Effemeridi Astronomiche Di Milano Per L'anno

Total Page:16

File Type:pdf, Size:1020Kb

Effemeridi Astronomiche Di Milano Per L'anno Informazioni su questo libro Si tratta della copia digitale di un libro che per generazioni è stato conservata negli scaffali di una biblioteca prima di essere digitalizzato da Google nell’ambito del progetto volto a rendere disponibili online i libri di tutto il mondo. Ha sopravvissuto abbastanza per non essere più protetto dai diritti di copyright e diventare di pubblico dominio. Un libro di pubblico dominio è un libro che non è mai stato protetto dal copyright o i cui termini legali di copyright sono scaduti. La classificazione di un libro come di pubblico dominio può variare da paese a paese. I libri di pubblico dominio sono l’anello di congiunzione con il passato, rappresentano un patrimonio storico, culturale e di conoscenza spesso difficile da scoprire. Commenti, note e altre annotazioni a margine presenti nel volume originale compariranno in questo file, come testimonianza del lungo viaggio percorso dal libro, dall’editore originale alla biblioteca, per giungere fino a te. Linee guide per l’utilizzo Google è orgoglioso di essere il partner delle biblioteche per digitalizzare i materiali di pubblico dominio e renderli universalmente disponibili. I libri di pubblico dominio appartengono al pubblico e noi ne siamo solamente i custodi. Tuttavia questo lavoro è oneroso, pertanto, per poter continuare ad offrire questo servizio abbiamo preso alcune iniziative per impedire l’utilizzo illecito da parte di soggetti commerciali, compresa l’imposizione di restrizioni sull’invio di query automatizzate. Inoltre ti chiediamo di: + Non fare un uso commerciale di questi file Abbiamo concepito Google Ricerca Libri per l’uso da parte dei singoli utenti privati e ti chiediamo di utilizzare questi file per uso personale e non a fini commerciali. + Non inviare query automatizzate Non inviare a Google query automatizzate di alcun tipo. Se stai effettuando delle ricerche nel campo della traduzione automatica, del riconoscimento ottico dei caratteri (OCR) o in altri campi dove necessiti di utilizzare grandi quantità di testo, ti invitiamo a contattarci. Incoraggiamo l’uso dei materiali di pubblico dominio per questi scopi e potremmo esserti di aiuto. + Conserva la filigrana La "filigrana" (watermark) di Google che compare in ciascun file è essenziale per informare gli utenti su questo progetto e aiutarli a trovare materiali aggiuntivi tramite Google Ricerca Libri. Non rimuoverla. + Fanne un uso legale Indipendentemente dall’utilizzo che ne farai, ricordati che è tua responsabilità accertati di farne un uso legale. Non dare per scontato che, poiché un libro è di pubblico dominio per gli utenti degli Stati Uniti, sia di pubblico dominio anche per gli utenti di altri paesi. I criteri che stabiliscono se un libro è protetto da copyright variano da Paese a Paese e non possiamo offrire indicazioni se un determinato uso del libro è consentito. Non dare per scontato che poiché un libro compare in Google Ricerca Libri ciò significhi che può essere utilizzato in qualsiasi modo e in qualsiasi Paese del mondo. Le sanzioni per le violazioni del copyright possono essere molto severe. Informazioni su Google Ricerca Libri La missione di Google è organizzare le informazioni a livello mondiale e renderle universalmente accessibili e fruibili. Google Ricerca Libri aiuta i lettori a scoprire i libri di tutto il mondo e consente ad autori ed editori di raggiungere un pubblico più ampio. Puoi effettuare una ricerca sul Web nell’intero testo di questo libro da http://books.google.com 1 ☺ C VITT .) 