Climate Change Impacts on Agricultural Weeds in Western Australia

Total Page:16

File Type:pdf, Size:1020Kb

Climate Change Impacts on Agricultural Weeds in Western Australia Climate Change Impacts on Agricultural Weeds in Western Australia Pub no. 11/059 www.rirdc.gov.au 11-059 Covers.indd 1 25/10/2011 2:44:38 PM 11-059 Covers.indd 2 25/10/2011 2:44:38 PM Climate Change Impacts on Agricultural Weeds in Western Australia by Pippa J Michael, Paul B Yeoh, Noboru Ota and John K Scott October 2011 RIRDC Publication No. 11/059 RIRDC Project No. AWRC 08-85 © 2011 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-243-0 ISSN 1440-6845 Climate change impacts on agricultural weeds in Western Australia Publication No. 11/059 Project No. AWRC 08-85 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. However, wide dissemination is encouraged. Requests and inquiries concerning reproduction and rights should be addressed to the RIRDC Publications Manager on phone 02 6271 4165. Researcher Contact Details Dr Pippa J Michael Curtin University, Private Mailbag 1, P.O. Northam, W.A. 6401, Australia Phone: +61 8 9690 1444 Fax: +61 8 9690 1500 Email: [email protected] In submitting this report, the researcher has agreed to RIRDC publishing this material in its edited form. RIRDC Contact Details Rural Industries Research and Development Corporation Level 2, 15 National Circuit BARTON ACT 2600 PO Box 4776 KINGSTON ACT 2604 Phone: 02 6271 4100 Fax: 02 6271 4199 Email: [email protected]. Web: http://www.rirdc.gov.au Electronically published by RIRDC in October 2011 Print-on-demand by Union Offset Printing, Canberra at www.rirdc.gov.au or phone 1300 634 313 ii Foreword Weeds cost Australian agriculture over $4 billion annually through factors such as yield loss and management costs. Although not quantified, the impact of weeds on natural ecosystems has also been recognised as a serious threat to biodiversity. Consequently there is a significant need to understand the factors that influence the distribution, spread and abundance of invasive weed species in agriculture, under both current and future environmental and management conditions. This project focuses on the weed risk in relation to climate change in the Northern Agricultural Region (NAR) of Western Australia. The region was chosen because it is predicted to experience considerable environmental impact from climate change. It is also one of Australia’s highly productive agricultural regions, generating approximately $1 billion annually. From a complete list of plant species present within the NAR and buffer zones, the top 20 priority weeds were chosen by an expert panel and put through a detailed weed risk assessment (WRA) based on the ability of weeds to grow in different climates. The main priority for future research is to extend this study to include an assessment applicable to the whole cropping region of Western Australia. This project was funded in Phase 1 of the National Weeds and Productivity Research Program, which was managed by the Australian Government Department of Agriculture, Fisheries and Forestry (DAFF) from 2008 to 2010. The Rural Industries Research and Development Corporation (RIRDC) is now publishing the final reports of these projects. Phase 2 of the Program, which is funded to 30 June 2012 by the Australian Government, is being managed by RIRDC with the goal of reducing the impact of invasive weeds on farm and forestry productivity as well as on biodiversity. RIRDC is commissioning some 50 projects that both extends on the research undertaken in Phase 1 and moves into new areas. These reports will be published in the second half of 2012. This report is an addition to RIRDC’s diverse range of over 2000 research publications which can be viewed and freely downloaded from our website www.rirdc.gov.au. Information on the Weeds Program is available online at www.rirdc.gov.au/weeds Most of RIRDC’s publications are available for viewing, free downloading or purchasing online at www.rirdc.gov.au. Purchases can also be made by phoning 1300 634 313. Craig Burns Acting Managing Director Rural Industries Research and Development Corporation iii Acknowledgments The authors gratefully acknowledge the input of the following panel members during the prioritisation workshop: Andrew Reeves, Catherine Borger, Jon Dodd, Rod Randal, Sandy Lloyd (Department of Agriculture and Food