Criss-Crossing Viruses Give Rise to Peculiar Hybrid Variants 2 November 2020

Total Page:16

File Type:pdf, Size:1020Kb

Criss-Crossing Viruses Give Rise to Peculiar Hybrid Variants 2 November 2020 Criss-crossing viruses give rise to peculiar hybrid variants 2 November 2020 variant. Varsani, a virologist at the Arizona State Univeristy Biodesign Center for Fundamental and Applied Microbiomics, is deeply intrigued with these new viruses, which are starting to crop up in greater abundance and diversity in a wide range of environments. "It is great to see the research groups that first identified cruciviruses around the same time teaming up for the sharing and mining of Cruciviruses are a hybrid form containing both RNA and metagenomic data with an aim to identify a larger DNA genomic material. Here, a single-stranded DNA diversity of cruciviruses," says Varsani, an virus (yellow) containing a Rep protein sequence, which associate professor with ASU School of Life directs the virus' replication, borrows genetic information Sciences. from an RNA virus (blue) , specifically, a coding sequence for the RNA virus's capsid protein.The result is New virus in town a chimerical virus with both DNA and RNA components--a crucivirus (seen in the right panel). Crucivirus sequences were identified by Varsani's Credit: Shireen Dooling for the Bioodesign Institute. colleague and co-author Kenneth M. Stedman and his group at Portland State University. The team detected the viruses flourishing in an extreme environment—Boiling Springs Lake (BSL) in Lassen For millions of years, viruses have participated in a Volcanic National Park, Northern California. Around far-flung, import-export business, exchanging the same time, Varsani and Mya Breitbart's fragments of themselves with both viral and non- research group identified a crucivirus in a dragonfly viral agents and acquiring new features. What sample from Florida. these tiny entities lack in outward complexity, they make up for with their astonishing abilities to swap Since their discovery in 2012, cruciviruses have out modular genomic components and ceaselessly been found in diverse environments around the reinvent themselves. world, from lakes in upstate New York and Florida, to the Antarctic and deep-sea sediments. Some 80 In new research appearing in the journal mBio, distinct cruciviruses had been identified, prior to the Arvind Varsani and his colleagues investigate a current study, which expands the number to 461. recently discovered class of viruses that have taken the characteristic versatility of the viral world The first cruciviruses were identified using a to new heights. technique known as viral metagenomics, in which viral genetic material obtained directly from the Referred to as cruciviruses, these minute forms environment is sequenced rather than being reveal a fusion of components from both RNA and cultivated or cultured from a host species or natural DNA viruses, proving that these previously distinct reservoir. genomic domains can, under proper conditions, intermingle, producing a hybrid or chimeric viral The results of these early investigations revealed 1 / 4 peculiar genetic sequences, radically distinct from specialized features that give the virus its ability to anything that had been seen before. This puncture the host cell membrane and inject viral sequences clearly displayed the signature of a DNA nucleic acid into the cell's cytoplasm. virus, yet also contained a gene that appeared to be derived from an RNA virus. Analysis indicates that the capsid protein of cruciviruses is closely related to the capsid protein Using a shotgun approach to trawl through a of another virus from the family Tombusviridae —a potentially vast sequence space, viral single-stranded RNA virus known to infect plants. metagenomics enables researchers to identify all of This hybrid viral character, containing both DNA- the genomic patterns present in an environmental and RNA virus derived coding components, is what sample, then separate out distinct viral sequences, makes cruciviruses so unique. like a fisherman retrieving a variety of sea creatures from his net. Uncertain origins The technique has revolutionized the discipline of But how did a run-of-the-mill cressdnavirus come to virology. In addition to identifying a galaxy of acquire its RNA virus capsid protein coding previously unknown viruses, metagenomics has sequence? This remains an issue of considerable offered up exciting clues about genetic diversity debate, though presumably some form of lateral and is helping to unlock some of the secrets of viral gene transfer occurred. evolution, all without the need to initially isolate viral species or cultivate viruses in the lab. Viruses can acquire genes from their immediate progenitors, the way genetic traits are passed from Form and function human parents to their offspring. Viruses, however, are far more genetically promiscuous, collecting Cruciviruses belong to a broader class of viruses new genes from the cells they infect, from other known as CRESS, (for circular Rep-encoding single-unrelated