5 C 539 EFFEMERIDI ASTRONOMICHE DI MILANO PER L'ANNO 1871 . Parte 1 weare EFFEMERIDI ASTRONOMICHE DI MILANO PER L'ANNO 1871 , contenenti IL CALCOLO DELLE POSIZIONI DEL SOLE , DELLA LUNA , E DEI PIANETI MAGGIORI , COGLI ELEMENTI PRINCIPALI DEL CALENDARIO PER DETTO ANNO ; SEGUITE DA UNA RACCOLTA DI OSSERVAZIONI E DI MEMORIE ASTRONOMICHE E METEOROLOGICHE PUBBLICATE DAL DIRETTORE DEL REALE OSSERVATORIO DI BRERA a spose del Legato Oriani . 0 1947 A با ایک ال ا م * MILANO 1870 Dalla Regia Stamperia . Presso G. Fajini e C. successori Meiners Via S. Radegonda , N. ° 3 . III AVVERTIMENTO . Questo è il volume XCVII di una Effemeride , che cominciata nel 1775 dal P. Francesco Reggio e dall’Ab . Cesaris , ſu conti nuata senza interruzione fino ai nostri giorni per opera degli Astronomi dell'Osservatorio di Brera . Esso è diviso in quattro parti . La prima contiene il giornale dei movimenti celesti per l'anno 1871 , cioè gli elementi del Calendario , il calcolo del Sole fatto sulle Tavole di Carlini , il movimento della Luna , dei pianeti primarj e dei satelliti di Giove . Nella seconda si contengono osservazioni astronomiche fatte nell'Osservatorio o sotto la sua direzione . La terza contiene le osservazioni meteorologiche dell'anno 1869 , così dirette , come registrate automaticamente . La quarta , sotto il nome di Appendice , è destinata a memo rie ed a notizie di Astronomia e di Meteorologia , e contiene in quest'anno una Memoria sulla relazione fra le comete , le stelle cadenti e gli aeroliti , ed alcuni risultati preliminari tratti dalle osservazioni di stelle cadenti pubblicate nelle Effemeridi degli anni 1868 , 1869 e 1870 . I nomi degli autori e dei collaboratori sono indicati in cia scuna parte . P BLIOTECA PA ROMA CLAD EMANUELE 1 . EFFEMERIDI CELESTI per l'anno 1870 CALCOLATE DA G. CAPELLI , E. SERGENT E G. CELORIA . Eſſem . 1871 . VII SPIEGAZIONE DEI SIMBOLI E DELLE ABBREVIATURE . SEGNI DEL ZODIACO . PIANETI . V Ariete . 고 Mercurio . Toro . 9 Venere . Gemelli . 8 Terra . Cancro . 8 Marte . 2 Leone . 2. Giove . n ) Vergine . h Saturno . 1 Libra . Ħ Urano . mo Scorpione . * Nettuno . » Sagittario . 8 Capricorno . Aquario . 0 Sole . X Pesci . ) Luna . indica Giorni . A Australe . b Ore . B Boreale . Gradi . dist . min . Distanza minima . ni Minuti . imm . Immersione . Secondi . em . Emersione . Congiunzione . AR . Ascensione retta . a oo * Opposizione . Decl . Declinazione . Nodo ascendente . Long . Longitudine . Nodo discendente . Lat . Latitudine . VIII RELAZIONI CRONOLOGICHE dell'anno 1871 . L'anno 1871 dell ' era volgare ( 1 ) corrisponde all'anno 6584 del periodo giuliano : 2617 dell'era delle Olimpiadi : 2624 della fondazione di Roma secondo Varrone : 2620 dell'era di Nabonassar : 5631 della Creazione del Mondo secondo gli Ebrei . 1287 dell'Egira , il quale comincia il 3 aprile 1870 e finisce il 23 marzo 1871 . ( 1 ) L'anno 1871 del Calendario giuliano usato dai Russi comincia il 13 gennajo dell'anno 1871 del Calendario gregoriano , e tutte le date giuliane sono di 12 giorni arretrate rispetto al Calendario gregoriano . IX FESTE MOBILI . NA MADELE Settuagesima .. 5 Febbrajo . Giorno delle Ceneri ... 22 Febbrajo . Pasqua di Risurrezione 9 Aprile Litanie alla Romana 15 , 16 e 17 Maggio . Ascensione del Signore 18 Maggio . Litanie all'Ambrosiana 22 , 23 e 24 Maggio . Pentecoste ... 28 Maggio . Santissima Trinità . 4 Giugno . Corpus Domini .. 8 Giugno . Avvento all'Ambrosiana . 12 Novembre . Avvento alla Romana .. 