Teratomorphism of Pollen of Larix Sibirica Ledeb. (Pinaceae Lindl.) in the Arctic Urbanized Territory

Total Page:16

File Type:pdf, Size:1020Kb

Teratomorphism of Pollen of Larix Sibirica Ledeb. (Pinaceae Lindl.) in the Arctic Urbanized Territory CZECH POLAR REPORTS 8 (1): 24-36, 2018 Teratomorphism of pollen of Larix sibirica Ledeb. (Pinaceae Lindl.) in the Arctic urbanized territory Natalia Vladimirovna Vasilevskaya*, Anna Dmitrievna Domakhina Murmansk Arctic State University, Department of Natural Sciences, Captain Egorova 15, Murmansk, 183 038, Russia Abstract This article presents data of palynological research of Larix sibirica Ledeb. (Pinaceae Lindl) in the Arctic climate of Murmansk city, located in the Far North of Russia. The purpose of this study is to research the teratogenesis of the Larix sibirica pollen in the conditions of the Arctic climate and technogenic pollution of the city of Murmansk and holding the palynoindication of the environment. In the tested samples of pollen of L. sibirica, five morphological anomalies of the development were defined: pollen with- out protoplast, with plasmolysed protoplast, with damaged exine, giant pollen grains and dwarfed. The proportion of teratomorphs in the samples varies from 76 to 81%, which is above the control values of 2.5 – 3 times. Most of the abnormal grains are represented by pollen with plasmolysed protoplast (58 – 64%) and without protoplast (11 – 18%). Giant, dwarf pollen grains and pollen with exine damage are much less common. High level of teratogenesis of L. sibirica allows us to draw a conclusion about the critical level of pol- lution of the city environment. Key words: palynomorphology, teratomorphism, Larix sibirica, pollution, Arctic DOI: 10.5817/CPR2018-1-2 Introduction Ecological palynology is one of the and functional changes in the male genera- youngest directions in palynological sci- tive system of plants for the indication of ence. Pollen can provide valuable informa- environmental pollution. It is known, that tion on plant phenology, ecophysiology, in conditions of ecological stress, the proc- population dynamics and gene flow (Savo- esses of teratogenesis are intensified and lainen et al. 2007). One of the main direc- the number of pathologies of pollen grains tions, leading in ecological palynology, is increases significantly. the study of the effect of pollutants of an Palynoindication of the environment on urbanized environment on the allergenic the basis of detection of teratomorphic pol- properties of pollen (Grundstrom et al. len is actively developing in Russia (Dzyu- 2017, Sedghy et al. 2018). At the present ba 2006). Studies are conducted on plants time, also various methodological approach- of different life forms – woody and herba- es are being developed to assess structural ceous, mainly in the boreal zone. Among ——— Received February 7, 2018, accepted April 24, 2018. *Corresponding author: N. V.Vasilevskaya <[email protected]> 24 N. V.VASILEVSKAYA et A. D. DOMAKHINA woody plants, teratomorphism of pollen is of Russia in conditions of urbanized ter- studied mostly in the following species: Pi- ritories and industrial pollution are investi- nus sylvestris (Elkina et Markovskaya 2007, gated by a number of researchers: Nosko- Erokhina et al. 2011, Vasilevskaya et Pet- va et al. 2004, Romanova et Tretyakova rova 2014), Tilia cordata, Quercus robur, 2005, Tretyakova et al. 2006, Dzyuba et Acer tataricum, Ulmus glabra, U. laevis al. 2008, Surso et al. 2012, Kalashnik et (Dzyuba 2006), Syringa josikae (Morozo- al. 2008, Kalashnik 2011, Tupitsyn et al. va et Vasilevskaya 2017). Among her- 2012, Noskova et Romanova 2013. baceous plants: Triticum sp. (Kozlova et The research was conducted in Mur- Zlotnikova 2014), Alopecurus pratensis, mansk, the world's largest non-freezing Dactylis glomerata, Plantago major, Che- port beyond the Arctic Circle (68° 58' N, nopodium albium (Dzyuba 2006) are used 33° 4' E). Murmansk is situated on a rela- for the same studies. Of the great interest tively narrow, slightly hilly valley, stretch- are