viruses and even from bacterial stranded) DNA viruses which have recently been symbionts. (The phenomenon is also common classified into the phylum Cressdnaviricota. The among bacteria, which can use horizontal gene defining characteristic of such viruses is their mode transfer to acquire antibiotic resistance.) of replication, which relies on a specific component, known as the Rep protein. The Rep protein is Through some such mechanism, a cressdnavirus important for guiding the replication method of acquired an RNA virus capsid-like gene, creating these viruses, known as rolling circle DNA the first crucivirus. It also appears that various replication. Presence of the Rep protein and rolling cruciviruses have actively exchanged functional circle replication pinpoints a virus as belonging to elements among themselves, further scrambling cressdnaviruses and helps researchers untangle their evolutionary history. the devilishly complex relationships and lineages found in the viral world. While the HOW of crucivirus DNA-RNA recombination remains mysterious, the WHY may In addition to the Rep found in cressdnaviruses, be more straightforward. Clearly, the ability to cruciviruses contain another centrally important borrow genetic traits from such distantly related feature—a capsid protein that is similar to that viral sources could provide single-stranded DNA previously found only in RNA viruses. Capsids are viruses with a considerable adaptive edge. vitally important, forming the outer shell or envelope that encloses the virus's identity—its genetic Collector's edition sequence. The capsid shelters the vital nucleic acids sequestered within from digestion by host cell In the current study, researchers explored a vast enzymes, enables virus particles to attach dataset including 461 cruciviruses and 10 capsid- themselves to host cells and allows viruses to encoding circular genetic elements identified from evade host cell defenses. Finally, capsids contain varied environments and organisms, making this 2 / 4 the most expansive investigation of crucivirus virus groups may arise though prolific recombination sequences yet undertaken. events between distantly related forms. The samples were found in environments ranging More information: Ignacio de la Higuera et al, from temperate lakes to permafrost and lurking Unveiling Crucivirus Diversity by Mining within organisms including red algae and Metagenomic Data, mBio (2020). DOI: invertebrates. The study points to the 10.1128/mBio.01410-20 stramenopiles/alveolates/Rhizaria or SAR supergroup, (a diverse assemblage of eukaryotes, including many photosynthetic organisms) as the plausible candidate hosts for these unusual viruses, Provided by Arizona State University though this has yet to be verified. After examining the windfall of sequences, the researchers assembled similarity networks of cruciviral proteins with related viruses to try to better understand the twisting evolutionary paths that may have given rise to them, finding a rich cross-pollination of viral traits between many large families of viruses including Geminiviridae, Circoviridae, Nanoviridae, Alphasatellitidae, Genomoviridae, Bacilladnaviridae, Smacoviridae, and Redondoviridae. Intriguing questions remain The findings may provide new insights into the early transition from RNA as the primary hereditary molecule of life to the adoption of more complex DNA genomes that has come to dominate life in the cellular world. The existence and behavior of cruciviruses suggest that viruses may have played a crucial role in this all-important transition, acting as a kind of genomic bridge between the RNA and DNA worlds, during the earliest emergence of life, though much more work is needed to explore these possibilities. Recombining in endless forms, viruses have become the planet's most ubiquitous biological entities, affecting every living organism and occupying every ecological niche. Increasingly, viruses are revealing themselves not only as agents of disease but as drivers of species evolution and vital actors in the molding of ecosystems. The expanded abilities of cruciviruses to borrow genomic elements from the most far-flung regions of viral sequence space suggest that entirely new 3 / 4 APA citation: Criss-crossing viruses give rise to peculiar hybrid variants (2020, November 2) retrieved 28 September 2021 from https://phys.org/news/2020-11-criss-crossing-viruses-peculiar-hybrid-variants.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only. 4 / 4 Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • Madarak Polyomavírusainak És CRESS DNS Vírusainak Összehasonlító Genomvizsgálata
