of the detailed records for evaluating transmissivity have been lost. A little data of which borehole constructions implemented by the framework of JICA’s grant aid remains and can make a great contribution toward groundwater analysis. The Project extracts test pumping records from the following reports,  The Project for Development of Groundwater in Lilongwe-Dedza, 2004 (141)3  The Project for Development of Groundwater in Lilongwe West, 2007 (24)4  The Project for Development of Groundwater in Mwanza and Neno, 2013 (30)5 Note: The figures in round brackets are the numbers of boreholes used on the evaluation. The Project will roughly make clear the hydraulic mechanics based on the above-mentioned records though these are unevenly distributed and a little insufficient regarding the nationwide scale.  1) Groundwater Behavior in Pumping Groundwater behaviors in the water pumping reflect a variety of circumstances of underground conditions, for example, hydraulic characteristics of an aquifer such as permeability, storativity, or geological structures, e.g. confined / unconfined layer and discontinuous planes in fresh rocks, or artificial influences including well loss, obstruction of flow by casing pipe or other accessary inside the borehole. Groundwater usually rises by more than 30 meters at most after the first strike during the drilling in both weathered basement and alluvial aquifers. It seems that subsurface strata make a confining environment, 6-38 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

Exclusion of the Evaluation

Source: Project Team Figure 6.2.12 Distribution Map of Transmissivity in Malawi

6.2.2 Groundwater Distributions In Malawi, an enormous amount of borehole logs had been cumulated as borehole data cards from the 1930’s to 1985. These data include groundwater levels that were measured at borehole construction or rehabilitation; hence, presence of groundwater resources can be known by drawing groundwater distribution maps (i.e., groundwater contour map and groundwater depth map). The Project will prepare these maps by spatial and statistical processing based on the following borehole logs:  Borehole Cardex Records7 (1930s to 1985) in the whole of Malawi: 5,822 logs.  Borehole construction records in Thyolo District8: 129 logs  Borehole construction records in Lilongwe–Dedza District2 141 logs  Borehole construction records in Lilongwe West3: 23 logs  Current groundwater monitoring records: 18 logs Groundwater usually flows almost in parallel with the ground surface. The hydraulic gradients in the highland area of WRA 4, 5 and 6 are very gentle, ranging from 0.001 to 0.01 as shown in Figure 6.2.13, which means that it would take a long time to discharge groundwater to other watersheds. On the other hand, mountain areas CTI Engineering International Co., Ltd. 6-47 Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

Source: Project Team Figure 6.2.14 Distributions of Hydraulic Gradient in Malawi Note: A hydraulic gradient in each 1 km2 mesh is calculated based on the groundwater contour map 6.2.3 Concepts of Groundwater Analysis The recharge can be considered as potential groundwater resources, the reason why groundwater is roughly balanced with precipitation in the long run. Estimates of recharge to the weathered basement and alluvial aquifers have been made by the analysis of Water Balance and Darcian Flow mentioned as below. The fractured basement is not considered to estimate the recharge because the basement do not perform as an aquifer.  (1) Water Balance Recharge is mainly from direct infiltration of part of the water from precipitation. The tendency of groundwater fluctuation shows consistent periodic cycles and it strongly depends on precipitation in common of Malawi in accordance with current groundwater monitoring activities (see Subsection 3.4.3). Recharge sources also correspond to dam reservoirs, irrigated areas and other water storage on the surface with the exception of precipitation, but in Malawi it is not doubted that the most important recharge method must be precipitation. Recharge from precipitation is generally modeled as shown in Figure 6.2.15.

CTI Engineering International Co., Ltd. 6-49 Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan Final Report: Part I Existing Condition in the Republic of Malawi

Exclusion of the Evaluation

Source: Project Team Figure 6.2.17 Recharge Intensities calculated by Darcian Flow Method

The estimates of groundwater recharge derived using Darcian Flow method take the range of 4 to 201mm/year in case that an average value in each WRA is regarded as the representative recharge amount. Distributions of the recharge intensity as shown in Figure 6.2.17 indicate that the recharge intensities are dominated by hydraulic gradients rather than quantities of transmissivity, i.e., the recharge intensity clearly tend to be higher than 100mm/year at the feet of mountain areas, such as the surroundings Zomba Mountain and Mulanje Mountain, hills in Blantyre, Ntcheu, Balaka and Mangochi district in the southern region, whereas the plateau plane including Lilongwe, Mchinji and Kasungu district in the central region shows small amount of recharge less than 20mm/year owing to very gentle geomorphic surfaces and low transmissivities in the weathered basement aquifers. According to the tendency of maximum annual rainfall as shown in Figure 3.4.5, it seems that the correlation between the tendency of groundwater recharge and rainfall intensity is fairly good because rainfalls tend to intensify at adjacent mountains and foot of the escarpment in the rift valley; whereas, amounts of rainfall tend to be relatively small in the plateau area similar to groundwater recharge. In WRA5 which shows the lowest recharge intensity, 4mm/year in the weathered aquifer, the recharge accounts for minus 1% of the rainfall intensity using 825mm/year which averaged the data of Madisi rainfall station during 1959 through 1988. One of the reasons of such a too small recharge against the rainfall in the plateau area is considered that thick clayey layers in the unsaturated zone on such as dambo

6-52 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan Final Report: Part I Existing Condition in the Republic of Malawi

Source: Project Team Figure 6.4.3 Water Demand Projection for 2012-2035

 (8) Distribution on WRA and WRU Estimated water demand is distributed to WRA and WRU. In case the water served by the water boards is from the intake points, the location almost corresponds to the location of water schemes. However, when water source is from dam, the location shall be selected carefully at the dam site. Table 6.4.32 shows the water demand of WRA in 2012-2035. Values of WRA 1 and WRA 4 are bigger than those of the other areas because these areas have water sources for Lilongwe and Blantyre. Table 6.4.32 Water Demand on WRA in 2012-2035 Unit: million m3/year WRA 2012 2015 2020 2025 2030 2035 1 80.3 87.0 97.5 113.6 133.1 159.5 2 19.9 22.5 27.5 32.2 36.3 40.7 3 10.3 11.6 13.2 16.4 19.9 23.8 4 61.6 71.5 88.7 108.7 131.4 155.3 5 18.0 21.4 24.9 31.4 38.8 47.6 6 8.3 9.9 11.6 14.9 19.5 24.9 7 18.8 21.6 27.5 35.8 43.8 52.8 8 1.2 1.3 1.5 1.7 1.9 2.2 9 2.6 3.0 3.5 4.6 5.9 7.5 10 2.4 2.8 3.2 3.9 4.7 5.6 11 3.9 4.5 5.1 6.3 7.7 9.3 12&13 0.0 0.0 0.0 0.0 0.0 0.0 14 15.0 15.7 17.1 19.8 22.7 25.7 15 7.8 8.8 10.2 13.0 16.0 19.5 16 4.6 4.9 5.6 7.1 8.6 10.3 17 3.6 3.9 4.5 5.9 8.0 10.2 Total 258.4 290.5 341.7 415.2 498.4 594.9 Source: Project Team

6-74 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

 (9) Share of Water Sources Based on the data of 2012, existing water sources in urban area is analyzed as follows. Figure 6.4.4 shows the share of water consumption of urban area. Water for house connection, communal point, institute, commercial & industry is served by the Water Boards, some is served by borehole/protected shallow well, and others still have no access to improved water source. Water schemes managed by the Water Boards have their own water source such as dam, lake, river, and borehole as described in Chapter 5. Figure 6.4.5 shows the share of water sources of the urban area. Almost 78% is shared by Dam, because the 4 big cities, Lilongwe, Blantyre, Mzuzu and Zomba, utilize water from Dam. Figure 6.4.6 shows the share of water sources of rural area. Gravity-fed by river and stream water is around 8%, and Borehole/protected shallow well is 62%.

Borehole not- /protecte improve House d shallow d water connecti well 2% on 5% 33% NRW 35%

Commun Commert al point ial& 4% Industrial Institute 10% 11%

Source: Project Team Figure 6.4.4 Share of Water Uses in Urban Area in 2012

Communi Un- River/Stre improved am ty's Borehole water 4% Borehole 7% 5% 2% Lake 4% Dam 78%

Source: Project Team Figure 6.4.5 Share of Water Sources in Urban Area (2012)

CTI Engineering International Co., Ltd. 6-75 Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan Final Report: Part I Existing Condition in the Republic of Malawi

Source: Project Team Figure 6.4.6 Share of Water Sources in Rural Area (2012)

6.4.2 Agriculture Agricultural production comprises two main sectors: the small-scale farming sector (subsistence farming of food crops and smallholder cash cropping) and the commercial sector dominated by large sugar, tobacco, tea and coffee estates. Smallholder cropping patterns are dominated by maize mostly grown under rain-fed conditions. Other important smallholder subsistence crops include rice, groundnuts and potatoes. Tobacco, cotton and sugar are grown as cash crops on a much smaller scale than the estates. Land on which water is used primarily for the purpose of agricultural production is generally referred to as “water managed areas”. Irrigated land refers to water managed areas or wetlands that are equipped with hydraulic structures (full or partial control irrigation), or valley bottoms and areas equipped for spate irrigation, whereby seasonal floods of rivers, streams, ponds and lakes are used to fill water storage canals for irrigation. For the purposes of this assessment, irrigation demand has been calculated for all areas considered as irrigated land. The approach used to estimate irrigation demand can be summarized into three main steps: Step 1: Determine irrigated area for selected crops; - Crop area estimations - Irrigated area estimation Step 2: Determine crop water and irrigation requirements; and Step 3: Determine irrigation demand  (1) Demand Calculation for Irrigation Water

 1) Assessment Parameters on Irrigation Water Demand

   (i) Unit area for assessment Irrigation water demand is assessed on WRA and WRU basis, the same as that of the domestic and industrial water.

   (ii) Base Year Irrigated Area The national irrigated area on the base year (2011) is determined mainly based on the DOI data as shown in the following Table 6.4.33. Ninety thousand (90,000) ha is adopted as the base year irrigated area.