3 Novembre , NUMERI DELL'ANNO . Numero d'Oro 10 . Ciclo Solare 4 . Epatta .... IX . Indizione Romana . 14 . Lettera Dominicale A. QUATTRO TEMPORA . Di Primavera 1 3 e 4 Marzo . D ' Estate .. 31 Maggio e 2 3 Giugno . D'Autunno . 20 22 e 23 Settembre . D'Inverno 20 22 e 23 Dicembre . х ECLISSI DELL'ANNO 1871 ( TEMPO MEDIO ) . 6 Gennajo . Eclisse parziale di Luna visibile a Milano . Principio ..... 7h 14m . Fine ..... 1 23 . Grandezza 0,69 essendo uno il diametro della Luna . 17 Giugno . Eclisse annulare di Sole invisibile a Milano . Congiunzione vera della Luna col Sole a 15h 6m . 2 Luglio Eclisse di Luna invisibile a Milano . 11 Dicembre . Eclisse totale di Sole invisibile a Milano . Congiunzione vera della Luna col Sole a 16h 38m . Obbliquità Nutazione Obbliquità Nutazione . dell'anno . dell'anno punti Giorni dei punti Giorni dei apparente apparente equinoziali equinoziali dell'eclittica . in longit . dell'eclittica . in longit . 11 023 ' 21 20 31 16,1 190 23 ° 27 2172 - 16,1 10 20,50 15.8 200 21,92 15,7 20 20,72 15,6 210 22,16 15,5 30 20.98 15,4 220 22,45 15.4 40 21,25 15,5 230 22,74 15,5 50 21,52 15,7 240 22,97 15,7 60 21,74 15,9 250 23,15 16,0 70 21,90 16,3 260 23,27 16,4 80 22,00 16,8 270 23,33 16,9 90 22,04 17,3 280 23,34 17,3 100 22,00 17,7 290 23,29 17,7 110 21,92 18,0 300 23,20 17,9 120 21,81 18,1 310 23,08 18,0 130 21,68 18,0 320 22,93 17,9 140 21,67 17,9 330 22,82 17,7 160 21.50 177 340 22,75 17,3 160 21.47 17,3 350 22,76 16,8 470 21,49 16,9 360 22,85 16,3 180 21,67 - 16,5 365 22,93 - 16,1 XI Occultazioni delle principali Stelle dietro la Luna per l'anno 1871 a Milano . Cong . Distanza Giorni Astri Tempo medio Angolo minima del al polo appar . dal sull ' lembo mese . occultati . dell ' dell nell'em . della ) limmer . emers . orbita . תו h m b 0 b Genn . 4 8 3.4 . 11 42 2 B 5 3.a 8 25 8 26 6 0 3.4.2 a 11 28 26 B a v ml 4.5 . 13 28 43 A 30 da 5. " 8 46 10 B Febb . 3 H 9 14 4 B Marzo 2 H 16 8 117 3 80 28 03. * 9 57 10 46 132 Aprile 3 ó m ) 4.6 . 12 19 37 A 8 4 Ofiuco 5.a 11 10 12 5 102 Magg . 2 v m 4.9 17 54 18 54 62 Giug . 2 Ofiuco 5. " 7 12 8 16 73 8 4.5.2 13 37 14 26 165 8 14 48 16 6 107 Agos .
Recommended publications
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • List of Easy Double Stars for Winter and Spring  = Easy  = Not Too Difficult  = Difficult but Possible
    List of Easy Double Stars for Winter and Spring = easy = not too difficult = difficult but possible 1. Sigma Cassiopeiae (STF 3049). 23 hr 59.0 min +55 deg 45 min This system is tight but very beautiful. Use a high magnification (150x or more). Primary: 5.2, yellow or white Seconary: 7.2 (3.0″), blue 2. Eta Cassiopeiae (Achird, STF 60). 00 hr 49.1 min +57 deg 49 min This is a multiple system with many stars, but I will restrict myself to the brightest one here. Primary: 3.5, yellow. Secondary: 7.4 (13.2″), purple or brown 3. 65 Piscium (STF 61). 00 hr 49.9 min +27 deg 43 min Primary: 6.3, yellow Secondary: 6.3 (4.1″), yellow 4. Psi-1 Piscium (STF 88). 01 hr 05.7 min +21 deg 28 min This double forms a T-shaped asterism with Psi-2, Psi-3 and Chi Piscium. Psi-1 is the uppermost of the four. Primary: 5.3, yellow or white Secondary: 5.5 (29.7), yellow or white 5. Zeta Piscium (STF 100). 01 hr 13.7 min +07 deg 35 min Primary: 5.2, white or yellow Secondary: 6.3, white or lilac (or blue) 6. Gamma Arietis (Mesarthim, STF 180). 01 hr 53.5 min +19 deg 18 min “The Ram’s Eyes” Primary: 4.5, white Secondary: 4.6 (7.5″), white 7. Lambda Arietis (H 5 12). 01 hr 57.9 min +23 deg 36 min Primary: 4.8, white or yellow Secondary: 6.7 (37.1″), silver-white or blue 8.