researches of the processes of micro- ing from the north to the south along the sporogenesis in various species of coni- Kola Bay of the Barents Sea. The city is fers, which are prone to industrial pollu- located on four terraces and stretched for tion (Kalashnik et al. 2008, Kalashnik 25 km, with separate districts, divided by 2011). All the northern taiga species (Pi- hills and areas of natural vegetation. Mur- naceae) annually stably produce a num- mansk is in the Atlantic–Arctic zone of ber of anomalous pollen grains due to dis- temperate climate (Yakovlev 1972), which turbances in meiosis of microsporocytes is formed under the influence of the Ba- and endogenous microgametophytogenesis rents Sea and by the warm North Atlantic (Surso 2013). Current. The average temperature in Janu- The genus Larix Hill is represented in ary – February is -10°C. Summer is cold, the world flora by 10 species, which are the average temperature in July is +12°C. widely distributed mainly in the moun- Most of the precipitation in Murmansk, tainous, cold regions of the Northern Hem- approximately 500 mm per year, falls from isphere (Shearer 2008). Changes, occurring June to September. The snow cover keeps in the reproductive sphere of larch under in the city average 210 days and snow is the influence of technogenic pollution have melting in May. The wind is monsoonal – not been sufficiently studied. Many re- in the winter, the southern winds prevail, searchers note, that the processes of pollen in the summer – the northern winds. The formation in species of the genus Larix polar night begins on 29 of November and Hill are strongly dependent on weather – ends on 13 of January (44 days), the polar climatic conditions, therefore, it is difficult day – from 22 of May to 22 of July (62 to detect the influence of technogenic fac- days) (Yakovlev 1972). The duration of tors on the pollen state (Kozubov 1974, vegetative period is approximately 120 – Noskova et al. 2004, Tretyakova et al. 130 days. In Murmansk, there is only one 2006, Surso et al. 2012). According to Sur- weather station, so there is no data on so (2013), the number of anomalies in the climatic differences in the city's districts. development of pollen in larches can be The main sources of pollution of at- significant in hereditary teratologies, as mosphere are the Murmansk boiler houses, well as at unfavourable weather conditions operating on fuel oil, the Murmansk sea- during the process of microsporogenesis, port, plant for the incineration of solid with radiation exposure on meiocytes, and domestic waste and automobile transport. in a number of other cases. Characteristic pollutants are soot, formal- The features of microsporogenesis and dehyde, volatile organic matters, hydro- anomalies in the development of pollen of carbons ([2]). Since 2012, a significant in- larch, which are growing on the territory crease in dust pollution has been recorded 25 PALYNOMORPHOLOGY AND URBAN ENVIRONMENT in Murmansk. A study, conducted by the dispersed elements (Ge, V, W, Ti, etc.). All-Russian Scientific Research Institute The most dangerous emissions of factories for Nature Conservation (formerly the At- for the incineration of solid household mosphere Research Institute) revealed two waste are super toxicants: dioxins and main sources of atmospheric pollution in furans (Demina 2011), as well as heavy the city of Murmansk: emissions of boiler metals. Studies of soils around the Mur- houses and transshipment of coal by the mansk plant for the incineration of solid opened method in the Murmansk seaport. household waste showed, that the content The main emissions of boiler houses are of heavy metals (Cu, Zn, Ni, Cd, Fe) ex- abrasive dust, soot, ash, hydrocarbons, for- ceeds the maximum permissible concen- maldehyde, sulfur dioxide, carbon mono- trations for "soils of populated areas" xide and vanadium compounds ([1]). In many times (Yakovlev 2007). 