6-76 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

400 7G14 Observed 350 Calculated Maximum of Observation 300

250

200

150

100 Discharge (m3/s)

50

0 1980/11 1981/05 1981/11 1982/05 1982/11 1983/05 1983/11 1984/05 1984/11 1985/05 1985/11 1986/05 1986/11 Time 700 7G14 7G14 630 180 560 150 490 420 120 R² = 0.91 350 R² = 0.93 90 280 60 210 140 Calclated volume m3) volume (mil Calclated 30 m3) volume (mil Calclated Dry Season 70 Full Year 0 0 0 30 60 90 120 150 180 0 70 140 210 280 350 420 490 560 630 700 Observed volume (mil m3) Observed volume (mil m3) 350 1600 7G14 Dry Season Observed 7G14 Full Year Observed 300 1400 Ca lcula ted Ca lcula ted 250 1200 1000 200 800 150 (mil m3)(mil With Missing Data 600 With Missing Data 100 400

50 m3) (mil volume Discharge 200 Discharge volume in Dry Season Season in Dry volume Discharge 0 0 1980/81 1981/82 1982/83 1983/84 1984/85 1985/86 1980/81 1981/82 1982/83 1983/84 1984/85 1985/86 Year Year Source: Project Team Figure 6.5.12 Calibration at 7G14

CTI Engineering International Co., Ltd. 6-141 Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan Final Report: Part I Existing Condition in the Republic of Malawi

8A5 Observed 140 Calculated 120 Maximum of Observation Outlier

100

80

60

40 Discharge (m3/s)

20

0 1980/11 1981/05 1981/11 1982/05 1982/11 1983/05 1983/11 1984/05 1984/11 1985/05 1985/11 1986/05 1986/11 Time 60 150 8A5 8A5 50 R² = 0.74 R² = 0.89 40 100

30

20 50 Dry Season Calclated volume m3) volume (mil Calclated 10 m3) volume (mil Calclated Full Year *1981/11-1986/10 *1981/11-1986/10 0 0 0 10 20 30 40 50 60 0 50 100 150 Observed volume (mil m3) Observed volume (mil m3)

120 600 8A5 Dry Season Observed 8A5 Full Year Observed 100 Ca lcula ted 500 Ca lcula ted

80 400

60 300 (mil m3)(mil 40 200

20 100 Discharge volume (mil m3) (mil volume Discharge With Missing Data Discharge volume in Dry Season Season in Dry volume Discharge 0 0 1980/81 1981/82 1982/83 1983/84 1984/85 1985/86 1980/81 1981/82 1982/83 1983/84 1984/85 1985/86 Year Year Source: Project Team Figure 6.5.13 Calibration at 8A5

6-142 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

100 15A8 Observed 90 Calculated 80 Maximum of Observation

70

60

50

40

30

Discharge (m3/s) 20

10

0 1980/11 1981/05 1981/11 1982/05 1982/11 1983/05 1983/11 1984/05 1984/11 1985/05 1985/11 1986/05 1986/11 Time 50 14 15A8 15A8 45

12 R² = 0.82 40 35 10 30 R² = 0.83 8 25 6 20 15 4 10 Calclated volume m3) volume (mil Calclated 2 m3) volume (mil Calclated Dry Season 5 Full Year 0 0 0 2 4 6 8 10 12 14 0 5 10 15 20 25 30 35 40 45 50 Observed volume (mil m3) Observed volume (mil m3) 45 140 15A8 Observed 15A8 Observed 40 Dry Season Full Year Ca lcula ted 120 Ca lcula ted 35 100 30 25 With Missing Data 80 With Missing Data 20 60 (mil m3)(mil 15 40 10

5 m3) (mil volume Discharge 20 Discharge volume in Dry Season Season in Dry volume Discharge 0 0 1980/81 1981/82 1982/83 1983/84 1984/85 1985/86 1980/81 1981/82 1982/83 1983/84 1984/85 1985/86 Year Year Source: Project Team Figure 6.5.14 Calibration at 15A8

CTI Engineering International Co., Ltd. 6-143 Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan Final Report: Part I Existing Condition in the Republic of Malawi

300 All basin 250

200

150

100 Pan Evaporation (mm) Evaporation Pan 50

0 1 2 3 4 5 6 7 8 9 10 11 12

Month

Source: Project Team Figure 6.5.19 Monthly Pan Evaporation

6.5.2 Water Balance Model of Lake Malawi Lake Malawi is bordered by three countries, Malawi, Tanzania and Mozambique, whose rivers flow into the Lake Malawi. On the other hand, outflow from Lake Malawi is only through the Shire River which is at the southern tip. To estimate the impact on water level and outflow of Lake Malawi due to water intake, water balance model of Lake Malawi is constructed.  (1) Outline of Water Balance Model of Lake Malawi The model is constructed based on the water balance shown in Figure 6.5.20. For the inflow of Lake Malawi, inflow from river basins, rainfall on Lake Malawi and inflow of groundwater are considered. For the outflow, the outflow of the Shire River, evaporation from Lake Malawi and the outflow of groundwater (infiltration, seepage) are considered. The model is calibrated by comparison between the observed and calculated water levels of Lake Malawi. -Inflow: River Inflow, Rainfall, Groundwater -Outflow: River Outflow (Shire River), Evaporation, Groundwater (Infiltration, Seepage) Rainfall Evaporation

Inflow Outflow (Catchment Runoff) (Shire River)

Groundwater (Inflow) Groundwater (Seepage)

Source: Project Team Figure 6.5.20 Outline of Water Balance Model of Lake Malawi

6-148 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

476.0 476.0 476.0 476.0 1T1 R² = 0.94 3E1 7H3 8A5 475.5 475.5 475.5 475.5 R² = 0.50 475.0 475.0 R² = 0.07 475.0 475.0 474.5 474.5 474.5 474.5

474.0 474.0 474.0 474.0 R² = 0.04 473.5 473.5 473.5 473.5

473.0 473.0 473.0 473.0 95% Water of Lake (m) Water Level Malawi 95% of Lake (m) Water Level Malawi 95% 95% Water of Lake (m) Water Level Malawi 95% of Lake (m) Water Level 95% Malawi 472.5 472.5 472.5 472.5 0.00 200.00 400.00 600.00 800.00 0.00 0.05 0.10 0.15 0.00 2.00 4.00 6.00 8.00 0.00 5.00 10.00 15.00 20.00 95% Flow (m3/s) 95% Flow (m3/s) 95% Flow (m3/s) 95% Flow (m3/s)

476.0 476.0 476.0 476.0 3E2 3E3 9A7 9B7 475.5 475.5 475.5 475.5

475.0 475.0 475.0 475.0 R² = 0.34 R² = 0.04 R² = 0.02 474.5 474.5 474.5 474.5

474.0 474.0 474.0 474.0 R² = 0.03 473.5 473.5 473.5 473.5

473.0 473.0 473.0 473.0 95% Water of Lake (m) Water Level 95% Malawi of Lake (m) Water Level 95% Malawi 95% Water Level of Lake (m) of Lake Malawi Water Level 95% of(m) Lake Water Level Malawi 95% 472.5 472.5 472.5 472.5 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.10 0.20 0.30 0.40 0.50 0.00 5.00 10.00 15.00 20.00 25.00 95% Flow (m3/s) 95% Flow (m3/s) 95% Flow (m3/s) 95% Flow (m3/s)

476.0 476.0 476.0 476.0 4B1 5C1 15A8 15B14 475.5 475.5 475.5 475.5

475.0 475.0 475.0 475.0 R² = 0.36

474.5 474.5 R² = 0.14 474.5 474.5 R² = 0.05

474.0 474.0 474.0 474.0 473.5 R² = 0.00 473.5 473.5 473.5 473.0 473.0 473.0 473.0 95% Water of Lake (m) Water Level Malawi 95% of Lake (m) Water Level Malawi 95% 95% Water of(m) Lake Water Level Malawi 95% of Lake (m) Water Level Malawi 95% 472.5 472.5 472.5 472.5 0.00 0.50 1.00 1.50 0.00 20.00 40.00 60.00 80.00 100.00 0.00 0.50 1.00 1.50 0.00 0.50 1.00 1.50 2.00 2.50 95% Flow (m3/s) 95% Flow (m3/s) 95% Flow (m3/s) 95% Flow (m3/s)

476.0 476.0 476.0 476.0 16F2 17C6 6D10 7G14 475.5 475.5 475.5 475.5

475.0 R² = 0.14 475.0 R² = 0.10 475.0 475.0 R² = 0.14

474.5 474.5 474.5 474.5

474.0 474.0 474.0 474.0 R² = 0.03 473.5 473.5 473.5 473.5 473.0 473.0 473.0 473.0 95% Water of Lake (m) Water Level Malawi 95% of Lake (m) Water Level Malawi 95%

95% Water of(m) Lake Water Level Malawi 95% of Lake (m) Water Level Malawi 95% 472.5 472.5 472.5 472.5 0.00 5.00 10.00 15.00 20.00 0.00 0.50 1.00 1.50 0.00 0.05 0.10 0.15 0.20 0.00 2.00 4.00 6.00 8.00 95% Flow (m3/s) 95% Flow (m3/s) 95% Flow (m3/s) 95% Flow (m3/s) Source: Project Team Figure 6.5.22 Comparison of 95% Flow and 95% Water Level of Lake Malawi

 (3) River Inflow to Lake Malawi

  1) Estimation Method Observed water level and discharge data of Lake Malawi are available, but there are gaps or missing data and the reliability is low. Therefore, the result of the rainfall runoff model is applied. The river inflow from Tanzania and Mozambique is estimated using the ratio by countries studied as reference. 1. Inflow from Malawi is estimated by using the flow of rainfall and runoff mode. 2. Inflow from Malawi is increased by basin area to calculate the total inflow from Malawi. 3. Estimation of the ratio by country 4. Inflow from Tanzania and Mozambique is estimated by using the ratio 5. Total inflow to Lake Malawi is estimated by the inflow from the other countries.

CTI Engineering International Co., Ltd. 6-151 Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

Table 6.5.18 Ratio of Inflow

1983 paper 1997 calculation 2010 paper Ratio of Lake Ratio of Lake Ratio of Lake WRA, WRU WRA Basin Malawi Inflow Malawi Inflow Malawi Inflow or River (%) (%) (%) Southern Lakeshore & 3 WRA3 3.2 3.6 2 Mtakataka Lakeshore 4 WRA4 Linthipe 4.5 11.9 5 5 WRA5 Bua 3.7 3.9 5 6 WRA6 Dwangwa 2.4 1.6 2 7 South Rukuru South Rukuru 4.2 1.4 6 North Rumphi North Rumphi 1.6 1 2 8 WRA8 North Rukuru 1.7 1.5 2 9 Lufira Lufira 1.2 0.7 2 Songwe Songwe 6.1 7.3 8 15 WRU15 Nkotakota Lakeshore 5.2 9 0 Luweya & Usisya 16 WRU16F&G 5.4 1.8 6 Lakeshore WRU16E Dwambadzi Lakeshore 3.9 2.2 17 WRA17 Karonga Lakeshore 1.9 1.5 0 Malawi Total (including Songwe basin in Tanzania, 45 47.4 40 except WRA10) Tanzania (except Songwe basin) 48.1 45.7 51 Mozambique (including WRA10) 6.8 7.2 8 Total 99.9 100.3 99 *1 *1 *2 *Assumption of allocation of WRA10 *1 Source: WATER QUALITY REPORTEdited ByHarvey A. Bootsma & Robert E. Hecky *2 Source: Water Balance Model of Lake Malawi and its Sensitivity to Climate Change Source: Project Team    (ii) Estimation of Ratio of River Inflow by Country using CRU Data (Mesh Rainfall Data) -Outline of CRU Data The ratio of river inflow by country of existing study is not suitable for daily calculation as mentioned before. Therefore, ratio of river inflow by country is estimated by using the Climatic Research Unit (CRU) TS (time series)Version 3.10.01 rainfall data. CRU data is global data set from University of East Anglia. The outline of the data is shown in Table 6.5.19. Mesh of CRU data and watershed of Lake Malawi is shown in Figure 6.5.28. Table 6.5.19 Outline of CRU TS Data

CRU 3.10.01 Data Precipitation, etc. Period 1901-2009 Cover Area 360-lat x 720-long grid on land area Grid Size 0.5x0.5 degree (720 columns, 360 rows) Monthly/Daily Monthly Data Access https://hc.box.com/shared/f9mgrl1qfx • ASCII data Data Format • NetCDF data Source: Project Team