Western Australia), David Minkey (Western Australian No-Tillage Farmers Association), Mechelle Owen (University of Western Australia) and Kelly Agar (Western Australian Department of Environment and Conservation). Thanks also to Catherine Borger and Andrea Schatral (Curtin University) for their assistance with the detailed weeds risk assessments. iv Contents Foreword ............................................................................................................................................... iii Acknowledgments................................................................................................................................. iv Executive summary ............................................................................................................................. vii Introduction ........................................................................................................................................... 1 Objectives ............................................................................................................................................... 8 Methodology .......................................................................................................................................... 9 Results .................................................................................................................................................. 12 Implications.......................................................................................................................................... 21 Recommendations ............................................................................................................................... 23 Appendix: Weed species lists .............................................................................................................. 24 References ............................................................................................................................................ 33 v Tables Table 1. Shires used to define the Northern Agricultural Region, agricultural buffer and rangeland buffer ....................................................................................................................................................... 2 Table 2. Surveys and databases used to collate a list of species present within the NAR and buffer zones ........................................................................................................................................................ 9 Table 3. South Australian weed risk assessment guide management matrix (Virtue 2008) ................. 11 Table 4. Additional species included in the final ‘high risk agricultural weeds’ list ........................... 14 Table 5. High risk agricultural weeds in the NAR. Species highlighted in yellow were deemed ‘too common’ for inclusion in the WRA. ..................................................................................................... 15 Table 6. Weed risk assessment category scores for top 20 ‘riskiest’ weeds ......................................... 19 Table 7. Comparative weed risk (CWR) and feasibility of containment (FOC) scores for the 20 riskiest weeds ........................................................................................................................................ 20 Figures Figure 1. Shires included in the Northern Agricultural Region (NAR) of Western Australia, and shires designated as the agricultural buffer and the rangeland buffer ............................................................... 3 Figure 2. Climate change projections for 2070 based on the ECHAM5/MPI-OM model, emissions scenario A1B and medium climate sensitivity (CSIRO 2009) ................................................................ 4 Figure 3. Total rainfall and mean surface temperature change between 2010 and 2070 based on the ECHAM5/MPI-OM model, emissions scenario A1B and medium climate sensitivity (CSIRO 2009) .. 5 Figure 4. Map of the NAR indicating field locations from the summer (Michael
Recommended publications
  • Molecular Phylogeny of Subtribe Artemisiinae (Asteraceae), Including Artemisia and Its Allied and Segregate Genera Linda E