    Állatorvostudományi Egyetem Aujeszky Aladár Elméleti Állatorvostudományok Doktori Program Madarak polyomavírusainak és CRESS DNS vírusainak összehasonlító genomvizsgálata PhD értekezés Szabóné Kaszab Eszter 2021 Témavezető és témabizottsági tagok: ………………………………… dr. Fehér Enikő Állatorvostudományi Kutatóintézet Új kórokozók témacsoport témavezető Készült 8 példányban. Ez a …… sz. példány ………………………………….. Szabóné Kaszab Eszter 2 Tartalomjegyzék 1. Rövidítések jegyzéke ............................................................................................... 5 2. Összefoglalás .......................................................................................................... 7 3. Summary ................................................................................................................. 8 4. Bevezetés ................................................................................................................ 9 5. Irodalmi áttekintés...................................................................................................10 5.1. A Circoviridae család jellemzése ...................................................................10 5.1.1. A Circovirus nemzetség ........................................................................12 5.1.2. A Cyclovirus nemzetség ........................................................................18 5.2. A CRESS DNS vírusok jellemzése ................................................................19 5.3. A polyomavírusok jellemzése ........................................................................22
    [Show full text]
  • New Viral Facets in Oral Diseases: the EBV Paradox
    International Journal of Molecular Sciences Review New Viral Facets in Oral Diseases: The EBV Paradox Lilit Tonoyan 1,*, Séverine Vincent-Bugnas 1,2 , Charles-Vivien Olivieri 1 and Alain Doglio 1,3,* 1 Faculté de Chirurgie Dentaire, Université Côte d’Azur, EA 7354 MICORALIS (Microbiologie Orale, Immunothérapie et Santé), 06357 Nice, France; [email protected] (S.V.-B.); [email protected] (C.-V.O.) 2 Pôle Odontologie, Centre Hospitalier Universitaire de Nice, 06001 Nice, France 3 Unité de Thérapie Cellulaire et Génique, Centre Hospitalier Universitaire de Nice, 06103 Nice, France * Correspondence: [email protected] (L.T.); [email protected] (A.D.) Received: 3 October 2019; Accepted: 20 November 2019; Published: 22 November 2019 Abstract: The oral cavity contributes to overall health, psychosocial well-being and quality of human life. Oral inflammatory diseases represent a major global health problem with significant social and economic impact. The development of effective therapies, therefore, requires deeper insights into the etiopathogenesis of oral diseases. Epstein–Barr virus (EBV) infection results in a life-long persistence of the virus in the host and has been associated with numerous oral inflammatory diseases including oral lichen planus (OLP), periodontal disease and Sjogren’s syndrome (SS). There is considerable evidence that the EBV infection is a strong risk factor for the development and progression of these conditions, but is EBV a true pathogen? This long-standing EBV paradox yet needs to be solved. This review discusses novel viral aspects of the etiopathogenesis of non-tumorigenic diseases in the oral cavity, in particular, the contribution of EBV in OLP, periodontitis and SS, the tropism of EBV infection, the major players involved in the etiopathogenic mechanisms and emerging contribution of EBV-pathogenic bacteria bidirectional interaction.
    [Show full text]
  • Metatranscriptomics to Characterize Respiratory Virome, Microbiome, and Host Response Directly from Clinical Samples
    Metatranscriptomics to characterize respiratory virome, microbiome, and host response directly from clinical samples Seesandra Rajagopala ( [email protected] ) Vanderbilt University Medical Center Nicole Bakhoum Vanderbilt University Medical Center Suman Pakala Vanderbilt University Medical Center Meghan Shilts Vanderbilt University Medical Center Christian Rosas-Salazar Vanderbilt University Medical Center Annie Mai Vanderbilt University Medical Center Helen Boone Vanderbilt University Medical Center Rendie McHenry Vanderbilt University Medical Center Shibu Yooseph University of Central Florida https://orcid.org/0000-0001-5581-5002 Natasha Halasa Vanderbilt University Medical Center Suman Das Vanderbilt University Medical Center https://orcid.org/0000-0003-2496-9724 Article Keywords: Metatranscriptomics, Virome, Microbiome, Next-Generation Sequencing (NGS), RNA-Seq, Acute Respiratory Infection (ARI), Respiratory Syncytial Virus (RSV), Coronavirus (CoV) Posted Date: October 15th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-77157/v1 Page 1/31 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/31 Abstract We developed a metatranscriptomics method that can simultaneously capture the respiratory virome, microbiome, and host response directly from low-biomass clinical samples. Using nasal swab samples, we have demonstrated that this method captures the comprehensive RNA virome with sucient sequencing depth required to assemble complete genomes. We nd a surprisingly high-frequency of Respiratory Syncytial Virus (RSV) and Coronavirus (CoV) in healthy children, and a high frequency of RSV-A and RSV-B co-infections in children with symptomatic RSV. In addition, we have characterized commensal and pathogenic bacteria, and fungi at the species-level. Functional analysis of bacterial transcripts revealed H.