2014, about 14,373 tons of pollutants were The purpose of the study – is to re- thrown into the atmosphere of the city of search the teratogenesis of Larix sibirica Murmansk from boiler houses ([2]). Coal pollen in the conditions of the Arctic cli- dust includes combustible volatile ele- mate and technogenic pollution of the city ments, silicon dioxide, pyrite, ash and slag, of Murmansk and holding the palyno- which consist of oxides of silicon, alumi- indication of the environment. num, iron (III), calcium, potassium, rare and Material and Methods Larix sibirica Ledeb. The object of the study is Larix sibirica trogressive hybridization at the boundaries Ledb. (Siberian larch), a representative of of range (Rysin 2010). Actively discussed the genus Larix Hill., family Pinaceae is the question whether Larix sibirica can Lindl. – Boreal, East European-Siberian spe- be allocated as a separate species. Recent- cies (Dylis 1981). Siberian larch has a huge ly, many molecular genetic studies of L. si- range, it grows in the North-West of the birica populations have appeared (Hewitt European part of Russia, in the Urals, in 1996, Timerjanov 1997, Вashalkhanov et al. Western Siberia, in the Altai, Sayans, Chi- 2003, Semerikov et al. 1999, 2003, 2007, na, in the north-west of Mongolia (Dylis Wei et Wang 2004, Araki et al. 2008). 1981, Karaseva 2003). According to many Some authors consider these populations authors, L. sibirica can be viewed as one of as one species – Larix sibirica Ledeb. (Se- the species of plants, the racial composi- merikov et al. 1999, Wei et Wang 2004). tion of which was formed from the gene From the point of view of others, the popu- pools of different ancestral populations, geo- lations, located west of the rivers Irtysh graphically separated and being at different and the Ob are an independent species of stages of evolution (Dylis 1981, Milyutin Larix sukaczeii Dylis (Вashalkhanov et al. 2003, Iroshnikov 2004, Wei et Wang 2004). 2003). Studies of the genetic variability of The systematics of the genus Larix Hill Siberian larch (Timerjanov 1997, Semeri- are very complex and are still the subject kov et al. 1999, 2003, 2007) confirmed the of discussions, first of all the status of spe- conclusion of Dylis (1947), that these spe- cies of larch that grow in Eurasia is dis- cies consist of two genetically different cussed.
Recommended publications
  • Wood-Decaying Basidiomycetes Associated with Dwarf Siberian Pine in Northeast Siberia and the Kamchatka Peninsula
    Wood-decaying Basidiomycetes Associated with Dwarf Siberian Pine in Northeast Siberia and the Kamchatka Peninsula Mukhin, V. A.; Knudsen, H.; Kotiranta, H.; Corfixen, P.; Kostitsina, M. V. Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Mukhin, V. A., Knudsen, H., Kotiranta, H., Corfixen, P., & Kostitsina, M. V. (2018). Wood-decaying Basidiomycetes Associated with Dwarf Siberian Pine in Northeast Siberia and the Kamchatka Peninsula. 125- 133. Paper presented at The Fourth International Scientific Conference Ecology and Geography of Plants and Plant Communities, Ekaterinburg, Russian Federation. https://knepublishing.com/index.php/KnE- Life/article/view/3230 Download date: 29. Sep. 2021 Ecology and Geography of Plants and Plant Communities The fourth International Scientific Conference on Ecology and Geography of Plants and Plant Communities Volume 2018 Conference Paper Wood-decaying Basidiomycetes Associated with Dwarf Siberian Pine in Northeast Siberia and the Kamchatka Peninsula V. A. Mukhin1,2, H. Knudsen3, H. Kotiranta4, P. Corfixen3, and M. V. Kostitsina2 1Institute of the Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterin- burg, Russia 2Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 620144 Ekaterinburg, Russia 3Natural History Museum of Denmark, University of Copenhagen, DK–1323, Copenhagen K, Denmark 4Finnish Environment Institute, FI–00251, Helsinki, Finland Abstract A survey of the biodiversity of wood-decaying Basidiomycetes associated with Pinus pumila (the dwarf Siberian pine), a highly characteristic woody plant of Northeast Corresponding Author: Siberia and the Kamchatka Peninsula, is presented for the first time. Thirty-two V.