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 9-26-2002 Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E. Watson Miami University, [email protected] Paul E. Bates University of Nebraska-Lincoln, [email protected] Timonthy M. Evans Hope College, [email protected] Matthew M. Unwin Miami University, [email protected] James R. Estes University of Nebraska State Museum, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/bioscifacpub Watson, Linda E.; Bates, Paul E.; Evans, Timonthy M.; Unwin, Matthew M.; and Estes, James R., "Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera" (2002). Faculty Publications in the Biological Sciences. 378. http://digitalcommons.unl.edu/bioscifacpub/378 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BMC Evolutionary Biology BioMed Central Research2 BMC2002, Evolutionary article Biology x Open Access Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E Watson*1, Paul L Bates2, Timothy M Evans3,
    [Show full text]
  • (Ruby Dock) in the Pilbara Region of Western Australia
    Research and development for integrated control of Acetosa vesicaria (ruby dock) in the Pilbara region of Western Australia. Janet M. Anthony and I. R. (Bob) Dixon In partnership with 2 Table of Contents Executive Summary 5 Acknowledgements 9 1.0 Introduction 11 2.0 Research Aims 17 3.0 Seed Studies 18 3.1 Materials and Methods 22 3.1.1 Seed numbers and size 22 3.1.2 Seed viability and imbibition 22 3.1.3 Temperature and light 23 3.1.4 Seed dormancy 24 3.1.5 Seed relative ageing 25 3.1.6 Germination inhibitor 25 3.1.7 Seed bank studies 26 3.1.8 Statistical analysis 26 3.2 Results 27 3.2.1 Seed number and size 27 3.2.2 Viability 28 3.2.3 Temperature and light 29 3.2.4 Seed dormancy 30 3.2.5 Seed relative ageing 33 3.2.6 Germination inhibitor 34 3.2.7 Seed bank studies 35 3.3 Discussion 36 4.0 Herbicide Studies 42 4.1 Materials and Methods 45 4.1.1 Selection of field sites 45 4.1.2 Selection of herbicides 46 4.1.3 Field trial spray plots 47 4.1.4 Pot trials 47 4.1.5 Field trial one 48 4.1.6 Field trial two 48 3 4.1.7 Field trial three 49 4.1.8 Field trial four 49 4.1.9 Pot trial one 50 4.1.10 Pot trial two 50 4.1.11 Pot trial three 51 4.1.12 Germination of seed collected from herbicide treated plants 51 4.2 Results 52 4.2.1 Field trial one 52 4.2.2 Field trial two 53 4.2.3 Field trial three 55 4.2.4 Field trial four 56 4.2.5 Pot trial one 57 4.2.6 Pot trial two 59 4.2.7 Pot trial three 60 4.2.8 Germination of seed collected from herbicide treated plants 61 4.3 Discussion 63 5.0 Conclusion and recommendations 66 6.0 References 69 4 Executive summary This report summarises and presents the major findings from the Acetosa vesicaria (ruby dock) integrated control project.
    [Show full text]
  • Die Plantfamilie ASTERACEAE: 6
    ISSN 0254-3486 = SA Tydskrif vir Natuurwetenskap en Tegnologie 23, no. 1 & 2 2004 35 Algemene artikel Die plantfamilie ASTERACEAE: 6. Die subfamilie Asteroideae P.P.J. Herman Nasionale Botaniese Instituut, Privaat sak X101, Pretoria, 0001 e-pos: [email protected] UITTREKSEL Die tribusse van die subfamilie Asteroideae word meer volledig in hierdie artikel beskryf. Die genusse wat aan dié tribusse behoort word gelys en hulle verspreiding aangedui. ABSTRACT The plant family Asteraceae: 6. The subfamily Asteroideae. The tribes of the subfamily Asteroideae are described in this article. Genera belonging to the different tribes are listed and their distribution given. INLEIDING Tribus ANTHEMIDEAE Cass. Hierdie artikel is die laaste in die reeks oor die plantfamilie Verteenwoordigers van hierdie tribus is gewoonlik aromaties, Asteraceae.1-5 In die vorige artikel is die klassifikasie bokant byvoorbeeld Artemisia afra (wilde-als), Eriocephalus-soorte, familievlak asook die indeling van die familie Asteraceae in sub- Pentzia-soorte.4 Die feit dat hulle aromaties is, beteken dat hulle families en tribusse bespreek.5 Hierdie artikel handel oor die baie chemiese stowwe bevat. Hierdie stowwe word dikwels subfamilie Asteroideae van die familie Asteraceae, met ’n aangewend vir medisyne (Artemisia) of insekgif (Tanacetum).4 bespreking van die tribusse en die genusse wat aan die verskillende Verder is hulle blaartjies gewoonlik fyn verdeeld en selfs by dié tribusse behoort. Die ‘edelweiss’ wat in die musiekblyspel The met onverdeelde blaartjies, is die blaartjies klein en naaldvormig sound of music besing word, behoort aan die tribus Gnaphalieae (Erica-agtig). Die pappus bestaan gewoonlik uit vry of vergroeide van die subfamilie Asteroideae.