    [Show full text]
  • Viral Diversity in Tree Species
    Universidade de Brasília Instituto de Ciências Biológicas Departamento de Fitopatologia Programa de Pós-Graduação em Biologia Microbiana Doctoral Thesis Viral diversity in tree species FLÁVIA MILENE BARROS NERY Brasília - DF, 2020 FLÁVIA MILENE BARROS NERY Viral diversity in tree species Thesis presented to the University of Brasília as a partial requirement for obtaining the title of Doctor in Microbiology by the Post - Graduate Program in Microbiology. Advisor Dra. Rita de Cássia Pereira Carvalho Co-advisor Dr. Fernando Lucas Melo BRASÍLIA, DF - BRAZIL FICHA CATALOGRÁFICA NERY, F.M.B Viral diversity in tree species Flávia Milene Barros Nery Brasília, 2025 Pages number: 126 Doctoral Thesis - Programa de Pós-Graduação em Biologia Microbiana, Universidade de Brasília, DF. I - Virus, tree species, metagenomics, High-throughput sequencing II - Universidade de Brasília, PPBM/ IB III - Viral diversity in tree species A minha mãe Ruth Ao meu noivo Neil Dedico Agradecimentos A Deus, gratidão por tudo e por ter me dado uma família e amigos que me amam e me apoiam em todas as minhas escolhas. Minha mãe Ruth e meu noivo Neil por todo o apoio e cuidado durante os momentos mais difíceis que enfrentei durante minha jornada. Aos meus irmãos André, Diego e meu sobrinho Bruno Kawai, gratidão. Aos meus amigos de longa data Rafaelle, Evanessa, Chênia, Tati, Leo, Suzi, Camilets, Ricardito, Jorgito e Diego, saudade da nossa amizade e dos bons tempos. Amo vocês com todo o meu coração! Minha orientadora e grande amiga Profa Rita de Cássia Pereira Carvalho, a quem escolhi e fui escolhida para amar e fazer parte da família.
    [Show full text]
  • Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics
    viruses Article Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics Ashleigh F. Porter 1, Mang Shi 1, John-Sebastian Eden 1,2 , Yong-Zhen Zhang 3,4 and Edward C. Holmes 1,3,* 1 Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life & Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] (A.F.P.); [email protected] (M.S.); [email protected] (J.-S.E.) 2 Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia 3 Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 201500, China; [email protected] 4 Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China * Correspondence: [email protected]; Tel.: +61-2-9351-5591 Received: 17 October 2019; Accepted: 23 November 2019; Published: 25 November 2019 Abstract: DNA viruses comprise a wide array of genome structures and infect diverse host species. To date, most studies of DNA viruses have focused on those with the strongest disease associations. Accordingly, there has been a marked lack of sampling of DNA viruses from invertebrates. Bulk RNA sequencing has resulted in the discovery of a myriad of novel RNA viruses, and herein we used this methodology to identify actively transcribing DNA viruses in meta-transcriptomic libraries of diverse invertebrate species. Our analysis revealed high levels of phylogenetic diversity in DNA viruses, including 13 species from the Parvoviridae, Circoviridae, and Genomoviridae families of single-stranded DNA virus families, and six double-stranded DNA virus species from the Nudiviridae, Polyomaviridae, and Herpesviridae, for which few invertebrate viruses have been identified to date.