    [Show full text]
  • ESO Annual Report 2004 ESO Annual Report 2004 Presented to the Council by the Director General Dr
    ESO Annual Report 2004 ESO Annual Report 2004 presented to the Council by the Director General Dr. Catherine Cesarsky View of La Silla from the 3.6-m telescope. ESO is the foremost intergovernmental European Science and Technology organi- sation in the field of ground-based as- trophysics. It is supported by eleven coun- tries: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kingdom. Created in 1962, ESO provides state-of- the-art research facilities to European astronomers and astrophysicists. In pur- suit of this task, ESO’s activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member- state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced techno- logies, furthering European co-operation and carrying out European educational programmes. ESO operates at three sites in the Ataca- ma desert region of Chile. The first site The VLT is a most unusual telescope, is at La Silla, a mountain 600 km north of based on the latest technology. It is not Santiago de Chile, at 2 400 m altitude. just one, but an array of 4 telescopes, It is equipped with several optical tele- each with a main mirror of 8.2-m diame- scopes with mirror diameters of up to ter. With one such telescope, images 3.6-metres. The 3.5-m New Technology of celestial objects as faint as magnitude Telescope (NTT) was the first in the 30 have been obtained in a one-hour ex- world to have a computer-controlled main posure.
    [Show full text]
  • Alpha Orionis (Betelgeuse)
    AAVSO: Alpha Ori, December 2000 Variable Star Of The Month Variable Star Of The Month December, 2000: Alpha Orionis (Betelgeuse) Atmosphere of Betelgeuse - Alpha Orionis Hubble Space Telescope - Faint Object Camera January 15, 1996; A. Dupree (CfA), NASA, ESA From the city or country sky, from almost any part of the world, the majestic figure of Orion dominates overhead this time of year with his belt, sword, and club. High in his left shoulder (for those of us in the northern hemisphere) is the great red pulsating supergiant, Betelgeuse (Alpha Orionis 0549+07). Recently acquiring fame for being the first star to have its atmosphere directly imaged (shown above), Alpha Orionis has captivated observers’ attention for centuries. Betelgeuse's variability was first noticed by Sir John Herschel in 1836. In his Outlines of Astronomy, published in 1849, Herschel wrote “The variations of Alpha Orionis, which were most striking and unequivocal in the years 1836-1840, within the years since elapsed became much less conspicuous…” In 1849 the variations again began to increase in amplitude, and in December 1852 it was thought by Herschel to be “actually the largest [brightest] star in the northern hemisphere”. Indeed, when at maximum, Betelgeuse sometimes rises to magnitude 0.4 when it becomes a fierce competitor to Rigel; in 1839 and 1852 it was thought by some observers to be nearly the equal of Capella. Observations by the observers of the AAVSO indicate that Betelgeuse probably reached magnitude 0.2 in 1933 and again in 1942. At minimum brightness, as in 1927 and 1941, the magnitude may drop below 1.2.