    [Show full text]
  • The Naturalised Flora of South Australia 3. Its Origin, Introduction, Distribution, Growth Forms and Significance P.M
    J. Adelaide Bot Gard. 10(1): 99-111 (1987) THE NATURALISED FLORA OF SOUTH AUSTRALIA 3. ITS ORIGIN, INTRODUCTION, DISTRIBUTION, GROWTH FORMS AND SIGNIFICANCE P.M. Kloot South Australian Department of Agriculture, GPO Box 1671, Adelaide, South Australia 5001 Abstract Some features of the South Australian naturalised flora were examined. The predominant source of naturalised alien species has changed from Europe or Eurasia in 1855 to the Mediterranean and environmentally similar areas at present. It is suggested that this is due to the history of northern European settlement of South Australia and the attendant importation of plants from that region. The majority of presently naturalised plants were recorded in Great Britain at the time of South Australian settlement and it is suggested that regardless of their ultimate origin, most plants would have arrived via Great Britain or, more generally, northern Europe. The majority of naturalised plants have been documented or are suspected to have been introduced intentionally. Most of them were ornamental, fodder or culinary plants. Of the unintentionally introduced species, most were fleece, seed or ballast contaminants. A number of characteristic distribution patterns of naturalised plants in South Australia are recognized. These result from climatic and edaphic features and from patterns of land use. Annuals are the predominant growth form of the well-established species. The majority of the unintentionally introduced species are annuals. Introduction The development of the South Australian alien flora since colonization (Kloot, 1987) was ascertained from the documentation discovered during an intensive search (Kloot, 1987) to locate more material than was thought available hitherto (Michael, 1972).
    [Show full text]
  • Koenabib Mine Near Aggeneys, Northern Cape Province
    KOENABIB MINE NEAR AGGENEYS, NORTHERN CAPE PROVINCE BOTANICAL STUDY AND ASSESSMENT Version: 1.0 Date: 30th January 2020 Authors: Gerhard Botha & Dr. Jan -Hendrik Keet PROPOSED MINING OF SILLIMANITE, AGGREGATE AND GRAVEL ON THE FARM KOENABIB 43 NORTH OF AGGENEYS, NORTHERN CAPE PROVINCE Report Title: Botanical Study and Assessment Authors: Mr. Gerhard Botha & Dr. Jan-Hendrik Keet Project Name: Proposed Mining of Sillimanite, Aggregate and Gravel on the Farm Koenabib 43, North of Aggeneys, Northern Cape Province Status of report: Version 1.0 Date: 30th January 2020 Prepared for: Greenmined Environmental Postnet Suite 62, Private Bag X15 Somerset West 7129 Cell: 082 734 5113 Email: [email protected] Prepared by Nkurenkuru Ecology and Biodiversity 3 Jock Meiring Street Park West Bloemfontein 9301 Cell: 083 412 1705 Email: gabotha11@gmail com Suggested report citation Nkurenkuru Ecology and Biodiversity, 2019. Mining Permit, Final Basic Assessment & Environmental Management Plan for the proposed mining of Sillimanite, Aggregate and Stone Gravel on the Farm Koenabib 43, Northern Cape Province. Botanical Study and Assessment Report. Unpublished report prepared by Nkurenkuru Ecology and Biodiversity for GreenMined Environmental. Version 1.0, 30 January 2020. Proposed koenabib sillimanite mine, NORTHERN CAPE PROVINCE January 2020 botanical STUDY AND ASSESSMENT I. DECLARATION OF CONSULTANTS INDEPENDENCE » act/ed as the independent specialist in this application; » regard the information contained in this report as it relates to my specialist
    [Show full text]
  • Adaptation Mechanisms of Some Desert Plants Grown in Central Region of Saudi Arabia
    International Research Journal of Agricultural Science and Soil Science (ISSN: 2251-0044) Vol. 1(11) pp. 462-470, December 2011 Special Issue. Available online http://www.interesjournals.org/IRJAS Copyright ©2011 International Research Journals Full Length Research Paper Adaptation mechanisms of some desert plants grown in central region of Saudi Arabia Muneera S. Aba Alkhail 1 and Ansary E. Moftah*2 1College of Sciences and Arts, Qassim University, Saudi Arabia 2*College of Agric, Qassim University, Saudi Arabia Accepted 05 December, 2011 The distribution characteristics of organic and inorganic materials and the osmotic adjustment were investigated in Suaeda fruticosa (halophyte), Artemisia judaica (xerophyte), and Rumex vesicarius (mesophyte) grown in Qassim desert of Saudi Arabia. Percentage of inorganic solutes + was over 90% of total solutes, while the estimated contribution of Na to Ψs was over 50% for S. fruticosa grown under field condition. In the field grown A. judaica , the percentages of inorganic solutes and organic solutes were 66% and 34%, respectively, and the estimated contribution of + Na to Ψs was less than 18%, while the estimated contribution of soluble sugars to Ψs was over 20%. The contribution of proline to Ψs was less than 0.2% for all species both in field and under − salt stress in a greenhouse experiment. The contribution of NO 3 to Ψs was less than 4% for all − species in field condition. In greenhouse experiment, the concentration of NO 3 was higher under various NaCl treatments than that in control condition for S. fruticosa ; the estimated contribution − of NO 3 to Ψs was over 7% in S.