    [Show full text]
  • The Latitudinal Distribution of Vegetation Cover in Siberia
    BIO Web of Conferences 16, 00047 (2019) https://doi.org/10.1051/bioconf/20191600047 Results and Prospects of Geobotanical Research in Siberia The latitudinal distribution of vegetation cover in Siberia Irina Safronova*, Tatiana Yurkovsksya Komarov Botanical Institute of Russian academy of sciences Professor Popov str., 2, Saint- Petersburg, 197346, Russia Abstract. The latitudinal changes of vegetation cover on the plains of Siberia are observed. In Western Siberia there are 4 zones (tundra and taiga, and forest-steppe and steppe only here), in Central and North-Eastern Siberia – only 2 zones (tundra and taiga).Tundra zone is represented by 4 subzones in Central Siberia; in Western and North-Eastern Siberia – by 3 subzones (there are no polar subzone). All 5 subzones of the taiga zone are distinguished both in Western Siberia and in the Central Siberia, but in the Central Siberia, forests are found in very high latitudes. The feature of the taiga zone of Western Siberia is high paludification. As a result, the vegetation of mires dominates over the zonal vegetation. Zonal West Siberian types are dark coniferous forests. Light coniferous forests predominate in the taiga zone of Central and North-Eastern Siberia. In the forest-steppe zone in Western Siberia forests are small-leaved − birch, aspen-birch (Betula pendula, Populus tremula). The abundance of mires is the feature of this zone, as well as in the taiga. Taiga forests predominate in Siberia. There is tundra vegetation on the Islands of the Arctic Ocean and on narrow strip along its coast; the steppes occupy a small area in the South of the West Siberian lowland.
    [Show full text]
  • Icary Oty E Analysis of Siberian Larch
    STUDIA FORESTALIA SUECICA I\Tr 17 1964 ICary oty e analysis of Siberian larch SKOGSM~GSKOL-%X STOCKHOLM Karyotype analysis of Siberian larch (Larix sibirica Ledb. and Larix sulcaczezoii Dyl.) The natural area of distribution of Siberian larch1 extends roughly froni lake Onega in the west to lake Baikal in the east and from Arctic sea in the north to the A%ltaimountains in the south (Fig. 1, cf. Osterifeld and Syracli Lar- sen 1930, Schellcli 1939, Tiniofeev 1961). Russanow (1959) statcs that larch occupies more than one-third of the whole forest area in the USSR. Under the influence of different ecological conditions in this huge region, larch has differentiated itself morphologically and physiologically into various types (Szafer 1913). Sukaczew (1938) distinguishes four clilnatical ecotypes in Larix sibirica: rossica, obensis, jenisensis and altaiensis, which have their areas of distribution in north-eastern part of European Russia, around -the rivers Obs and Jeniseis and in Altai mountain ranges respectively. On the basis of the physiological and morphological differences, Dylis (19$7) sepa- rates from the Siberian larch the species Larix sukaczewii in the west (which roughly corresponds to the area of the Sukaczewian ecotypes rossica and partly obensis) and calls the rest Siberian larch, Larix sibirica Ledh. On the eastern borders Larin: sibirica and the neighbouring species Larin: gmelinii Rupr. form spontaneous hybrids-Larix czekanowskii (Szafer 1913). This broadly outlined differentiation of Siberian larch, as also its near relationship n-ith Larix decidrrct, raises the question, whether the taxonomic connections can be supported by evidence of karyotypic differences. This problem will be discussed in tlie present paper.
    [Show full text]
  • Larix Sibirica Ledeb.) in Relation to Radial and Axial Locations in the Trunk Luostarinen
    Variation in fibre properties of cultivated Siberian larch (Larix sibirica Ledeb.) in relation to radial and axial locations in the trunk Luostarinen To cite this version: Luostarinen. Variation in fibre properties of cultivated Siberian larch (Larix sibirica Ledeb.) in relation to radial and axial locations in the trunk. Annals of Forest Science, Springer Nature (since 2011)/EDP Science (until 2010), 2011, 68 (5), pp.985-992. 10.1007/s13595-011-0106-y. hal-00930674 HAL Id: hal-00930674 https://hal.archives-ouvertes.fr/hal-00930674 Submitted on 1 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annals of Forest Science (2011) 68:985–992 DOI 10.1007/s13595-011-0106-y ORIGINAL PAPER Variation in fibre properties of cultivated Siberian larch (Larix sibirica Ledeb.) in relation to radial and axial locations in the trunk Katri Luostarinen Received: 16 November 2010 /Accepted: 21 February 2011 /Published online: 1 July 2011 # INRA and Springer Science+Business Media B.V. 2011 Abstract 1 Introduction & Introduction As the major resources of Siberian larch planted in Finland will be at a harvestable age in the near Siberian larch (Larix sibirica Ledeb.) is the most planted future, knowledge concerning wood and fibre properties of exotic tree species in Finland with a planted area of more cultivated larches is needed.