CTI Engineering International Co., Ltd. 6-157 Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan Final Report: Part I Existing Condition in the Republic of Malawi

St 9A St 8

St 17C6

St 7H St 7

St 16F2

St 16E6

St 6

St 5

St 15B14

St 15A8

St 4 St 3F2&3 St 3E1&2 St 3E3

■:Tanzania Catchment Area ■:Mozambique Catchment Area ■:Malawi Catchment Area ―:Country Boundary(USGS) ―:Watershed boundary(USGS) ―:Rain Mesh(CRU)

Source: Project Team Figure 6.5.28 CRU Mesh and Watershed of Lake Malawi

6-158 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part I Existing Condition

 (5) Surface Water Balance in Future The water balance in 2035 which is the target year of the Project and in 2025 which is the intermediate time is studied. The water demand in 2025 and 2035 is 1.9 and 2.4 times of present water demand excluding environmental flow. Environmental flow is constant. The results are shown in Table 6.5.28, Figure 6.5.53 and Figure 6.5.54. The deficit increases with increasing water demand. The water balance in WRA1 is studied by considering water intake from the Shire River. If the water can be conveyed from the Shire River to branch river basins, water demands are surely satisfied in the branch river basins. Flow of the Shire River is high in dry season and lowest flow occurs in December. At that time, flow of each WRU is increasing. (Figure 6.5.52) 1200000 1 LS IR WS Table 6.5.28 Water Demand in Present Env Inflow Shire R 3 1000000 Present (1,000m /year)

800000 WRA Env WS IR LS 1 784,714 15,519 361,261 11,363 600000 2 22,061 12,039 18,185 3,260 3 186,195 2,675 34,652 2,890 400000 4 82,722 40,842 71,022 6,476

Volume (1,000 m3) (1,000 Volume 5 120,392 7,036 84,444 6,997 200000 6 60,893 3,981 143,939 2,216 7 284,171 12,011 17,331 3,700 0 8 86,221 446 4,089 390 11 12 1 2 3 4 5 6 7 8 9 10 9 40,696 814 21,354 1,935 Month 10 3,607 668 7,608 449 Source: Project Team 11 12,840 1,268 18,004 1,485 Note: Shire R means flow discharge of the Shire River, inflow means flow discharge excluding that of the Shire River. 14 276,041 5,058 74,010 3,857 15 169,465 2,219 35,971 2,002 Figure 6.5.52 Water Balance of WRA1 Considering 16 700,959 1,608 37,967 524 Intake from the Shire River in 2035 17 113,863 445 15,278 998 Blantyre 0 39,284 0 0

Total 2,944,842 145,913 945,114 48,542 Source: Project Team Table 6.5.29 Water Demand in 2025 Table 6.5.30 Water Demand in 2035 2025 (1,000m3/year) 2035 (1,000m3/year)

WRA Env WS IR LS WRA Env WS IR LS 1 784,714 13,780 687,791 15,463 1 784,714 16,771 902,726 20,711 2 22,061 21,771 35,056 4,452 2 22,061 27,542 46,015 5,789 3 186,195 1,756 70,405 3,044 3 186,195 2,330 92,455 4,117 4 82,722 75,085 74,236 14,679 4 82,722 106,728 74,433 20,024 5 120,392 2,714 174,398 12,655 5 120,392 3,821 249,628 17,408 6 60,893 2,824 232,196 2,853 6 60,893 3,939 304,758 3,982 7 284,171 23,297 29,286 20,758 7 284,171 33,960 38,438 27,913 8 86,221 378 7,350 574 8 86,221 485 9,647 758 9 40,696 679 32,248 2,656 9 40,696 865 37,287 3,518 10 3,607 430 11,459 744 10 3,607 614 15,041 1,032 11 12,840 939 49,668 1,356 11 12,840 1,312 65,189 1,872 14 276,041 4,132 120,400 4,937 14 276,041 4,831 140,974 6,264 15 169,465 948 43,669 2,942 15 169,465 1,299 75,877 4,038 16 700,959 1,117 64,422 1,154 16 700,959 1,488 85,510 1,556 17 113,863 358 99,553 1,535 17 113,863 477 130,663 2,067 Blantyre 0 54,301 0 0 Blantyre 0 73,580 0 0 Total 2,944,842 204,509 1,732,138 89,801 Total 2,944,842 280,041 2,268,641 121,049 Source: Project Team Source: Project Team

CTI Engineering International Co., Ltd. 6-181 Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan Final Report: Part I Existing Condition in the Republic of Malawi

Major Centre

River and Road

Administrative Boundary

Digital Elevation Model

Land Use

Topographical Map

Ortho Rectified Image

Real World Source: Project Team Figure 6.8.1 Concept of Feature Layering Method

6.8.1 Acquisition of Existing GIS Data Information and data related to water resources were input in the GIS database using ARC GIS (Version 10) to analyze the information for the purpose of formulation of the water resources development and management master plan. GIS data shown in Annex 5.6.1 was acquired from the MoAIWD and relevant government authorities such as the Department of Forestry (DoF), the Ministry of Lands, Housing and Urban Development (MoLHUD), and the National Statistics Office (NSO). For example, the GIS data listed below were collected in the Project.  Water resources area data, Borehole data, Meteorology station data, Rainfall station data, WL-Q Station data were collected from MoAIWD.  Aerial photo data, Topographic map data, Digital terrain model (DTM), Digital elevation Model (DEM), Land cover map data, Land use and vegetation map data were collected from DoF. The data was produced during the “Forest Resource Mapping Project under the Forest Preservation Programme”  Topographic maps (1:50,000) were collected from MoLHUD.  District maps were collected to find out the location of the District Center (DC) and the Village Center (VC) from NSO.

6.8.2 GIS Database Model

 (1) Setting of Coordinate Reference System (CRS) In Malawi, the CRS of UTM 36 S Clarke 1980 (Datum: Arc 1960) is used as standard. Therefore, CRS and Transformation parameter are adopted in the Project as shown in Table 6.8.1 and Table 6.8.2. The GIS database table is defined by five main fields (main class, sub-class, feature name, data type, annotations), which is summarized in Annex 5.6.2.

6-224 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

1.1.1 Water Scarcity in Malawi As a result of basic analysis, it is obvious that annual water resources are more than the water demands even in year 2035. However, biased water resource conditions in season and location would significantly affect future water resources development. The amount of water deficit can be seen as very low compared with the natural flow (See Figure 1.1.1). Particularly, water sufficiency in Malawi is very high with abundant surface water in the rainy season. However, the deficit water increases in the dry season with the increment of agricultural water requirement from surface flows. These mechanisms can be explained by the relationship between cropping patterns and effective rainfall as described in Part I: Chapter 5. To fulfill the water demand in the dry season, countermeasures have to be proposed in the Project to distribute the biased water to problem areas and reserve it for the dry season. Natural Condition LS Natural Condition LS Natural Condition LS IR WS IR WS IR WS Env Deficit (Present) Env Deficit (Present) Env Deficit (Present) 10,000 10,000 10,000 Dry 9,000 Lake Malawi Basin Annual 9,000 Lake Malawi Basin Wet 9,000 Lake Malawi Basin 8,000 8,000 8,000 7,000 7,000 7,000 6,000 6,000 6,000 5,000 5,000 5,000 4,000 4,000 4,000 3,000 3,000 3,000 2,000 2,000 2,000 1,000 1,000 1,000 Volume of Inflow (mil. m3) (mil. Inflow of Volume m3) (mil. Inflow of Volume 0 0 m3) (mil. Inflow of Volume 0 Water Resources Pre 2025 2035 Water Resources Pre 2025 2035 Water Resources Pre 2025 2035 Year Year Year

Natural Condition LS Natural Condition LS Natural Condition LS IR WS IR WS IR WS Env Deficit (Present) Env Deficit (Present) Env Deficit (Present) 7,000 7,000 7,000 Shire River Basin Annual Shire River Basin Wet Shire River Basin Dry 6,000 6,000 6,000 5,000 5,000 5,000 4,000 4,000 4,000 3,000 3,000 3,000 2,000 2,000 2,000 1,000 1,000 1,000 Volume of Inflow (mil. m3) (mil. Inflow of Volume m3) (mil. Inflow of Volume 0 0 m3) (mil. Inflow of Volume 0 Water Resources Pre 2025 2035 Water Resources Pre 2025 2035 Water Resources Pre 2025 2035 Year Year Year

Natural Condition LS Natural Condition LS Natural Condition LS IR WS IR WS IR WS Env Other Basin Deficit (Present) Env Other Basin Deficit (Present) Env Other Basin Deficit (Present) 1,200 1,200 1,200 Annual Wet Dry 1,000 1,000 1,000 800 800 800 600 600 600 400 400 400 200 200 200 Volume of inflow (mil. m3) (mil. inflow of Volume Volume of Inflow (mil. m3) (mil. Inflow of Volume 0 0 m3) (mil. Inflow of Volume 0 Water Pre 2025 2035 Water Resources Pre 2025 2035 Water Resources Pre 2025 2035 Resources Year Year Year Annual Wet Season Dry Season Source: Project Team Figure 1.1.1 Water Balance

1.1.2 Basic Policy for Water Resources Development and Management The general water resources balance in Malawi is evaluated in the Project by using the simulation model with 30 years hydro-meteorological data as shown in Figure 1.1.2. Averagely, out of the 980 mm water per year supplied to surface as precipitation, 23 percent (225 mm) and 5 percent (53 mm) runs off to the ground surface and penetrates into the ground, respectively, while the evaporative loss is estimated at 72 percent of the water supplied by precipitation. With regard to surface water, 63 percent of the surface water in Malawi flows into

1-2 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Lake Malawi and 28 percent flows directly to the Shire River. The catchment water of Lake Malawi flows into the Shire River with restricted conditions by the geography at outlet of the lake and the operation of Liwonde barrage. Due to the effect of the large storage function of Lake Malawi, the water flow of the Shire River is abundant throughout the year and fluctuates within a relatively narrow range compared with the other rivers. Furthermore, due to the steep slope (average slope is 1/240), 98 percent of hydropower in Malawi is generated using this characteristic of the Shire River.

Source: Project Team Figure 1.1.2 Natural Water Balance in Malawi On the other hand, water demand is estimated at 1.1 billion m3 per year (as of 2012), as shown in Figure 1.1.3 (left figure). The irrigation and domestic water demand is 87 and 13 percent, respectively. This demand may increase 2.5 times up to 2035 year. Compared with the annual average water resources (excluding water resources in Lake Malawi) and annual water demand, the water resources is 20 times (at present) and 10 times (in the future) of water demand as shown in Figure 1.1.3 (right figure). That is to say, the water resource is predominant against water demand; however, the water shortage in dry season is prominent by seasonal fluctuation as shown in Figure 1.1.3 and Figure 1.1.4.