    [Show full text]
  • Anthemideae Christoph Oberprieler, Sven Himmelreich, Mari Källersjö, Joan Vallès, Linda E
    Chapter38 Anthemideae Christoph Oberprieler, Sven Himmelreich, Mari Källersjö, Joan Vallès, Linda E. Watson and Robert Vogt HISTORICAL OVERVIEW The circumscription of Anthemideae remained relatively unchanged since the early artifi cial classifi cation systems According to the most recent generic conspectus of Com- of Lessing (1832), Hoff mann (1890–1894), and Bentham pos itae tribe Anthemideae (Oberprieler et al. 2007a), the (1873), and also in more recent ones (e.g., Reitbrecht 1974; tribe consists of 111 genera and ca. 1800 species. The Heywood and Humphries 1977; Bremer and Humphries main concentrations of members of Anthemideae are in 1993), with Cotula and Ursinia being included in the tribe Central Asia, the Mediterranean region, and southern despite extensive debate (Bentham 1873; Robinson and Africa. Members of the tribe are well known as aromatic Brettell 1973; Heywood and Humphries 1977; Jeff rey plants, and some are utilized for their pharmaceutical 1978; Gadek et al. 1989; Bruhl and Quinn 1990, 1991; and/or pesticidal value (Fig. 38.1). Bremer and Humphries 1993; Kim and Jansen 1995). The tribe Anthemideae was fi rst described by Cassini Subtribal classifi cation, however, has created considerable (1819: 192) as his eleventh tribe of Compositae. In a diffi culties throughout the taxonomic history of the tribe. later publication (Cassini 1823) he divided the tribe into Owing to the artifi ciality of a subtribal classifi cation based two major groups: “Anthémidées-Chrysanthémées” and on the presence vs. absence of paleae, numerous attempts “An thé midées-Prototypes”, based on the absence vs. have been made to develop a more satisfactory taxonomy presence of paleae (receptacular scales).
    [Show full text]
  • Phytochemical and Biological Study of Some Rumex Species (Rumex Vesicarius) Family Polygonaceae
    Phytochemical and Biological Study of some Rumex Species (Rumex vesicarius) Family Polygonaceae Thesis submitted for fulfillment of the requirement of the master degree of the pharmaceutical science in pharmacognosy by Marwa Yehia El Harriry National Organization of Drug Control and Research (NODCAR) Under the Supervision of Dr. Seham El Hawary Dr. kamilia Fouly Taha Professor of Pharmacognosy Professor of Pharmacognosy Faculty of Pharmacy Applied research center for Cairo university medicinal plants NODCAR Dr. Nadia Sokkar Associate Professor of Pharmacognosy Faculty of Pharmacy Cairo university Pharmacognosy department Faculty of Pharmacy Cairo University 2012 Acknowledgement I’m grateful to God by the grace of whom this work was accomplished. I would like to express my deep appreciation and sincere gratitude to Prof. Dr. Seham Salah El-Din El-Hawary, Professor of Pharmacognosy, Faculty of pharmacy, Cairo University for her super way of supervision, valuable scientific guidance and her useful efforts throughout this work. I would like to express my deep appreciation and sincere gratitude to Prof. Dr. Kamilia Foluy Taha, Professor of Pharmacognosy, Applied Research Center for Medicinal Plants, National Organization for Drug control and Research, for her supervision and useful efforts throughout this work. I would like to express my sincere everlasting gratitude to Dr. Nadia H. Sokkar, Associate Professor of Pharmacognosy, Faculty of Pharmacy, Cairo University for her kind and patient supervision, stainless support and unlimited help throughout the course of this work. My deepest thanks to Dr.ZeinabYousef, Assistant Professor of Biochemistry Department, National Organization for Drug control and Research for her kind help in carrying out the pharmacological and toxicological testing of the plant extracts.