    [Show full text]
  • Factors Promoting Larch Dominance in Central Siberia: Fire Versus Growth Performance and Implications for Carbon Dynamics At
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Biogeosciences, 9, 1405–1421, 2012 www.biogeosciences.net/9/1405/2012/ Biogeosciences doi:10.5194/bg-9-1405-2012 © Author(s) 2012. CC Attribution 3.0 License. Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers E.-D. Schulze1, C. Wirth2, D. Mollicone1,3, N. von Lupke¨ 4, W. Ziegler1, F. Achard3, M. Mund4, A. Prokushkin5, and S. Scherbina6 1Max-Planck Institute for Biogeochemistry, P.O. Box 100164, 07701 Jena, Germany 2Institute of Biology, University of Leipzig, Johannisalle 21–23, 04103 Leipzig, Germany 3Institute of Environment and Sustainability, Joint Research Centre – TP440, 21027 Ispra, Italy 4Dept. of Ecoinformatics,Bioemetrics and Forest Growth, University of Gottingen,¨ Busgenweg¨ 4, 37077 Gottingen,¨ Germany 5V. N. Sukachev Institute of Forest, SB-RAS, Krasnoyarsk, Russia 6Centralno-Sibirsky Natural Reserve, Bor, Russia Correspondence to: E.-D. Schulze ([email protected]) Received: 3 November 2011 – Published in Biogeosciences Discuss.: 2 January 2012 Revised: 5 March 2012 – Accepted: 13 March 2012 – Published: 16 April 2012 Abstract. The relative role of fire and of climate in deter- Biomass of stems of single trees did not show signs mining canopy species composition and aboveground car- of age-related decline. Relative diameter increment was bon stocks were investigated. Measurements were made 0.41 ± 0.20 % at breast height and stem volume increased along a transect extending from the dark taiga zone of cen- linearly over time with a rate of about 0.36 t C ha−1 yr−1 in- tral Siberia, where Picea and Abies dominate the canopy, dependent of age class and species.
    [Show full text]
  • (Pinus Silvestris L) and Larch (Larix Sibirica Ldb) Trees in Mongolia
    Mongolian Journal ofBiologica1 Sciences 2003 Vol. l(1): 81-83 Chemical Composition and Amount of Macro and Microelements .of Pine (Pinus silvestris L) and Larch (Larix sibirica Ldb) Trees in Mongolia J. Sukhdolgor*, S. Badamtsetseg* and D. Adyakhuu**. *Department of Biochemistry and Bioorganic Chemistry, Faculty of Biology. National University of Mongolia, Ulaanbaatar 21 0646, Mongolia. **Hepatological Clinical Centre of Traditional Medicine, Ulaanbaatar 681 032, Mongolia. Abstract One thousand seed weight of pine and larch trees taken from district Bugant of province Selenge and district Mungen Mort, Tuv province and the bark, other mixture and the items still with bark were defined and comored. Chemical composition of the seeds of pine and larch trees was defined. The dry substance in pine seeds was 94.6%, protein 45.1 %, oil 22.1 %, ash 1.5%, respectively. In the seeds of larch trees dry substance was 93.8%, protein 18.7% and ash 2.1%, respectively. The amount of macro and microelements in the ash samples of above tree seeds is determined in a spectrum laboratory. There were 20 elements in the seeds of pine trees and 19 elements in the seeds of larch trees. Key words: Pinus sylvestris, Larix sibirica, seeds. pure seed, macroelements, microelements. Introduction favorable condition to the growth of plants. Mineral salt of non-organic acids exist in plants In coniferous trees such as pine and fir, in a form of liquid, and about 99% of total dry monoterpenes accumulating in resin ducts found weight of animals and plants are K, Ca, Mg, Na, S, in the needle twigs, and trunk.