Source: Project Team Figure 1.1.3 Transition of Water Demand (Left) and Comparison between Annual Water Demand and Water Resources (Right)

CTI Engineering International Co., Ltd. 1-3 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

LS: Livestock, IR: Irrigation, WS: Water supply Source: Project Team Right Figure is sum total of WRA2, 4, 5, 6, 9, 10, 11, 17 Figure 1.1.4 Comparison between Water Demand and Water Resources (Left: Dry Season, Right: Driest Month) Under the condition of water utilization, discussions on water usage are underway based on concepts of SWAp, which is the basic scheme of water utilization by each sector in Malawi. In addition, the water resources development and management is about to be enhanced based on the new Water Resources Law approved in March 2013. Under the circumstances, the Project Team considers that MoAIWD should be responsible for the water resources development and management after the dissolution of NWDP-II. Development partners such as the World Bank start to assist to facilitate the establishment of a basin management organization based on the Water Resources Act of 2013. From the result of analysis, the Project Team recommends that the enhancement of capacity of MoAIWD is essential for making policies and directions on water resources development and management. As a result of the studies on the condition of water resources development and management by MoAIWD, it seems that the capacity of MoAIWD is still insufficient for information management, planning and implementation about water resources development and management, although NWDP and NWDP-II have been supporting the implementation of water resources development projects. Especially, the most basic information management is not conducted properly due to the shortage of personnel and facilities, impeding the planning process. Therefore, resolution of the above-mentioned issues is recognized as the key element for basin management and water resources development and management in Malawi. 1.1.3 Challenges to the Formulation of Master Plan for Water Resources Development and Management

 (1) Potential for Water Resources Development The total volume of water resources per year is predominantly larger than the water demand in Malawi. However, 95 percent of rainfall concentrating in the rainy season causes prominent water shortage in the dry season. Since the water demand will quadruple in total volume per year in the target year 2035, the water shortage becomes more severe than the present condition. This situation is predicted based on the water balance simulation in Part I: Chapter 6, in consideration of the results of projection of major social elements in the Project. As a matter of fact, the water demand may increase corresponding to natural water distribution in the future; however, it can be said at any case that it is difficult to implement nationwide water resources development, management and allocation along various policies of MoAIWD unless a Master Plan is in place. In consultation with MoAIWD based on the study results so far collected, the Project Team share a common understanding that the utilization of abundant water resources in rainy season is most important. However, MoAIWD should realize that there are methods to adapt to seasonal fluctuations of water resources in terms of balance between water resources and locations of irrigable area (which is the

1-4 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Source: Project Team Figure 2.1.31 Water Demand and Project Implementation for NRWB

Source: Project Team Figure 2.1.32 Water Demand and Project Implementation for CRWB

Source: Project Team Figure 2.1.33 Water Demand and Project Implementation for SRWB

 (6) Recommendation for Capacity Development The following points are recommended for the capacity development of staff members of RWBs:  Operation of the Water Treatment Plant According to the field survey, flocculation and sedimentation were omitted in the treatment process even for the rapid filtration system in some schemes as explained in Part I: Chapter 5. Following the capacity development scheme is required from the operators of the treatment plan.  Non-Revenue Water

2-50 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Normal Cropping Pattern: Month Crop Dry Season 1 2 3 4 5 6 7 8 9 10 11 12 M aize Dry 17 52 131 194 169 4 M aize Wet 15 14 8 0 0 0 Rice Dry 117 258 134 194 216 83 Rice Wet 23 15 12 98 126 Cotton 6 13 35 75 28 0 0 Tobacco 21 6 6 7 38 56 43 Sugercane 35 21 46 111 137 106 32 36 85 112 60 Coffee 0 0 10 74 108 106 115 155 176 176 96 21 Tea 1 0 13 81 115 110 119 161 183 185 105 20 Application of Green Maize and Early Growing Rice: Month Crop Dry Season 1 2 3 4 5 6 7 8 9 10 11 12 Green M aize 17 52 131 0 M aize Wet 15 14 8 0 0 0 Early Rice 117 258 134 194 71 Rice Wet 23 15 12 98 126 Cotton 6 13 35 75 28 0 0 Tobacco 21 6 6 7 38 56 43 Sugercane 35 21 46 111 137 106 32 36 85 112 60 Coffee 0 0 10 74 108 106 115 155 176 176 96 21 Tea 1 0 13 81 115 110 119 161 183 185 105 20 Total 101 69 129 348 523 632 530 510 466 484 466 270 Note: The value is irrigation requirement in mm/month. Source: Project Team, WB, DOI Figure 3.2.1 Cropping Pattern/Irrigation Requirement of Chileka Climate Station

Total Investment Cost (mil USD) Normal Cropping : 1,247 mil USD Unit Cost (USD/ha) Modification : 817 mil USD Normal Cropping Modification Normal Cropping Modification 250 20,000 18,000 200 16,000 14,000 150 12,000 10,000 100 8,000 USD/ha 6,000

million USD 50 4,000 2,000 0 0 1 2 3 4 5 6 7 8 9 10 11 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 14 15 16 17 WRA WRA  Source: Project Team Figure 3.2.2 Economic Effects of Cropping Pattern Modification

3-6 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Source: MoAIWD & Project Team Figure 3.4.1 Relation between Cost of Earth Dam and Reservoir Volume

3.5 Project Cost and Implementation Program

3.5.1 Project Cost Estimate Summary of condition for cost estimation is shown as follows. Table 3.5.1 Conditions of Cost Estimation

Breakdown Conditions of Cost Estimate (1) Construction Cost Labor, material and equipment for construction (2) Physical Contingency 12% of the total sum of construction costs (3) Engineering Service 10% of the total sum of construction costs and physical contingencies 4% of the total sum of construction costs, physical contingencies and engineering (4) Administration Cost service costs Source: Project Team

The construction cost has been estimated by WRUs as shown in Table 3.5.3 to Table 3.5.11. Using construction cost and the above conditions, the project is estimated as summarized in the following table. The total project costs are 385 million USD and 817 million USD, in 2,500 ha/year and 5,000 ha/year, respectively. Table 3.5.2 Project Cost Estimate WRA 2,500 ha/year 5,000 ha/year WRA 2,500 ha/year 5,000 ha/year 1 55.60 111.36 10 - - 2 1.33 2.07 11 - - 3 21.74 44.63 12 - - 4 4.25 8.50 13 - - 5 22.05 46.35 14 66.75 157.85 6 - - 15 58.71 123.56 7 55.55 111.70 16 55.56 111.31 8 22.92 56.89 17 17.36 36.72 9 2.86 5.88 Total 384.68 816.82 Source: Project Team

CTI Engineering International Co., Ltd. 3-15 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Source: Project Team

Figure 3.5.2 Formulation of Implementation Plan based on Area and Cost

CTI Engineering International Co., Ltd. 3-27 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Present WITHOUT upstream water use

Reservoir Operation Dam Simulation WL Qin Qin = Qout + ⊿V ∆V = Qp + Qspill + ⊿V Upstream watershed Energy Calculation Powerhouse P: Power QSpill QP WITH upstream With future water E: Energy Future use of irrigation, water use River inflow (Qin) will be decreased Qout Irrigation water use Dam WL Qin ∆V When River inflow changed in future, power generation Upstream watershed will be affected

Qin : River inflow to the reservoir [m3/s] WL: Reservoir water level [masl.] P: Power ⊿V: Change of reservoir volume [M.m3] QSpill QP Qp : Power discharge for power generation [m3/s] E: Energy Qspill: Spilled discharge during flood [m3/s] 3 Qout : Outflow from the dam = Qp + Qspill [m /s] Qout

Source: Project Team Figure 4.4.1 Study Image of Evaluation of Hydropower Projects in consideration of Integrated Water Resources Management

4.4.2 Planning Concept of Evaluating Water Use Sufficiency for Hydropower Generation Safety levels of water use sufficiency for hydropower are set as described below to confirm the availability of power plants from the viewpoint of IWRM. Although the value of safety level is just one of the evaluation factors for the feasibility of hydropower development, the satisfaction ratio against this safety level could be utilized as not only the basic information for feasibility and detailed design studies but also as indicator to be examined as the availability for integrated water resources management in the future. In the following sections, such items are presented as (1) setting the safety level based on load factor, which will be set as 60% against maximum water/energy demand in consideration of projection of future load factors, (2) the methodology of estimating this safety level; and (3) target values of safety level, namely annual water demand volume for hydropower for each projects.  (1) Setting Safety Level based on Electric Power Demand and Load Factor Design safety level for each hydropower plant will be prepared based on load factor as follows. Load factor is set based on electricity demand projection. According to Table 4.4.1, load factor projection will be varied from 50% to 60%. Therefore, the load factor of 60% is applied in consideration of safer side for evaluation of water use sufficiency in the Project. Load factor is calculated by the following formula:

Where; Pave : Annual average power demand [MW]

E : Annual Energy Demand [GWh/yr]

4-10 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

MW: Megawatt, Mega = 1,000,000 GWh: Gigawatt-hour, Giga = 1,000,000,000

Table 4.4.1 Projected Electric Power Demand and Load Factor

Item Peak Demand [MW] Energy Demand [GWh] Load Factor [%] Case 2020 2025 2030 2020 2025 2030 2020 2025 2030 IAEA (reference) 1,374 2,425 4,274 6,522 11,789 20,910 54.2 55.5 55.8 IAEA (moderate) 1,257 2,141 3,622 5,743 9,871 16,616 52.2 52.6 52.4 MCC (accelerate) 660 1,234 2,166 3,093 6,058 10,441 53.5 56.0 55.0 MCC (reference) 543 950 1,532 2,680 4,981 7,931 56.3 59.9 59.1 Average of IAEA & 959 1,688 2,894 4,418 7,965 13,529 52.8 54.3 53.7 MCC Source: IAEA 2011: International Atomic Energy Agency (IAEA), Malawi Energy Demand Assessment Report (Draft), 2011, MCC 2011: Millennium Challenge Corporation (MCC), Malawi Power System Project Studies – Phase II, Draft  (2) Estimation Method of Sufficiency for Hydropower Generation The safety level for hydropower to be discussed here will be evaluated based on annual river discharge volume (Unit: million m3/year [MCM/year]) available for hydropower generation. The safety levels for hydropower generation here are set by annual power discharge volume for each hydropower plant on the following basis:

Where, 3 Vsl : Safety level of Annual discharge volume for hydropower generation [M.m /year] Qpmax : Maximum Plant Discharge for the hydropower plant [m3/s] L.F : Load Factor (described in (1) above) These volumes mean the annual water demand volume for hydropower plants. According to IAEAiii, seasonal variation of electric power demand is not significant. Therefore, the safety level expressed as discharge (m3/s) can be estimated as or described above.  (3) Target of Water Use Sufficiency for Hydropower Generation Water use sufficiency for hydropower generation is evaluated in consideration of safety level which is estimated by using water balance simulation. Based on the methodologies described above, target water demand and safety level for each hydropower plant are summarized below. According to these values in the following table and water resource balance in the reservoirs derived in (1) and (2) above, water use sufficiency for hydropower generation for each hydropower plant will be evaluated based on annual power discharge volume (million m3/year). Table 4.4.2 shows sufficiency levels of each project from the viewpoint of annual water demand for hydropower generation (M.m3/yr).

CTI Engineering International Co., Ltd. 4-11 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

 (2) Evaluation Results based on Energy Production and Capacity Factor In addition to the result shown in (1) above, hydropower projects were evaluated by capacity factors for energy production. Capacity factors are more practical indicators for evaluating hydropower projects both for run-of-river type and reservoir regulating type. Load factor introduced in item (2) is an indicator from power demand side. On the other hand, capacity factor is an indicator from power supply side, derived from the formula below.