    [Show full text]
  • Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan Pangolins (Manis Javanica)
    viruses Article Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan Pangolins (Manis javanica) Ping Liu 1, Wu Chen 2 and Jin-Ping Chen 1,* 1 Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China; [email protected] 2 Guangzhou Zoo, Guangzhou 510230, China; [email protected] * Correspondence: [email protected]; Tel.: +020-8910-0920 Received: 30 September 2019; Accepted: 21 October 2019; Published: 24 October 2019 Abstract: Pangolins are endangered animals in urgent need of protection. Identifying and cataloguing the viruses carried by pangolins is a logical approach to evaluate the range of potential pathogens and help with conservation. This study provides insight into viral communities of Malayan Pangolins (Manis javanica) as well as the molecular epidemiology of dominant pathogenic viruses between Malayan Pangolin and other hosts. A total of 62,508 de novo assembled contigs were constructed, and a BLAST search revealed 3600 ones ( 300 nt) were related to viral sequences, of which 68 contigs ≥ had a high level of sequence similarity to known viruses, while dominant viruses were the Sendai virus and Coronavirus. This is the first report on the viral diversity of pangolins, expanding our understanding of the virome in endangered species, and providing insight into the overall diversity of viruses that may be capable of directly or indirectly crossing over into other mammals. Keywords: virome; Manis javanica; Sendai virus; Coronavirus; molecular epidemiology 1. Introduction The Malayan pangolin (Manis javanica), a representative mammal species of the order Pholidota, is one of the only eight pangolin species worldwide.
    [Show full text]
  • Genomic Diversity of CRESS DNA Viruses in the Eukaryotic Virome of Swine Feces
    microorganisms Article Genomic Diversity of CRESS DNA Viruses in the Eukaryotic Virome of Swine Feces Enik˝oFehér 1, Eszter Mihalov-Kovács 1, Eszter Kaszab 1, Yashpal S. Malik 2 , Szilvia Marton 1 and Krisztián Bányai 1,3,* 1 Veterinary Medical Research Institute, Hungária Krt 21, H-1143 Budapest, Hungary; [email protected] (E.F.); [email protected] (E.M.-K.); [email protected] (E.K.); [email protected] (S.M.) 2 College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India; [email protected] 3 Department of Pharmacology and Toxicology, University of Veterinary Medical Research, István Utca. 2, H-1078 Budapest, Hungary * Correspondence: [email protected] Abstract: Replication-associated protein (Rep)-encoding single-stranded DNA (CRESS DNA) viruses are a diverse group of viruses, and their persistence in the environment has been studied for over a decade. However, the persistence of CRESS DNA viruses in herds of domestic animals has, in some cases, serious economic consequence. In this study, we describe the diversity of CRESS DNA viruses identified during the metagenomics analysis of fecal samples collected from a single swine herd with apparently healthy animals. A total of nine genome sequences were assembled and classified into two different groups (CRESSV1 and CRESSV2) of the Cirlivirales order (Cressdnaviricota phylum). The novel CRESS DNA viral sequences shared 85.8–96.8% and 38.1–94.3% amino acid sequence identities Citation: Fehér, E.; Mihalov-Kovács, for the Rep and putative capsid protein sequences compared to their respective counterparts with E.; Kaszab, E.; Malik, Y.S.; Marton, S.; extant GenBank record.
    [Show full text]
  • Unscientific Interpretation of RT-PCR & Rapid Antigen Test Results Causing a Misleading Spike in Cases & Deaths Abstract
    Unscientific Interpretation of RT-PCR & Rapid Antigen Test Results Causing a Misleading Spike in Cases & Deaths To, Professor (Dr) Balram Bhargava, Director-General at the Indian Council of Medical Research. Abstract The RT-PCR & RAT tests are currently the main testing method used to diagnose COVID-19. The principle is to collect respiratory cells and to use the RT-PCR (Reverse Transcription - Polymerase Chain Reaction) or RAT (Rapid Antigen Test) technique to detect fragments of the RNA of the virus. The false positive rate is high, between 30%-97%, which can mainly be explained by an incorrect execution of the technique and incorrect interpretation. Previously, these tests were routinely used to diagnose viral upper respiratory tract infections in adults and children, but generally, the test was performed in hospitalized symptomatic patients by an experienced medical team. Currently, all over the world, the public health strategy during this COVID-19 pandemic is based on an early detection of suspicious cases, an early diagnosis of symptomatic patients, and isolation of patients with COVID-19 in order to restrict the outbreak. However, identification of symptoms is currently being skipped, which leads to non-infectious asymptomatic individuals being restricted in various ways. The aim of this article is to help healthcare providers to interpret this test correctly in adults and children, & to aid the ICMR in revising its testing guidelines. Note - *References to backup all the data presented below will be put in blue brackets at the end of every statement and numbered accordingly. You can find the related number at the bottom of the document that will have the relevant link next to it* Introduction We are writing this document on behalf of Awaken India Movement, to bring out the facts about the RT-PCR test & Rapid Antigen Test results, their interpretation, & the real meaning of positive cases.