    [Show full text]
  • Larix P. Mill.: Larch
    Pinaceae—Pine family L Larix P.Mill. larch Raymond C. Shearer Dr. Shearer is a research forester at the USDA Forest Service’s Rocky Mountain Research Station Forestry Sciences Laboratory, Missoula, Montana Occurrence. The larches—Larix P. Mill.—of the as demonstrated at the Wind River Arboretum in southwest- world are usually grouped into 10 species that are widely ern Washington, where 7 larch species, some with several distributed over much of the mountainous, cooler regions of varieties, and 1 hybrid were planted from 1913 to 1939 the Northern Hemisphere (Hora 1981; Krüssmann 1985; (Silen and Olson 1992). European larches there are doing Ostenfeld and Larsen 1930; Rehder 1940; Schmidt 1995). better than Asian species in this warm, moist Washington Some species dominate at the northern limits of boreal state climate. The native western larch specimens from more forests and others occur above subalpine forests (Gower and continental climates with lower humidity are doing poorly. Richards 1990). Seven species are included (table 1)—the In 1992, a larch arboretum containing all species, several others, Master larch (L. mastersiana Rehd. & Wils.), varieties, and 3 hybrids of larch was established at Hungry Chinese larch (L. potaninii Batal.), and Himalayan larch Horse, Montana, within the natural range of western larch (L. griffithiana (Carr.))—are rarely planted in the United (Shearer and others 1995). States. All species (except possibly Himalayan larch) are Growth habit. Larix is one of the few conifer genera hardy in the United States (Bailey 1939). However, the with deciduous needles. The trees are valued for their light seeds should come from a site with comparable conditions, green hues in the spring and shades of yellow to gold in the Table 1—Larix, larch: nomenclature and occurrence Scientific name & synonym(s) Common name(s) Occurrence L.
    [Show full text]
  • THE STATE of LARIX SIBIRICA (PINACEAE) PLANTATIONS in the MARI EL REPUBLIC © Yu
    Rastitelnye Resursy. 52(4): 465–483, 2016 THE STATE OF LARIX SIBIRICA (PINACEAE) PLANTATIONS IN THE MARI EL REPUBLIC © Yu. P. Demakov, *, 1, 2 А. V. Isaev, 2 M. A. Karaseva, 1 V. G. Krasnov 1 1Volga State University of Technology, Yoshkar-Ola, Mari El Republic 2 State Natural Reserve «Bolshaya Kokshaga» * E-mail: [email protected] REFERENCES 1. Bobrov E. G. 1978. Lesoobrazuyushchie khvoynye SSSR. [Forest-forming conifers of the USSR]. Leningrad. 188 p. (In Russian) 2. Dylis N. V. 1981. Listvennitsa [Larch]. Mosсow. 97 p. (In Russian) 3. Pchelin V. I. 2007. Dendrologiya [Dendrology]. Yoshkar-Ola. 519 p. (In Russian) 4. Usoltsev V. A. 2014. Lesnye arabeski ili etudy iz zhizni nashykh derevev [Forest arabesques or sketches from the lives of our trees]. Yekaterinburg. 161 p. (In Russian) 5. Borzikov V. V., Danchev B. F. 1984. Siberian larch as a promising tree species for protective afforestation of the Northern Kazakhstan. In: Ekologiya lesnikh soobshchetv Severnogo Kazakhstana. Leningrad. P. 16–23. (In Russian) 6. Verzunov A. I. 1986. Impact of soil conditions on formation of root systems of pine and larch in steppe pine forests of Kazakhstan. –– Ekologia. 5: 69–71. (In Russian) 7. Nikitin K. E. 1966. Listvennitsa na Ukraine [Larch in Ukraine]. Kiev. 332 p. (In Russian) 8. Pisarenko A. I., Redko G. I., Merzlenko M. D. 1992. Iskustvenniye lesa [Artificial forests]. Part 1. Moscow. 308 p. (In Russian) 9. Lindeman G. V. 1981. Yestestvenno rastushchii vyaz melkolistvenny [Naturally growing Chinese elm]. Moscow. 92 p. (In Russian) 10. Lindeman G. V. 1993. Vzaimootnosheniya nasekomykh-ksylofagov i listvennykh derevyev v zasushlivykh usloviyakh [Xylophage-insects and deciduous trees relationships in dry weather conditions].