    [Show full text]
  • The Naturalized Vascular Plants of Western Australia 1
    12 Plant Protection Quarterly Vol.19(1) 2004 Distribution in IBRA Regions Western Australia is divided into 26 The naturalized vascular plants of Western Australia natural regions (Figure 1) that are used for 1: Checklist, environmental weeds and distribution in bioregional planning. Weeds are unevenly distributed in these regions, generally IBRA regions those with the greatest amount of land disturbance and population have the high- Greg Keighery and Vanda Longman, Department of Conservation and Land est number of weeds (Table 4). For exam- Management, WA Wildlife Research Centre, PO Box 51, Wanneroo, Western ple in the tropical Kimberley, VB, which Australia 6946, Australia. contains the Ord irrigation area, the major cropping area, has the greatest number of weeds. However, the ‘weediest regions’ are the Swan Coastal Plain (801) and the Abstract naturalized, but are no longer considered adjacent Jarrah Forest (705) which contain There are 1233 naturalized vascular plant naturalized and those taxa recorded as the capital Perth, several other large towns taxa recorded for Western Australia, com- garden escapes. and most of the intensive horticulture of posed of 12 Ferns, 15 Gymnosperms, 345 A second paper will rank the impor- the State. Monocotyledons and 861 Dicotyledons. tance of environmental weeds in each Most of the desert has low numbers of Of these, 677 taxa (55%) are environmen- IBRA region. weeds, ranging from five recorded for the tal weeds, recorded from natural bush- Gibson Desert to 135 for the Carnarvon land areas. Another 94 taxa are listed as Results (containing the horticultural centre of semi-naturalized garden escapes. Most Total naturalized flora Carnarvon).
    [Show full text]
  • Ethnopharmacological Study of Native Medicinal Plants and the Impact Of
    www.nature.com/scientificreports OPEN Ethnopharmacological study of native medicinal plants and the impact of pastoralism on their loss in arid to semiarid ecosystems of southeastern Iran Mohsen Sharafatmandrad * & Azam Khosravi Mashizi The purpose of this study was to gather ethnopharmacological information on plants used by the pastorals of southeastern Iran. The relationships between ecological value of the plant species and ethnobotanical indices were investigated. The loss of medicinal plants and its efective factors were also determined under nomadism and sedentary pastoralism. Ethnopharmacological information of plants was collected through interviews with 85 local people including nomads (43%) and sedentary pastorals (57%). Ethnobotanical indices including relative frequency of citation (RFC), relative importance (RI), cultural value (CV), and use value (UV) were estimated. Canopy cover and density of plant species were measured at 60 sampling plots in the exclosure, nomadic rangelands and sedentary pastorals rangelands. The Importance Value Index (IVI) and Relative Loss Index (RL) were estimated for both nomadic and sedentary pastoral rangelands. Pearson correlation coefcient was used to investigate the relationship between ethnobotanical indices and IVI of plant species. The Bayesian networks was used to investigate the relationship between ethnobotanical indices and plant species loss. In total, 156 medicinal plant species of 50 families were identifed in the region by locals. Positive correlation was observed between ethnobotanical indices (RFC and RI) and ecological index (IVI). The mean decline of the ecological importance of medicinal species in sedentary pastoral rangelands was approximately three times higher than in nomadic rangelands. Bayesian networks showed that cultural value, seed exploitation and aerial parts exploitation had direct relationships with species loss in both nomadic and sedentary pastoral rangelands.