Since power generation and energy generation are based on power discharge volume, or water levels of the reservoir, the trend of the evaluation results on capacity factor presented here is almost the same as (a) valuation results on power discharge volume. Hydropower projects except for the Songwe River (WRA-9) and the Dwambezi River (WRA-16) are judged as feasible. For projects in WRA-9 and WRA-16, studies for optimizing design parameters in feasibility studies will be necessary to proceed hydropower development. Table 4.4.4 Evaluation Result for Hydropower (Energy Production and Capacity Factor)

Capacity Factor (C.F.) [%] WITH 2035 demand WITHOUT other demand Simulation Result Simulation Result (without upstream Developemt Plan (with 2035 upstream demand) water demand) S Annual Installed Annual Capacity Factor Capacity Factor af C.F Annual Average Average Capacity Ene rgy (2035 Demand) (Natural et [%] Ene rgy [GWh/yr] Ene rgy [MW] [GWh/yr] [%] Condition) [%] y No. WRA Name [GWh/yr] L (5) = (7) = (1) (2) (3) (4) (6) (4)/∑(1) ** (6)/∑(1)** 13 1 Kholombidzo 170 1,415 95.0 1,414.8 * 95.0 1433.5 96.3 # 14 2 Nkula 130 1,086 95.4 1,041.1 * 91.4 1055.8 * 92.7 # 15 3 WRA 1 Tedzani 110.7 949 97.9 863.8 * 89.1 881.0 * 90.8 # 16 4 Mpatamanga 228 1,156 57.9 1,634.4 81.8 1701.6 85.2 # 17 5 Kapichira 163.8 1,326 92.4 1,268.1 * 88.4 1315.6 * 91.7 # 1 6 Mbongozi 55 176 36.5 438.5 91.0 463.7 96.2 # 2 7 Malenga 62 152 28.0 487.0 89.7 541.2 99.7 # WRA 5 3 8 Chasombo 55 159 33.0 332.5 69.0 357.0 74.1 # 4 9 Chizuma 50 122 27.9 389.1 88.8 407.5 93.0 # 8 10 Rumphi 10 36 41.1 61.4 70.1 69.3 79.1 # 6 11 WRA 7 Henga_Valley 28 137 55.9 199.9 81.5 223.7 91.2 # 7 12 Lower_Fufu 100 530 60.5 801.2 91.5 859.9 98.2 # 10 13 Bupigu 32 110 39.2 117.9 42.1 118.6 42.3 # 11 14 WRA 9 Sofwe 159 634 45.5 711.3 51.1 719.2 51.6 # 12 15 Manolo 148 596 46.0 661.4 51.0 668.0 51.5 # 18 16 WRA 14 Zoa_Falls 37 125 38.6 192.9 59.5 205.2 63.3 # 5 17 WRA 16 Chimgonda 50 191 43.6 210.2 48.0 237.0 54.1 # 9 18 WRA 17 Wovwe 4.35 38 100.0 27.2 * 71.3 32.3 * 84.7 # # Total 1,592.9 8,938.0 64.1 10,852.9 77.8 11,290.2 * : Simulated annual average energy is lower than the planned value

** Capacity Factor (C.F.) = Annual Average Energy [GWh/yr] / (Installed Capacity [MW] x 24[hr] x 365[day] /1000) x 100 [%] # Annual Average Energy [GWh/yr] = ∑{E (t) [GWh/day] x 365 [day]} / 30 [year] Energy: E (t) [GWh/day] = P (t) [MW] x 24 [hr/day] P (t) = 9.8 x C x Hg (t) x Qp (t) / 1000 [MW] Hg (t) : Gross head [masl.] = "Reservoir Water Level (changes daily)" - "Tail Water Level (constant)" Qp : Power discharge [m3/s] C : Combined effeciency in consideration of Head loss C = Pmax / 9.8 / Hg / Qmax x 1000 = Pmax / 9.8 / (FSL - TWL) / Qmax x 1000, <--- Pmax = 9.8 x C x Hg x Qmax / 1000 FSL: Full Supply Level [masl.], TWL: Tail Water Level [masl.], Qmax: Maximum Plant Discharge [m3/s] Source: Project Team

4-14 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. Newjec Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi ensure that resilience to disasters is built at national, local and community levels in the National Disaster Risk Management Policy. Therefore, flood disaster risk management should also be integrated with the National DRM and countermeasures should be done involving all stakeholders from government units and civilian groups. In this context, an integrated flood management (IFM) in Malawi should be recommended and supposed by strategies explained in item (2). The integrated management of land and water is very important for the river basins in Malawi. The IFM plan should aim to mitigate flood damage for all the flood inundation areas. However, the flood damage area is too extensive and scattered to manage. Efficiency of large-scale structural measures that aim to deal with floods in Malawi may be very low because the flood damaged areas are less developed and less populated. Therefore, appropriate flood management made of the best mix of structural and non-structural measures should be applied to build a society resilient to floods. 5.2.2 Flood Conditions and Strategies for Flood Management

 (1) Flood Prevention and Mitigation in Habitual Flood Damage Area Investigations and analysis to find out vulnerable areas have been carried out by the Malawi Government and in the Project. In the next stage, more detailed study and implementation of measures should be done to mitigate and prevent flood damage in habitual flood areas. The measures should consist of structural and non-structural measures in consideration of climate change impacts and cost-benefit. The characteristics of habitual flood areas is described below. The major flood prone districts in Malawi are the Karonga, Salima and Nsanje districts. For instance, flood disasters in Karonga District are due to swollen rivers, rising of water level in the lake, water stagnation in low lying areas and ground saturation especially on wetlands (Karonga Contingency Plan 2010), whereas in Salima and Nsanje, floods are reported to be due to the swelling of rivers and come from upland areas in the interview survey of the Project. The frequency of flood is presented in Figure 4.3.1. Most of the floods that have caused damage are the flash floods which normally come along with no alert message and even cause severe damage when experienced at night. In Karonga, floods tend to occur more often in the northern and southern parts of the district while floods that are experienced in Salima are due to the swelling of the Linthipe and Lifidzi rivers. On the other hand, floods experienced in Nsanje are either due to over-topping of the Ruo or Shire rivers in the junction.

Figure 5.2.1 Flood Frequency of Over 40-Year Return Period in Districts Flood disaster damages and frequency have increased in the recent years due to effects of human activity, catchment destruction and river-line cultivation. The frequency is shown in Figure 5.2.1. Average return period in such floodplains has been reported to have decreased to almost less than half in the past three 5-4 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi promote enjoyment of the asset by all beneficiaries, and the construction of small dams and diversion of water in rivers for development of irrigation shall take into account catchment protection measures. In line with this, the water resources development should consider the watershed’s conservation for sustainable development to prevent catchment degradation. Forest is important for watershed conservation and it should be managed with the participation of communities. 6.2.3 Land Cover Comparing land use in 1990 and 2010, the deforestation occurs in the northern region, along Lake Malawi and the Shire river basin. Forest land decreased from 28 percent to 26 percent in twenty years. On the other hand, cropland increased from 61percent to 63 percent. Most of the land in Malawi is cropland and forest land is not large. With consideration of land use condition and deforestation, it is important to conserve forest land.

㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻠 㻝 㻝 㻞 㻠 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻠 㻝 㻞 㻞 㻞 㻠 㻝 㻝 㻞 㻞 㻞 㻠 㻝 㻝 㻝 㻞 㻞 㻤 㻝 㻝 㻝 㻞 㻝 㻤 㻝 㻝 㻞 㻤 㻝 㻝 㻤 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻠 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻠 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻠 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻠 㻝 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻤 㻝 㻞 㻤 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 9 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 9 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻤 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻠 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻞 㻝 㻞 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻠 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻤 㻞 㻞 㻤 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻠 㻤 㻞 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻠 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻠 㻤 㻞 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻠 㻞 㻞 㻤 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻤 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻤 㻤 㻞 㻞 㻞 㻞 㻠 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻠 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻤 㻤 㻞 㻞 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻤 㻞 㻞 㻞 㻝 㻝 㻠 㻞 㻤 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻝 㻝 㻠 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻟 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻠 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻞 8 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻠 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 8㻞 㻞 㻝 㻞 㻞 㻞 㻠 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻠 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻠 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻠 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻞 㻞 㻞 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻞 㻞 㻞 㻞 㻝 㻠 㻝 㻝 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 Land Use in 1990 Land Use in 2010 㻠 㻞 㻞 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻠 㻠 㻤 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻠 㻞 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻠 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻠 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻤 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻠 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻝 17 㻞 㻞 㻞 㻤 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻞 㻠 㻤 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻤 㻝 㻝 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻤 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻝 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻤 㻤 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻝 17 㻞 㻞 㻞 㻤 㻝 㻝 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻠 㻞 㻞 㻞 㻤 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻞 㻤 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻞 㻤 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻠 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻞 㻤 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻠 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻝 㻝 㻞 㻠 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻝 㻞 㻠 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻞 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻝 㻠 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻝 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻤 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻞 㻝 㻞 㻤 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻞 㻤 㻞 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻤 㻞 㻞 㻤 㻤 㻤 㻤 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻤 㻞 㻞 㻤 㻝 㻞 㻝 㻠 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻝 㻞 㻞 㻠 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻠 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻤 㻞 㻝 㻝 㻝 㻠 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻠 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻠 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻝 㻤 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻞 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻞 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻝 㻝 㻤 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻤 㻤 㻞 㻝 㻞 㻝 㻝 㻤 㻞 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻤 㻤 㻤 7 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻤 㻝 㻝 㻝 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻤 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞7㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻤 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻤 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻞 㻤 㻞 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻤 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻝 㻞 㻞 㻝 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻟 㻞 㻞 㻝 㻞 㻞 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻟 㻝 㻝 㻝 㻞 㻠 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻟 㻤 㻝 㻞 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻝 㻤 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻟 㻟 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻤 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻞 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻤 㻞 㻞 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻤 㻞 㻤 㻞 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻝 㻞 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 16 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 16㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻠 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻤 㻞 㻞 㻝 㻝 㻞 㻝 㻤 2 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻤 㻠 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻤 㻤 㻠 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻝 㻤 㻤 㻤 㻝 㻠 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻝 2 㻠 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻝 㻤 㻤 㻤 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻝 㻠 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻤 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻤 㻤 㻠 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻤 㻤 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻠 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻠 㻞 㻠 㻠 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻞 㻝 㻞 㻞 㻞 㻤 㻤 㻝 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻠 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻞 㻝 㻞 㻞 㻞 㻤 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻤 㻤 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻤 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻠 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻠 㻠 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻤 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻠 㻠 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻞 㻤 㻞 㻝 㻝 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻠 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻤 㻞 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻤 㻞 㻞 㻞 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻤 㻞 㻞 㻤 㻞 㻞 㻝 㻤 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻤 㻤 㻞 㻤 㻞 㻤 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻤 㻞 㻤 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻤 㻞 㻞 㻤 㻤 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻤 㻞 㻞 㻤 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻤 㻤 㻞 㻤 㻞 㻞 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻤 㻞 㻞 㻞 㻞 㻞 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻤 㻞 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻞 㻞 㻞 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻞 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻞 㻞 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻠 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻝 6 㻠 㻞 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻠 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 6 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻠 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻠 㻞 㻞 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻝 㻞 㻝 㻠 㻠 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻠 㻠 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻤 㻤 㻝 㻤 㻞 㻞 㻝 㻞 㻤 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻝 㻠 㻠 㻝 㻝 㻤 㻤 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻤 㻤 㻝 㻝 㻤 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻞 㻝 㻝 㻝 㻤 㻝 㻝 㻤 㻤 㻝 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻤 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻤 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻤 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻤 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻤 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻤 㻤 㻝 㻝 㻤 㻤 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻤 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻤 㻤 㻤 㻝 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻠 㻞 㻞 㻞 㻤 㻝 㻝 㻝 㻤 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻠 㻠 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻤 㻠 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻤 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻤 㻝 㻤 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻠 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻤 㻤 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻤 㻤 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 5 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 5㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻤 㻠 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻠 㻞 㻞 㻞 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻠 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻠 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻠 㻞 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻠 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻠 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻠 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻤 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻠 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 15 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝15㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻟 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻟 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻟 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻟 㻟 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻟 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻤 㻤 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻤 㻝 㻤 4 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤4㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻤 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻤 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻤 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻠 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻤 㻝 㻝 㻞 㻞 㻝 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻝 㻝 㻞 㻞 㻝 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻝 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻤 㻞 㻞 㻞 㻠 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻞 㻞 㻝 㻝 㻝 㻞 㻤 㻝 㻝 㻤 㻝 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻤 㻝 㻞 㻞 㻝 㻞 㻝 㻤 㻤 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻤 㻝 㻝 㻤 㻝 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻤 㻝 㻞 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻞 㻤 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻝 㻞 㻞 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻤 㻤 㻤 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻝 㻞 㻝 㻤 㻤 㻤 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻞 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻤 㻤 㻤 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻤 㻤 㻤 㻝 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻠 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻞 㻝 㻤 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻤 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻝 㻞 㻝 㻝 3 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 3㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻠 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻠 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻞 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻠 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻤 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 10 㻠 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 10 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻤 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻤 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻞 㻠 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻠 㻠 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻠 㻠 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻟 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻠 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻯㼞㼛㼜㼘㼍㼚㼐 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻠 㻠 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻠 㻠 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻟 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 11 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 11 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻝 㻞 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻲㼛㼞㼑㼟㼠㼘㼍㼚㼐 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻞 㻞 㻝 㻤 㻤 㻝 㻤 㻝 㻠 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻞 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻤 㻞 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻝 㻠 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻝 㻞 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻠 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻤 㻝 㻤 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻤 㻝 㻞 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻠 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻠 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻤 㻝 㻤 㻤 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻤 㻠 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 1 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻤 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻤 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻟 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻟 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 1 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻟 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻟 㻟 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻤 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻟 㻟 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻟 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻟 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻟 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻞 㻝 㻝 㻟 㻟 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻟 㻟 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻟 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻟 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻿㼑㼠㼠㼘㼑㼙㼑㼚㼠㼟 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻠 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻠 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 2 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻠 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝2㻝 㻤 㻝 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻠 㻞 㻞 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻞 㻞 㻝 㻝 㻳㼞㼍㼟㼟㼘㼍㼚㼐 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻞 㻤 㻤 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻞 㻞 㻝 㻝 14 㻞 㻞 㻝 㻝 㻝 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻤 㻤 㻞 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻤 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 14㻝 㻞 㻤 㻤 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻤 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻝 㻞 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻞 㻞 㻝 㻝 㻤 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻤 㻞 㻞 㻞 㻞 㻝 㻤 㻤 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻟 㻝 㻤 㻝 㻞 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻤 㻝 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻤 㻞 㻝 㻞 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻤 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻻㼠㼔㼑㼞㼘㼍㼚㼐 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻠 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻞 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻝 㻠 㻝 㻞 㻞 㻞 㻞 㻝 㻠 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻠 㻠 㻝 㻞 㻞 㻞 㻝 㻝 㻠 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻠 㻝 㻝 㻝 㻞 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻟 㻟 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻤 㻝 㻝 㻝 㻝 㻤 㻝 㻝 㻤 㻤 㻝 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻝 㻝 㻤 㻤 㻝 㻝 㻤 㻤 㻤 㻝 㻝 㻤 㻤 㻝 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 㻤 Source: Project Team Figure 6.2.4 Land Use Change from 1990 to 2010

6.2.4 Assessment of Forest Reserves Figure 6.2.5 shows that there has been a consistent depletion of forest cover in Malawi which has not been significantly addressed in recent years. Nevertheless, it indicates that there have been some notable efforts to build the forest cover although presumably not proportionate. The main keys contributing to the forest cover loss include poverty, population growth, low literacy levels and agricultural expansion. Some of the forests where depletion is very eminent include the Michiru mountain forest reserve in Blantyre, the Marabvi forest reserve in Chiradzulu, the Chimaliro forest reserve in Kasungu District and the Thyolo forest reserve in Thyolo District.

6-6 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Kamuzu DamⅡ,QIORZ 0RQWK0D[LPXP ']DODQ\DPD)RUHVWODQG 

 10 % increase

  0P

                                                  

                    

Source: Project Team Figure 6.2.7 Inflow at Kamuzu Dam II (Monthly Maximum)

6.2.6 Sediment Survey in Pilot Basin Present condition and issues on sediment runoff are investigated through survey and analysis targeting some pilot basins.  (1) Methodology of Survey In the Project, sediment runoff survey was carried out in the following manner: Objective: To investigate sediment runoff condition in selected target basins with various forest coverage ratio. Survey Method: Actual sediment runoff volume is measured at the lower stream ends of several basins with various ratio of forest coverage, and the results are compared in order to confirm effect on forest coverage to sediment runoff. The survey is carried out in the following procedure: (a) sampling river water in both rain and dry seasons at sites located at the lower stream ends in the selected target basins; (b) estimating volume of wash load and suspended sediment by analyzing SS (suspended solid) of samples; (c) measuring river discharge at the same time as sampling; (d) investigating relationship between sediment concentration and river discharge; and (e) comparing forest coverage with sediment concentration and river discharge. Selecting target basins and sampling sites: The target basins were selected comparing forest coverage shown in Figure 6.2.4. Considering the deforestation and forest degradation, the target basins are narrowed down to the central region of WRA-3, 4, 5 and 6. In addition, sampling and discharge measurements are carried out at the sites, which are the existing operational gauging stations as well as water quality monitoring points, considering availability of existing data and repeatability of survey. Consequently, they are set as a prerequisite for selecting target basins where proper gauging station exists in and around lower stream end of relevant basins. Further, the following are also considered for selection: (a) existence of past discharge data; (b) existence of rating curve developed in recent years; and (c) availability of discharge measurement in both low and high flows. Finally, three stations (4E1, 5F1 and 6C1) and related basins are selected for investigating effects on forest coverage ratio to sediment runoff as shown in Table 6.2.2. Moreover, an additional station of 4D21 is also selected as a survey site since future detailed investigation including historical change of forest coverage may be available by cooperation with ongoing forest project by JICA. The upper stream area of 4D21 is a target area of the forest project and 4D21 also fits into most of the above-mentioned condition for the selection.

6-8 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

9B 9B 9B 9A 9A 9A 17A 17A 8A 17B 17A 8A 17B 8A 17B 17C 17C 17C 7H 7H 7F 7H Ratio of 7F 7F 7G 7G Precipitation 7C 16G 7G Ratio of 7C 16G 7C 16G Fractured Slope Forestland 7E 7D Basement 7E 7D 7E 7D

7B 16F 7B 16F Precipitation 7B 16F Slope 7A Slope 7A 7A 16E Ratio of 16E 16E Forestland 6D 6D 15C 6D 15C 15C 6A 6C 5C 6A 6C 5C 6A 6C 5C 6B 6B 15B 6B 15B 15B 5D 5D 5F 5D 5F 5F 15 15 15 5E 5E 4F 5E 4F 4E 4F 4E 4E 4C 4C 4C 3F 3F 4D 4A 10A 3F 4D 4A 10A 4B 4D 4A 10A 4B 3B 4B 3B 3E 3B 3E 3C 3A 3E 3A 3C 3A 3D 3C 3D 3D 1T 1T 11A 1T 11A 1A 11A 1A 1A 1R 1R 1S 1R 1S 1S 2D 2D 2D 1O 1P 2C 1O 1O 1P 2C 1P 2C 1B 1B 1B 1M 2B 1M 1M 1C 1C 2B 1C 2B 1N 2A 2A 1N 2A 1N 1K 1E 14B 1K 1E 14B 1K 1E 14B 1L 14A 1L 1L 14A 14C 14A 14C 14C

1H 1F14D 1H 1F14D 1H 1F14D

1G 1G 1G

Gentle Steep Slight Severe 0%Slight 100%Severe Gentle0% 100%Steep GentleSource: Project Team SteepSlight SevereSlight Severe Figure 6.2.8 Slope, Precipitation and Ratio of Forest Land and Fractured Basement

Kamuzu DamⅠ Nkula Dam Kapichira Dam 1102 378 155 1100 376 150 1098 374 1096 145 1094 372 140 1092 370 1090 135

Elevation: H (m) 1983 Reservoir Volume(Mm3) 368 1973 Reservoir Volume(Mm3) 1993 Reservoir Volume(Mm3) 1088 Elevation: H (masl.) Elevation: H (masl.) 130 1086 2001 Reservoir Volume(Mm3) 366 1996 Reservoir Volume(Mm3) 2004 Reservoir Volume(Mm3) 1084 364 125 0 1 2 3 4 5 6 0 1 2 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Cumulative Volume: V(M m3) Cumulative Volume: V(M m3) Cumulative Volume: V(M m3)

Source: Project Team Figure 6.2.9 Elevation-Volume Curve at Kamuzu I, Nkula, Kapichira Dam

CTI Engineering International Co., Ltd. 6-11 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Sediment Volume-Slope Sediment Volume-Precipitaion 4,000 4,000 3,500 3,500 3,000 3,000 2,500 2,500 2,000 2,000 1,500 1,500 1,000 1,000 500 Sedimentation (m3/km2/year) Sedimentation

Sedimentation (m3/km2/year) Sedimentation 500 0 0 0 1 2 3 4 0 500 1000 1500 2000 Slope (%) Precipiation (mm/) Sediment Volume-Ratio of Fractured Basement Sediment Volume -Ratio of forestland

4,000 1,400

3,500 1,200 3,000 1,000 2,500 800 2,000 1,500 600 1,000 400 500

Sedimentation (m3/km2/year) Sedimentation 200 Sedimentation (m3/km2/year) Sedimentation 0 0 0.2 0.4 0.6 0.8 0 0 0.1 0.2 0.3 0.4 0.5 Ratio of Fractured Basement Ratio of Forest Source: Project Team Figure 6.2.10 Relationship between Factors and Sediment Volume

6-12 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Slight Severe

Existing and Planned Hydropower Dam

Source: Project Team Figure 6.2.11 Estimated Sediment Yields in Malawi

6.2.8 Sediment and Weed Management at the Hydropower Dams on the Shire River The three hydropower dams on the Shire River, the Nkula Dam, the Tedzani Dam, the Kapichira Dam, have siltation problems which cause the reduction of storage capacity. To resolve these problems, scouring is conducted at all three dams. However, scouring is not effective because it removes only sediment in main river channel. Among the hydropower dams at the Shire River, the Nkula Dam is most affected by sediment deposition. At the Nkula Dam, dredging and pumping are conducted as measures against sediment deposition. Pumping is done at 16 hours per day intermittently by pumping up sediment from the reservoir and storage at the land of lower stream. On the other hand, the removal of weeds is conducted by human labor. The flow of weeds and plants from the Shire River had decreased because plants at upper stream are removed at the Kamuzu Barrage. However, the problem is the flow of weeds from the tributaries. (See picture below.)