    [Show full text]
  • Wood and Lumber Properties of Larix Gmelinii Var. Olgensis Planted in Japan
    PEER-REVIEWED ARTICLE bioresources.com Wood and Lumber Properties of Larix gmelinii var. olgensis Planted in Japan Futoshi Ishiguri,a,* Taiichi Iki,b Kouhei Otsuka,c Yusuke Takahashi,a Ikumi Nezu,a Bayasaa Tumenjargal,a,d,e Jyunichi Ohshima,a and Shinso Yokota a In order to promote plantation establishment of Larix gmelinii var. olgensis (syn. L. olgensis A. Henry), a 'near threatened' species, the wood and lumber properties were preliminary investigated for five trees from two clones of 57-year-old trees planted in Japan. The mean value of dynamic Young's modulus of logs was 10.16 GPa. The mean values of annual ring width, latewood percentage, basic density, MOE, and MOR of five sample trees were 2.1 mm, 29.3%, 0.47 g•cm-3, 8.06 GPa, and 60.4 MPa, respectively. In addition, the MOE and MOR of 2 by 4 lumber were 10.43 GPa and 42.4 MPa, respectively. These values were similar to those obtained from other Larix species. Thus, construction lumber could be produced from the wood from plantation grown L. gmelinii var. olgensis. Keywords: Larix gmelinii var. olgensis; Annual ring width; Latewood percentage; Basic density; Bending property Contact information: a: School of Agriculture, Utsunomiya University, Utsunomiya 321-8505, Japan; b: Tohoku Regional Breeding Office, Forest Tree Breeding Center, Forest and Forest Products Research Institute, Takizawa, Iwate 020-0621, Japan; c: Tochigi Prefectural Forestry Center, Utsunomiya 321-2105, Japan; d: United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; e: Research and Training Institute for Forestry and Wood Industry, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia; * Corresponding author: [email protected] INTRODUCTION Larix gmelinii var.
    [Show full text]
  • THE STATE of LARIX SIBIRICA (PINACEAE) PLANTATIONS in the MARI EL REPUBLIC © Yu
    Rastitelnye Resursy. 52(4): 465–483, 2016 THE STATE OF LARIX SIBIRICA (PINACEAE) PLANTATIONS IN THE MARI EL REPUBLIC © Yu. P. Demakov, *, 1, 2 А. V. Isaev, 2 M. A. Karaseva, 1 V. G. Krasnov 1 1Volga State University of Technology, Yoshkar-Ola, Mari El Republic 2 State Natural Reserve «Bolshaya Kokshaga» * E-mail: [email protected] SUMMARY Based on the material of the field studies and the data from electronic databases on forest resources (more than 415 000 allotments with the total area of 1 207 670 ha) the paper showed that Siberian larch (Larix sibirica Ledeb.) is not naturally found in the Mari El Republic, however, there are many cultural forms of Siberian larch which have complex compositions. One of the main companions of larch is Scots pine, the proportion of which in stands is 21.6 % on an average. The mix of Norway spruce and silver birch are quite frequent (19.6 and 19.9 % respectively). The part of lime is 4.5 %, of aspen – 4.1 %, and other tree species – 0.8 %. The proportion of larch varies is 29.5 % (from 1 to 10 individuals). The greatest presence of larch is registered in cultures, established in humid pine forests and moderately wet oak forests. The highest part of pine in plantations is in the moderately wet pine forests, of spruce – in humid subor forests, and deciduous tree species – in humid suramen forests. The proportion of deciduous tree species tends to decrease in all types of forests, the latter can be explained by both natural and economic reasons.