    [Show full text]
  • RAÚL ORIHUELA RIVERO Tutorizado Por María Catalina León Arencibia Y Marcelino José Del Arco Aguilar Grado En Biología
    Flora y vegetación del territorio de Las Lagarteras (Tenerife, islas Canarias) Flora and vegetation of the territory of Las Lagarteras (Tenerife, Canary Island) Trabajo de Fin de Grado RAÚL ORIHUELA RIVERO Tutorizado por María Catalina León Arencibia y Marcelino José del Arco Aguilar Grado en Biología. Junio 2020 AGRADECIMIENTOS Después de un intenso periodo de trabajo ha llegado el día en el que me dirija a todos los que me han apoyado a lo largo de este camino hacia mi meta final. Por ello, en primer lugar, quería dar las gracias a los tutores de mi trabajo de Fin de Grado, la Dra. María Catalina León Arencibia y el Dr. Marcelino José Del Arco Aguilar, cuyo apoyo, guía y predisposición han sido un pilar fundamental, no solo para el desarrollo de este estudio, sino para mi formación durante la carrera, brindándome todo lo que estuviera a su alcance para que este trabajo diera sus frutos, más aún con la extraordinaria situación que tuvimos que afrontar durante estos meses (SARS-Cov-2). Asimismo, me gustaría agradecer al Dr. Jesús Santiago Notario Del Pino, cuyo conocimiento sobre los suelos de Tenerife fue de gran ayuda durante nuestro análisis. Para finalizar, deseo mostrar mi agradecimiento a mi familia, ya que sin ella, este sueño no podría haberse llevado a cabo. ÍNDICE RESUMEN: ............................................................................................................................................ 1 ABSTRACT: .........................................................................................................................................
    [Show full text]
  • Some Traditional Medicinal Plants of North Region from Puebla, Mexico: Uses and Potential Pharmacological Activity of Rumex Spp
    s Chemis ct try u d & o r R P e s l e a r a Jerezano Alberto et al., Nat Prod Chem Res 2016, 4:4 r u t c h a N Natural Products Chemistry & Research DOI: 10.4172/2329-6836.1000223 ISSN: 2329-6836 Research Article Open Access Some Traditional Medicinal Plants of North Region from Puebla, Mexico: Uses and Potential Pharmacological Activity of Rumex spp. Jerezano Alberto V1*, Pazos Diana del C2* Ríos Saúl A3, Tepancal-Gomez E4, Salas-Mendoza E4, Villanueva L4, Perez-Perez I5, Murrieta M5, Delgado Francisco R6, Tamariz J6 and Garduño Leticia S7 1School Stomatology, Benemérita Universidad Autónoma de Puebla, Arias y Boulevar S/N, Col El Carmen, C.P. 73820. Teziutlán, Puebla, Mexico 2Department of Investigation and Graduate Studies, Instituto Tecnológico Superior de Teziutlán, Fracción I y II Aire Libre S/N. C.P 73960, Teziutlán, Puebla, México 3School Medicine, Benemérita Universidad Autónoma de Puebla, Arias y Boulevar S/N, Col El Carmen, C.P. 73820. Teziutlán, Puebla, Mexico 4School Psychology, Benemérita Universidad Autónoma de Puebla, Arias y Boulevar S/N, Col El Carmen, C.P. 73820. Teziutlán, Puebla, Mexico 5School Nursing, Benemérita Universidad Autónoma de Puebla, Arias y Boulevar S/N, Col El Carmen, C.P. 73820. Teziutlán, Puebla, Mexico 6Department of Organic Chemistry, ENCB-IPN, Prol. Carpio y Plan de Ayala, 11340, México DF, México 7Department of Pharmacy and Preclinical Toxicology, ENCB-IPN, México DF, México Abstract This paper, based on the traditional knowledge and research, aims to provide an overview of the current state of local and traditional medical uses, pharmacological potential activities, toxicity and safety of some medicinal plants from north region of Puebla State, Mexico.
    [Show full text]