    [Show full text]
  • Symposium on Telescope Science
    Proceedings for the 26th Annual Conference of the Society for Astronomical Sciences Symposium on Telescope Science Editors: Brian D. Warner Jerry Foote David A. Kenyon Dale Mais May 22-24, 2007 Northwoods Resort, Big Bear Lake, CA Reprints of Papers Distribution of reprints of papers by any author of a given paper, either before or after the publication of the proceedings is allowed under the following guidelines. 1. The copyright remains with the author(s). 2. Under no circumstances may anyone other than the author(s) of a paper distribute a reprint without the express written permission of all author(s) of the paper. 3. Limited excerpts may be used in a review of the reprint as long as the inclusion of the excerpts is NOT used to make or imply an endorsement by the Society for Astronomical Sciences of any product or service. Notice The preceding “Reprint of Papers” supersedes the one that appeared in the original print version Disclaimer The acceptance of a paper for the SAS proceedings can not be used to imply or infer an endorsement by the Society for Astronomical Sciences of any product, service, or method mentioned in the paper. Published by the Society for Astronomical Sciences, Inc. First printed: May 2007 ISBN: 0-9714693-6-9 Table of Contents Table of Contents PREFACE 7 CONFERENCE SPONSORS 9 Submitted Papers THE OLIN EGGEN PROJECT ARNE HENDEN 13 AMATEUR AND PROFESSIONAL ASTRONOMER COLLABORATION EXOPLANET RESEARCH PROGRAMS AND TECHNIQUES RON BISSINGER 17 EXOPLANET OBSERVING TIPS BRUCE L. GARY 23 STUDY OF CEPHEID VARIABLES AS A JOINT SPECTROSCOPY PROJECT THOMAS C.
    [Show full text]
  • GEORGE HERBIG and Early Stellar Evolution
    GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study.
    [Show full text]
  • Campos Magnéticos En Binarias Cercanas Magnetic Fields in Close Binaries
    UNIVERSIDAD DE CONCEPCIÓN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS MAGÍSTER EN CIENCIAS CON MENCIÓN EN FÍSICA Campos Magnéticos en Binarias Cercanas Magnetic Fields in Close Binaries Profesor Guía: Dr. Dominik Schleicher Departamento de Astronomía Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción Tesis para optar al grado de Magister en Ciencias con mención en Física FELIPE HERNAN NAVARRETE NORIEGA CONCEPCION, CHILE ABRIL DEL 2019 iii UNIVERSIDAD DE CONCEPCIÓN Resumen Magnetic Fields in Close Binaries by Felipe NAVARRETE Las estrellas binarias cercanas post-common-envelope binaries (PCEBs) consisten en una Enana Blanca (WD) y una estrella en la sequencia principal (MS). La naturaleza de las variaciones de los tiempos de eclipse (ETVs) observadas en PCEBs aún no se ha determinado. Por una parte está la hipotesis planetaria, la cual atribuye las ETVs a la presencia de planetas en el sistema binario, alterando el baricentro de la binaria. Así, esto deja una huella en el diagrama O-C de los tiempos de eclipse igual al observado. Por otra parte tenemos al Applegate mechanism que atribuye las ETVs a actividad magnética en estrella en la MS. En pocas palabras, el Applegate mechanism acopla la actividad magnética a variaciones en el momento cuadrupo- lar gravitatiorio (Q) en la MS. Q contribuye al potencial gravitacional sentido por la primaria (WD), dejando así una huella igual a la observada en el diagrama O-C. Simulaciones magnetohidrodinámicas (MHD) en 3 dimensiones de convección es- telar se encuentran en una etapa donde puede reproducir un gran abanico de fenó- menos estelares, tales como, evolución magnética, migración del campo magnético, circulación meridional, rotación diferencial, etc.