CTI Engineering International Co., Ltd. 6-13 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

MinisterMinister for Water responsible Development for Water Affairs Water Tribunal These will be established according to Water Boards MoAIWDMoWDI NWRA the new Water Resources Act

Dept.of Dept. of Dept. of Dept. of Dept. of Dept. of Water Water Sanitation Admin Irrigation Planning Resources Supply

District International Proposed Coordination Cooperation Section Office (SWAp)

Source: Project Team Note: Water Tribunal will be set up according to the National Water Resources Act of 2013 Figure 7.2.2 Proposed Organizational Structures of MoAIWD and NWRA

  1) Institutional Framework for the National Resources Authority The concept of the National Water Resources Authority (NWRA) was made out of proposals to revise the institutional management of water resources towards a more integrated management for the national water resources. The management by river basin is a step towards the IWRM. The initial concepts were stipulated in the Water Resources Policy of 1995, which made the establishment of the NWRA legally binding. Thereafter the Water Resources Act drafted the concepts to establish a policy forming body that is responsible to the Parliament. The Parliament has to approve the process before the Act is thoroughly put into force. In the draft Water Resources Act, the body was suggested to be restructured from the existing Water Resources Board and to be named as the National Water Resources Board. Further analysis was undertaken with the project “Strengthening of the Water Resources Board, January 2003”, whereby the name was proposed to be “National Water Resources Authority” and a rough outline of the organizational structures was proposed. The new Water Resources Act was enacted in 2013 in which detailed mandates of the Authority are elaborated. This gives further indications how the Authority to be established should be composed. In the same token, the public sector regulatory entities have already been operationalized for the telecommunication and energy sectors in Malawi to control public goods and resources for the benefit of the public at large. These sectors have also established similar regulatory authorities. Two regulatory authorities are taken as example to propose an organogram for the NWRA.  Malawi Energy Regulation Authority (MERA)  Malawi Communication Regulation Authority (MACRA) Taking these examples of other entities as a reference as well as considering the organizations’ powers and functions that the NWRA is expected to perform, an organizational structure for NWRA is illustrated in Figure 7.2.3. This proposed structure is an initial organogram and needs to be developed further as it requires.

CTI Engineering International Co., Ltd. 7-13 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Board of Members

Chief Executive Officer

Auditor

Direction of Direction of Direction of Water Catchment Area Finance and Licensing Management Administration

Catchment Pollution Catchment Finance Registration Discharge Surface Ground Area Control Area Office Licensing Water water Protection Coordination Licensing Licensing ICT

HR 17 Catchment Area Management Billing Committees

Surface Ground Discharge Water Water Billing Billing Billing Source: Project Team Figure 7.2.3 Proposed Initial Organizational Structure of NWRA Table 7.2.1 shows the proposed staffing plan for the NWRA. The proposal is made only for minimum core competencies. Other posts with general skills are recruited according to the requirements. Table 7.2.1 Proposed Staffing Plan of NWRA

Post Specialization No. of Posts CEO Management/water resources 1 Auditor Management/Finance 1 Director of Catchment Area Management of Catchment Management 1 Management Committee Environmental science, water resources, civil Catchment Area Protection 2 engineering Pollution Control Water Quality, Environmental science 2 Water resources/environment/forestry Catchment Area Coordination Hydrogeology 3 Civil Engineering Planner Director of Finance and Finance Administration 1 Administration Organizational Management Finance Financial Administration 2 ICT Computer Science, Programming 1 HR HR 1 Billing Billing, Accounting 2 Director of Water Licensing Hydrology, Water Resources 1 Registration Officer Hydrology, Water resources 2 Discharge Licensing Water Quality, Environmental Sciences 2 Surface Water Licensing Hydrology, Water Resources 2 Groundwater Licensing Hydrology, Groundwater 2 Principal Office Manager Administration/Human Resources 1 Community Relations Officer Public Relations/Media/Journalism 1 Total 27 Source: Project Team

7-14 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

Should needs arise, sub-catchment committees can be established. The establishment of such committees has to undergo the following processes. A Secretariat that will look after all of the 17 river basins has to be placed at the headquarters of the NWRA. Table 7.2.3 Proposal for Catchment Management Committee Establishment Process

Process Activities 1. Selection of members Select members 2. Establishment of Secretariat Establish a Secretariat at each basin Draw a business management plan/management 3. Strategic plan for management strategy either by the Authority or CMC 4. Consideration of funding sources Draw a financial plan Coordinate stakeholders in relation to the 5. Catchment Area Coordination catchment area management 6. Pollution Control Monitor the data and decide actions if needed 7. Manage abstraction and discharge Licensing in collaboration with the central activities NWRA office Find funding sources to undertake water resources 8. Conduct or initiate water resources conservation activities and works and implement conservation activities and works the activities Source: Project Team

The NWRA initiates the coordination or production of the catchment management strategy for the 17 basins. These plans may be implemented with support from the district councils, MoAIWD and other ministries, NGO/CBOs and private sector.

Source: Project Team Figure 7.2.4 Potential Partners for Catchment Area Management

 3) Water Sector Wide Approach The structure of Sector-Wide Approach (SWAp) is established in order to strengthen a management system with participation of relevant stakeholders to the water sector. The management concept was sought in accordance with the guidelines from the Ministry of Finance (MoF) and the Ministry of Economic Planning and Development (MoEP&D) in 2008 and elaborated water pillars outlined in the Water Sector Investment Plan (2012). The current institutional structure is shown in Figure 7.2.5.

7-16 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Table 7.2.4 Road Map of National Water Resources Authority and Sector Wide Approach

WRA Time Frame Responsible Organ Time Frame Short Term Middle Term Long Term Prior WRA Program 2012-2020 2021-2025 2026-2035 Main Associate Project / Activities 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 National Water Resources Authority Business Plan/Operational Plan MoAIWD MoAIWD Financial Plan MoAIWD MoAIWD Catchment Area Management NWRA ditto Water Abstraction and Use NWRA ditto Control and Protection ofof WGroundwaterater Resources ditto ditto Prevention and Control of Water Pollution ditto ditto Government Waterworks ditto ditto Dams and Flood Management ditto ditto Water Charges and Financial Provisions ditto ditto Water Trust Fund ditto ditto Associations of Water Users ditto ditto National Water Resources Master Plan Master Plan formulation MoAIWD NWRA Implementation of Works MoAIWD NWRA Master Plan update NWRA NWRA Sector Wide Approach Fiduciary Framework MoAIWD NWRA Institutional Framework MoAIWD NWRA Sector Monitoring and Evaluation MoAIWD NWRA Programe of works MoAIWD NWRA Source: Project Team  (3) Development of Planning The Ministry needs to develop its capacity to formulate a strategic policy and navigate the activities of national water resources management. The current Planning Section is placed under the Department of Administration. The capacity of this section should be enhanced to the level of the Department that can coordinate the policy proposals from different technical departments within the Ministry and play the leading role to formulate strategic planning of the water sector. Under the Department of Planning, two relevant sections are included; namely, the District Coordination Section and the International Cooperation (SWAp) Section.   1) District Coordination Section This section will be in charge of coordinating activities of the district offices. The District coordination section in the Ministry should be able to coordinate a standardized administrative communication system and activity monitoring with all district offices throughout the country. The section will be in charge of monitoring and giving guidance to district offices in carrying out their duties, assist in data gathering and filing as well as records keeping. At present, communications are made directly through the concerned department for projects or government interventions. A standardized administration system guided by the central level will help update the district capacity and monitor the district office activities. In particular, there are projects implemented without informing the Ministry and this causes supervision and monitoring of water resources management off-handed. The District Coordination Section will thus help facilitate the functions of district offices. Under this reform, the roles and responsibilities of the three regional offices will be integrated with those of district coordination offices and the central government, paving the way for the dissolution of regional offices.

CTI Engineering International Co., Ltd. 7-19 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

 (2) Village Area

 1) Conditions of Water Supply Water supply scheme for villages is essentially not formulated uniformly and it requires deep considerations of local and social conditions including population, tradition and economy, and natural conditions including topography, geology, and ecology of each village, village group or district. However, the Master Plan has limitations to consider planning individual localized areas. Accordingly this report uniformly sets the design water use (water volume per person, day) and the general population served water premised on gaining water from boreholes as follows:  Design water use : 36 liters/person/day  Borehole serves : 250 people  Supply time : 8 hours/day  Design consumption : 0.01875 m3/min = 18.75 liter/min  2) Borehole Placement Required water supply is covered by individual borehole which avoids interaction of other borehole’s drawdown. In this section, the most adequate distance is examined between boreholes on the conditions of the water supply mentioned above. According to the theory of Theis’s Unsteady Groundwater Flow, the influence distance in which one borehole influences groundwater table of the surround by pumping up is represented theoretically as the following formula;

(1) Where; s: drawdown Q: discharge rate T: transmissivity t: continuous pumping time r: distance from borehole S: storativity The above formula requires aquifer constants, transmissivity and storage coefficient. Transmissivity can be calculated according to Jacob’s linear analytical solution, and transmissivity indicates linear correlation to the specific capacities stored with large amount of numbers in the cardix arranged in NWRMP, 1986. Hence, approx. 3,000 values of the transmissivity converted from the specific capacities are available for the examination. On the other hand, regarding storativity defined as the water volume which an aquifer releases from storage per unit surface area per unit change in head, special pumping test using several observation wells is required. Unfortunately, it has never been carried out even once. Although there was no reliable basis for estimating storativities of aquifers in Malawi, a past studyiv predicted storativities ranging from 0.005 to 0.01 in the weathered basement and from 0.01 to 0.05 in the Quaternary alluvium. Therefore, the storativity of 0.0075 in the weathered basement and 0.03 in the Quaternary alluvium are adopted for the examination. The examination is the subject to WRA 1 and 4 as pilot area where the water demands are especially high and the typical aquifers, the Quaternary alluvium (AL) and the weathered basement (WB), are distributed widely. Drawdowns and influence distances are calculated on three (3) cases which vary transmissivities into the lowest, average and highest values in the confidence interval (significant level: α = 0.05) both WRA 1 and WRA 4. The results of the examination are shown in Figure 7.4.1.