    [Show full text]
  • Scientific Report 2019-2020
    CBM Scientific Report 2019-2020 CENTRO DE BIOLOGÍA MOLECULAR SEVERO OCHOA 2 3 CENTRO DE BIOLOGÍA MOLECULAR SEVERO OCHOA C/ Nicolás Cabrera, 1 Campus de la Universidad Autónoma de Madrid 28049 Madrid Tel.: (+34) 91 196 4401 www.cbm.uam.es INDEX DIRECTOR´S REMARK 8 THE CBM IN A NUTSHELL 10-21 ERC PROJECTS 21 COVID-19 PROJECTS 22-29 GENOME DYNAMICS AND FUNCTION 30 GENOME DECODING 32 UGO BASTOLLA 34 COMPUTATIONAL BIOLOGY AND BIOINFORMATICS JOSÉ FERNÁNDEZ PIQUERAS / JAVIER SANTOS 36 GENETICS AND CELL BIOLOGY OF CANCER: T-CELL LYMPHOBLASTIC NEOPLASMS CRISANTO GUTIERREZ 38 CELL DIVISION, GENOME REPLICATION AND CHROMATIN ENCARNACIÓN MARTÍNEZ-SALAS 40 INTERNAL INITIATION OF TRANSLATION IN EUKARYOTIC mRNAs SANTIAGO RAMÓN 42 STRUCTURE AND FUNCTION OF MACROMOLECULAR COMPLEXES JOSÉ MARÍA REQUENA 44 REGULATION OF GENE EXPRESSION IN LEISHMANIA IVÁN VENTOSO / CÉSAR DE HARO/ JUAN JOSÉ BERLANGA / MIGUEL ÁNGEL RODRÍGUEZ 46 REGULATION OF mRNA TRANSLATION IN EUKARYOTES AND ITS IMPLICATIONS FOR ORGANISMAL LIFE GENOME MAINTENANCE AND INSTABILITY 48 LUIS BLANCO 50 GENOME MAINTENANCE AND VARIABILITY: ENZYMOLOGY OF DNA REPLICATION AND REPAIR MIGUEL DE VEGA 52 MAINTENANCE OF BACTERIAL GENOME STABILITY MARÍA GÓMEZ 54 FUNCTIONAL ORGANIZATION OF THE MAMMALIAN GENOME EMILIO LECONA 56 CHROMATIN, CANCER AND THE UBIQUITIN SYSTEM MARGARITA SALAS GROUP 58 REPLICATION OF BACTERIOPHAGE Ø29 DNA JOSÉ ANTONIO TERCERO 60 CHROMOSOME REPLICATION AND GENOME STABILITY 2 3 TISSUE AND ORGAN HOMEOSTASIS 62 CELL ARCHITECTURE & ORGANOGENESIS 64 MIGUEL ÁNGEL ALONSO 66 CELL POLARITY PAOLA
    [Show full text]
  • Deep Roots and Splendid Boughs of the Global Plant Virome
    PY58CH11_Dolja ARjats.cls May 19, 2020 7:55 Annual Review of Phytopathology Deep Roots and Splendid Boughs of the Global Plant Virome Valerian V. Dolja,1 Mart Krupovic,2 and Eugene V. Koonin3 1Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331-2902, USA; email: [email protected] 2Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 75015 Paris, France 3National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA Annu. Rev. Phytopathol. 2020. 58:11.1–11.31 Keywords The Annual Review of Phytopathology is online at plant virus, virus evolution, virus taxonomy, phylogeny, virome phyto.annualreviews.org https://doi.org/10.1146/annurev-phyto-030320- Abstract 041346 Land plants host a vast and diverse virome that is dominated by RNA viruses, Copyright © 2020 by Annual Reviews. with major additional contributions from reverse-transcribing and single- All rights reserved stranded (ss) DNA viruses. Here, we introduce the recently adopted com- prehensive taxonomy of viruses based on phylogenomic analyses, as applied to the plant virome. We further trace the evolutionary ancestry of distinct plant virus lineages to primordial genetic mobile elements. We discuss the growing evidence of the pivotal role of horizontal virus transfer from in- vertebrates to plants during the terrestrialization of these organisms, which was enabled by the evolution of close ecological associations between these diverse organisms. It is our hope that the emerging big picture of the forma- tion and global architecture of the plant virome will be of broad interest to plant biologists and virologists alike and will stimulate ever deeper inquiry into the fascinating field of virus–plant coevolution.