    [Show full text]
  • Astronomy Magazine 2011 Index Subject Index
    Astronomy Magazine 2011 Index Subject Index A AAVSO (American Association of Variable Star Observers), 6:18, 44–47, 7:58, 10:11 Abell 35 (Sharpless 2-313) (planetary nebula), 10:70 Abell 85 (supernova remnant), 8:70 Abell 1656 (Coma galaxy cluster), 11:56 Abell 1689 (galaxy cluster), 3:23 Abell 2218 (galaxy cluster), 11:68 Abell 2744 (Pandora's Cluster) (galaxy cluster), 10:20 Abell catalog planetary nebulae, 6:50–53 Acheron Fossae (feature on Mars), 11:36 Adirondack Astronomy Retreat, 5:16 Adobe Photoshop software, 6:64 AKATSUKI orbiter, 4:19 AL (Astronomical League), 7:17, 8:50–51 albedo, 8:12 Alexhelios (moon of 216 Kleopatra), 6:18 Altair (star), 9:15 amateur astronomy change in construction of portable telescopes, 1:70–73 discovery of asteroids, 12:56–60 ten tips for, 1:68–69 American Association of Variable Star Observers (AAVSO), 6:18, 44–47, 7:58, 10:11 American Astronomical Society decadal survey recommendations, 7:16 Lancelot M. Berkeley-New York Community Trust Prize for Meritorious Work in Astronomy, 3:19 Andromeda Galaxy (M31) image of, 11:26 stellar disks, 6:19 Antarctica, astronomical research in, 10:44–48 Antennae galaxies (NGC 4038 and NGC 4039), 11:32, 56 antimatter, 8:24–29 Antu Telescope, 11:37 APM 08279+5255 (quasar), 11:18 arcminutes, 10:51 arcseconds, 10:51 Arp 147 (galaxy pair), 6:19 Arp 188 (Tadpole Galaxy), 11:30 Arp 273 (galaxy pair), 11:65 Arp 299 (NGC 3690) (galaxy pair), 10:55–57 ARTEMIS spacecraft, 11:17 asteroid belt, origin of, 8:55 asteroids See also names of specific asteroids amateur discovery of, 12:62–63
    [Show full text]
  • Index to JRASC Volumes 61-90 (PDF)
    THE ROYAL ASTRONOMICAL SOCIETY OF CANADA GENERAL INDEX to the JOURNAL 1967–1996 Volumes 61 to 90 inclusive (including the NATIONAL NEWSLETTER, NATIONAL NEWSLETTER/BULLETIN, and BULLETIN) Compiled by Beverly Miskolczi and David Turner* * Editor of the Journal 1994–2000 Layout and Production by David Lane Published by and Copyright 2002 by The Royal Astronomical Society of Canada 136 Dupont Street Toronto, Ontario, M5R 1V2 Canada www.rasc.ca — [email protected] Table of Contents Preface ....................................................................................2 Volume Number Reference ...................................................3 Subject Index Reference ........................................................4 Subject Index ..........................................................................7 Author Index ..................................................................... 121 Abstracts of Papers Presented at Annual Meetings of the National Committee for Canada of the I.A.U. (1967–1970) and Canadian Astronomical Society (1971–1996) .......................................................................168 Abstracts of Papers Presented at the Annual General Assembly of the Royal Astronomical Society of Canada (1969–1996) ...........................................................207 JRASC Index (1967-1996) Page 1 PREFACE The last cumulative Index to the Journal, published in 1971, was compiled by Ruth J. Northcott and assembled for publication by Helen Sawyer Hogg. It included all articles published in the Journal during the interval 1932–1966, Volumes 26–60. In the intervening years the Journal has undergone a variety of changes. In 1970 the National Newsletter was published along with the Journal, being bound with the regular pages of the Journal. In 1978 the National Newsletter was physically separated but still included with the Journal, and in 1989 it became simply the Newsletter/Bulletin and in 1991 the Bulletin. That continued until the eventual merger of the two publications into the new Journal in 1997.
    [Show full text]
  • Binocular Universe: Two Late Spring Globular Clusters June 2010 Phil Harrington
    Binocular Universe: Two Late Spring Globular Clusters June 2010 Phil Harrington f you were asked to name the greatest visual observer of all time, who would you choose? My vote would have to go to the 18th-century astronomer, William Herschel. He had I quite a track record, including the discovery of the planet Uranus as well as thousands of deep-sky objects. That's a pretty good run. Herschel did more than just look at the sky, however. He also tried to understand what he was looking at. Based on his studies of how stars appear distributed along the hazy band of the Milky Way, Herschel was the first to conclude that the Milky Way was shaped like a flattened disk. We know today that he was exactly right. Above: Spring star map from Star Watch by Phil Harrington June 2010 Phil Harrington's BINOCULAR UNIVERSE When it came time to knowing his place in the Milky Way, however, Herschel was way off. He noticed how stars appeared to be evenly distributed along the Milky Way. From this, he reasoned that the Sun must be in the very center. Of course, that is completely incorrect. That’s because, unbeknownst to him, cosmic dust blocked his view (as well as ours) along the plane of the Galaxy beyond about 6,000 light years. It would be another century and a half before Harlow Shapley would discover our solar system's true position in the Milky Way. Studying the distances to globular clusters, Shapley found that most seemed to be distributed in a spherical volume not centered on the Sun, but instead on a distant point in the direction of the constellation Sagittarius.
    [Show full text]