7-34 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

..... (2)

Where, Qi :Discharge rate each well (i = 1, 2, 3…) T :Transmissivity R :Influence distance ri :Well diameter of each well rij :Interval between BH(i) and BH(j) H :G.W.L on “R” from a well hj :G.W.L in BH(j) (j = 1, 2, 3…)

Source: Project Team Figure 7.4.3 Influence Distance of a Well Group

The transmissivities substituted Influence into Distance Formula of(2) a Wellare T=7.0 Group m 2/day as representative value for the weathered aquifer (WB), T=20.0 m2/day as the lower value for the Quaternary alluvium (AL) and T=35.0 m2/day as the higher value for the AL aquifer in accordance with the statistic tendencies. The discharge rates from a well group in case of varying well numbers with each transmissivity mentioned above are calculated under the fixed conditions that R=1,000m, ri=0.08m, rij=10m, and (H-hj) named drawdown is set to 20m. The results of the examination are shown in Figure 7.4.4. 350 T=7m2/day T=20m2/day 300 T=35m2/day

250 Interval (m) : 10 200 Borehole Dia. (m) : 0.08 Influence distance (m) : 1,000 Drawdown (m) : 20 150

100

Discharge Rate perOne Borehole(m3/day) 50

0 0 5 10 15 20 Numbers of Boreholes Source: Project Team Figure 7.4.4 Relationship between Discharge Rate of each Well and Well Numbers The discharge rates per one borehole in a well group tend to decrease when well numbers increase. The aquifer which has higher transmissivity yields further larger amount of groundwater. The examination result indicates that the more numbers of well will cause a decline of well productivity of each well, but the water abstraction from a well group will become more effective in the higher permeable aquifer. The appropriate numbers of well in a group will be 3 to 5 in taking cost effectiveness of well construction and O&M into consideration. Long Term Prediction of Groundwater Fluctuation The continuous discharge with a large amount water volume by power pump will cause a fall of CTI Engineering International Co., Ltd. 7-37 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

groundwater table in the long term and the inadequate amount of taking water which exceeds discharge capacity of an aquifer will make dry-up in boreholes soon. Therefore, the long term conditions of groundwater should be predicted in order to sustain a constant water production. Figure 7.4.5 shows chronological changes of groundwater drops during 20 years in case of various transmissivities of aquifers and discharge rates. For general conditions of the examination, the static water level prior to pumping is set to G.L -5m uniformly and the screen depth is set to 25-30m in depth for WB aquifer, and 35-40m in depth for AL aquifer by taking into account the construction records of the existing borehole database. The groundwater table in the case of low transmissivity (T=7.0m2/day) and Q=70m3/day falls down to the upper end of the screen for WB aquifer in the brief span of several days, and the groundwater will run out within a year. In case of less than a half volume of the discharge rate (Q=30m3/day), continuous pumping will be sustained during 20 years in spite of low transmissivity. The high permeable AL aquifer has large capacity enough to yield groundwater for covering the demand. In case that the AL aquifer has T=35m2/day, the drawdown by pumping water 300 m3/day will not reach the upper end of the screen during 20 years, and the discharge rate of 200 m3/day will still hold smaller drawdown. Pumping Times (minutes) 1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 0.0

5.0

10.0

15.0

20.0

25.0 Depth of Screen Setting in WB aquifer 30.0

35.0

Dynamic Water Level Borehole(m) in Water Dynamic Depth of Screen Setting in AL aquifer 40.0

45.0

50.0 A day A month A year A decade

T=7(WB), Q=30m3/day T=7(WB), Q=70m3/day A point at which discharge volume will become decreasing T=20(AL), Q=70m3/day T=20(AL), Q=150m3/day T=35(AL), Q=200m3/day T=35(AL), Q=300m3/day A point at which groundwater will be exhausted in a borehole

Source: Project Team Figure 7.4.5 Chronological Changes of Groundwater Drop by Continuous Pumping

 3) Conceptual Development Scheme for Market Centers Aquifer characteristics are especially important because these strongly control water discharge of boreholes if massive groundwater is required for supply to market centers. In Malawi, the Quaternary alluvial (AL) aquifers tend to have high permeability superior to the weathered basement (WB) aquifers although the transmissivities largely vary at localities, thus the Shire river basin areas or the coast areas of the Lake Malawi where the AL aquifers are distributed widely are expected to include a lot of potential sites which can realize large scaled taking of water by well groups. On the other hand, the WB aquifers prevailing in most parts of Malawi generally have poorer transmissivities and these are difficult to be provided with mass-water supply facilities. In this context, the conceptual schemes in accord with aquifer types and the scale of population are suggested as tabulated in Table 7.4.2. Despite the social conditions, relatively small market centers which require the consumption rate less

7-38 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

The Server of Groundwater Division

Raw BH Records Boreholes Data Analysis & Evaluation (BH) PDF WRU BH Records For WISH GW EXCEL Monitoring ©IGS Summary Sheets Interpreting GW EXCEL Sheets EXCEL For WISH ©ESRI Rehabilitation Records Thematic Maps Borehole & Monitoring EXCEL, or other Formats Geology data each WRA Folder .SHP Hydro-geology Land-use Topographic Maps Groundwater Isopleth, etc. WRA1 Database of .SHP Groundwater Maps Point data Boreholes Resources (BH) EXCEL Sheets .SHP GW Rainfall Monitoring Records Other Features Social All Data regarding .SHP Hydrology Groundwater (GW) District boarders Reports Infrastructures, etc. (1) Raster Maps .JPEG, or Other Formats Reports (2) Reports(1): produced by Before INDEX Sheet MoWDI 2010 (EXCEL/ACCESS) Reports(2): submitted by Contractors After Reports (PDF or WORD) 2011 Folders every year

Source: Project Team Figure 7.4.8 Hierarchical Database System for Groundwater Management

  4) Standardized Information Format for Borehole Construction Numerous borehole reports of varying age have been stored haphazardly in the Groundwater Division. These reports were written in a variety of formats for every project, and most of the records were incomplete or suspected to be unreliable. In NWRMP, 1986, the borehole data cardex was introduced as the first standardized form for easy reference to basic borehole information. However, the cardex system had never been updated although the number of borehole constructions had rapidly increased during the 1990’s and 2000’s. Databases comprised of hard copies do not offer efficient data management any longer, and all borehole data are now required to be stored as electronic data. Thus the serial procedure of borehole construction has to become more systematic for efficient data processing in an established database. However, the borehole reports submitted by contractors have been made in their original formats and mostly as hard copies. More terribly, there is no information on the construction of a project. Consistent rules for borehole construction are required to ensure reliable information and realize a computerized database in MoAIWD. The minimum required rules are mentioned below for reference:  Any corporation or organization (hereinafter “the developers”) which desire to construct boreholes in Malawi shall apply to the National Water Resource Authority which has the water rights.  The developer shall submit an inception report which mentions detailed construction plans to MoAIWD. The inception report should not be obsessed with a fixed format, but the report shall

CTI Engineering International Co., Ltd. 7-45 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

 Feeding back the outputs and these evaluation of activities in the short and middle terms into the environmental water quality standards and guidelines  Continuing training of O&M in each water laboratory 7.6.3 Regime for Water Quality Conservation

 (1) Organization The Water Quality Service Division in MoAIWD has a Water Quality Sector as a subordinate organization. Its working foothold is mainly the central laboratory and almost all staff members are performing experiments in the laboratory. The Water Quality Sector submits a report on annual activities to the head office of MoAIWD, but the lab staff offers only raw data gained from water quality analysis, and besides they never can brainstorm to initiate useful suggestions through high interpretation of the analysis results. Indeed, nobody makes rigorous standards and guidelines for environmental water quality or systematic plans of water quality monitoring in Malawi. The problems relevant to water quality generally involve interdisciplinary studies. There are many chemical compounds which have unknown effects in the ecosystem or human health. The pollution issues in aqueous environments include a variety of factors. Harmful substances, pollution sources and paths, latency period in human body, etc., are extremely convoluted and beyond an individual’s understanding. Thus, in order to improve the environment and the monitoring schemes, the technical working group (TWG) for water quality monitoring involving several ministries, foreign cooperators and outer knowledgeable people should be done with supporting of NWRA (see Figure 7.6.1).

Ministry of Water Development and Irrigation

Ministry of Health Ministry of Agriculture and Food Security

Information Sharing TWG Providing Info & Feedback

Ministry of Natural For Resources Energy and Water Office of President and Environment Cabinet Quality

Ministry of Lands, Knowledgeable People: Housing and Urban University, Consultants, Development etc.

Foreign Cooperators: JICA, AfDB, World Bank, etc.

Source: Project Team Figure 7.6.1 Structure of future TWG for Water Quality

 (2) Environmental Water Quality Standards and Guidelines In Malawi, there is a large difference in water usage between urban areas and rural areas. Most of the rural inhabitants cannot use the treated water which city dwellers are blessed with. The Malawi Government has an obligation to supply safe water for everyone. However, the government cannot uniformly build the infrastructures for water supply in the rural areas at the same level as those in the urban areas. Therefore, the government has to make sure of the safety on water points, which have remained untreated, and improve the water quality if the water points exist where the drinking water possibly can be harmful to human health. In addition, aqueous environments give places of fishery, laundry, bathing, recreation and relaxation for people and these blessings of nature must be sustained. Environmental standards for water quality shall aim for the conservation of all aqueous environments. The improved TWG for water quality should formulate the environmental standards based on the latest scientific grounds, monitor the

CTI Engineering International Co., Ltd. 7-67 Oriental Consultants Co., Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan in the Republic of Malawi Final Report: Part II Master Plan

Source: MoAIWD & Project Team Figure 8.1.4 Relation between Cost of Earth Dam and Reservoir Volume 8.1.3 Summary of Project Cost (1) Summary of Project Cost In this Master Plan, the proposed projects are classified into four sectors; namely, Integrated Project, Water Supply for Four Cities, Water Supply for Towns and Rural Water Supply; and Water Supply for Agriculture and Irrigation. The summary of project cost and breakdown for each term of the proposed projects are shown in Table 8.1.9.

CTI Engineering International Co., Ltd. 8-9 Oriental Consultants Co. Ltd. NEWJEC Inc.

Project for National Water Resources Master Plan Final Report: Part II Master Plan in the Republic of Malawi

300

250

200

150 y = 1.4949x - 2778.6 100 2005 USD) 2005 R² = 0.4535

capita GDP (constant 50 -

Per 0 1990 1995 2000 2005 2010 Year

Source: Project Team based on the World Bank data Figure 8.2.1 Regression Analysis of Per-capita GDP y = 1.4949x - 2778.6 R2 = 0.45348 Where; x: year y: per-capita GDP (constant 2005 USD) in year x R2: determination coefficient By using this result, future per-capita GDP and its real growth rates are projected as follows: Table 8.2.2 Future Projections of Per-capita GDP and Real Growth Rate

2012 2015 2020 2025 2030 2035 Per-capita GDP 229.14 233.62 240.10 248.57 256.05 263.52 (constant 2005 USD) Growth Rate 0.66% 0.64% 0.62% 0.61% 0.59% 0.57% Source: Project Team based on the World Bank data

Willingness-to-Pay (WTP) According to JICA (2002), "Study on Economic Evaluation Methodology for Development Study, Part 9. Water Supply " (Japanese), various research results of WTP for supplied water by using the Contingent Valuation Method (CVM) fall in the range of 3-5% of disposable income. Thus, the Project employs 5% of disposable income. The Project uses consumption data of The National Statistics Office (NSO), "Integrated Household Survey 2010 - 2011" instead of disposal income due to availability of data.

8-50 CTI Engineering International Co., Ltd. Oriental Consultants Co., Ltd. NEWJEC Inc.