    [Show full text]
  • Viruses in the Upper Respiratory Tract of Individuals at Risk of Zoonotic Infection and Their Animals in Vietnam: Follow-Up and Virus Discovery
    Viruses in the upper respiratory tract of individuals at risk of zoonotic infection and their animals in Vietnam: follow-up and virus discovery Nguyen Thi Kha Tu Doctoral Program in Population Health, Faculty of Medicine, University of Helsinki, Finland Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Medicine, University of Helsinki, for public examination in Haartman Institute Lecture Room 2, Haartmaninkatu 3, Helsinki, on March 18th, 2021, at 11 am, Helsinki, 2021 1 Supervisors Professor. MD. Olli Vapalahti Department of Virology, Faculty of Medicine and Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland. Virology and Immunology, HUSLAB, Helsinki University Hospital, Helsinki, Finland. Le Van Tan, PhD Wellcome Trust Intermediate Fellow, Head of Emerging Infections Group, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam. Docent Anna-Maija K. Virtala Department of Veterinary Biosciences, Faculty of Veterinary Medicine University of Helsinki, Helsinki, Finland. Reviewers Docent Tytti Vuorinen Department of Clinical Microbiology, Turku University Hospital, Turku, Finland. Institute of Biomedicine, University of Turku, Turku, Finland. John H.-O. Pettersson, PhD Department of Medical Biochemistry and Microbiology (IMBIM), Zoonosis Science Center, Uppsala University, Uppsala, Sweden. Official opponent Prof. Dr. Jan Felix Drexler Charité-Universitätsmedizin Berlin; German Centre for Infection Research
    [Show full text]
  • Effects of Diet and Parasites on the Gut Microbiota of Diverse Sub-Saharan Africans
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2019 Effects Of Diet And Parasites On The Gut Microbiota Of Diverse Sub-Saharan Africans Meagan Rubel University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biological and Physical Anthropology Commons, Genetics Commons, and the Microbiology Commons Recommended Citation Rubel, Meagan, "Effects Of Diet And Parasites On The Gut Microbiota Of Diverse Sub-Saharan Africans" (2019). Publicly Accessible Penn Dissertations. 3406. https://repository.upenn.edu/edissertations/3406 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3406 For more information, please contact [email protected]. Effects Of Diet And Parasites On The Gut Microbiota Of Diverse Sub-Saharan Africans Abstract ABSTRACT EFFECTS OF DIET AND PARASITES ON THE GUT MICROBIOTA OF DIVERSE SUB-SAHARAN AFRICANS Meagan A. Rubel Sarah A. Tishkoff Contemporary African populations possess myriad genetic and phenotypic adaptations to diverse diets, varying climates, and infectious diseases. Most microbiome studies to date have focused on primarily European and Asian populations in urban, industrialized settings. By comparison, relatively little is known about traditional African gut microbiomes, and the range of variation they contain. Many African populations are undergoing substantial changes because of rapid globalization, easier access to hygienic resources and medications, shifts
    [Show full text]