    [Show full text]
  • Alien Tree Species in Finnish Forestry
    Alien tree species in Finnish forestry Teijo Nikkanen Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi Alien tree species in Finnish forestry The contents of the presentation 1.A short history of the use of alien tree species in Finland Raivola larch forest inspired to trials of new tree species Tree species trials established by Metla Performance of alien tree species in Finland 2.The use of alien tree species in forestry Siberian larch is considered as a native tree species The use of other species 3.Legislation and attitudes National laws and decrees PEFC – Finland - forest certification criteria 4.Research of alien tree species 5.The use of alien tree species for landscaping 6.10.2010 Raivola larch forest inspired for trials of alien tree species Raivola larch forest was planted in 1738 in Karelian Isthmus After Finnish foresters had discovered the Raivola forest in 1860’, planting of Siberian larch started in Finland In 1870’ and 1880’ several plantations of both Siberian and European larch were established in Punkaharju and other state parks In small scale trials of other alien tree species started also at that time Large scale, scientific experimental work with alien tree species in Finland started in Mustila Arboretum in 1902 Raivola in 2007 6.10.2010 New tree species for Finnish forestry Olli Heikinheimo Teijo Nikkanen European larch (Larix decidua) plantation Tapionpöytä,at Punkaharju Miehikkälä in 1912 at the age of 36, and the same stand 90 years later. 6.10.2010 Tree species trials established by Metla In the 1920’s and 1930’s about 800 experimental plantations (400 ha) with alien tree species were established in several Research Areas located in different parts of the country Altogether 73 conifer taxa from 10 genera, and 109 broad leaved tree taxa from 38 genera were tested in the trials In most cases several provenances from each species were tested USA, Washington (46°N, 122ºW, 1200 m) Canada, Br.
    [Show full text]
  • Section 07020
    4.0 Approved Tree Species List MASTER PLANT LIST Characteristics H - High General Plant List (Parks & Large Boulevards) Form & M - Medium Natural Hardiness Conventional L - Low Visibility High Saline Moisture Spread Zone Tolerance Need CPTED Scientific Name Variety Common Name Landscape Landscape Deciduous Trees Acer ginnala Single Stem Amur Maple M/H M/L * C 3 2 Acer platanoides Maple Crimson King M H * C 12 4 Acer platanoides Norway M H * C 8 3 to 4 Acer saccharum Sugar M H * C 9 3 to 4 Acer saccharinum Silver L M * C 12 3 Aesculus glabra Ohio Buckeye M M C 10 3 Betula verrucosa European Weeping Birch M H/M C 6 3 Betula papyrifera Clump form Paper Birch M H/M C N 6 2 to 3 Betula pendula "Gracilis" Cutleaf Weeping Birch M/H H/M C 6 2 to 3 Betula pendula "Youngii" Young's Weeping Birch M/H H/M C 4 2 Celtis occidentalis Hackberry M M * C 8 3 Crataegus mordenensis 'Snowbird' Snowbird Hawthorn M/H M/L * C 3 3 Crataegus mordenensis 'Toba' Toba Hawthorn M/H M/L * C 3 3 Crataegus succulenta Fleshy Hawthorn M/H M/L * C N 8 3 Fraxinus americana Northern Blaze White Ash M M/L * C 7 3 Fraxinus pennsylvanica Bergeson Green Ash M/H M/L * C 8 3 Fraxinus pennsylvanica 'Heuver' Foothills Green Ash M/H M/L * C 8 3 Fraxinus pennsylvanica Prairie Spire Green Ash M/H M/L * C 6 2 to 3 Fraxinus pennsylvanica Green Ash M/H M/L * C 8 3 Fraxinus pennsylvanica Patmore Green Ash M/H M/L * C 8 2 to 3 Gleditsia triancanthos Honey Locust H M/L * C 9 4 to 9 Juglans cinerea Butternut M M/L * C 4 2 Juglans nigra Black Walnut M M * C 10 3 Larix laricina (deciduous conifer)
    [Show full text]