Lake Van Norden Special-Status Plant Survey Lake Van Norden Dam Spillway Modification Project Nevada County, California

Total Page:16

File Type:pdf, Size:1020Kb

Lake Van Norden Special-Status Plant Survey Lake Van Norden Dam Spillway Modification Project Nevada County, California Lake Van Norden Special-status Plant Survey Lake Van Norden Dam Spillway Modification Project Nevada County, California August 2015 Prepared for: John Svahn Stewardship Director Truckee Donner Land Trust 10069 West River Street Truckee, CA Prepared by: C.S. Ecological Surveys and Assessments 11331 Star Pine Road Truckee, CA 96161 C.S. Ecological surveys and Assessments Lake Van Norden Special-status Plant Survey Executive Summary This report presents the results of the focused botanical survey for vascular special-status plants at the proposed Lake Van Norden Dam Spillway Modification Project (proposed project). A complete pedestrian survey of the approximately 160 acre botanical survey area was conducted on June 16th and 17th 2015. The survey generally complied with the botanical survey guidelines of the California Department of Fish and Game (CDFG), the California Native Plant Society (CNPS), the U.S. Fish and Wildlife Service (USFWS), and the Bureau of Land Management (BLM), but differed from these protocols in that a survey of the aquatic habitat was also conducted. The aquatic survey followed guidelines outlined in Aquatic Plant Sampling Protocols: Publication No. 01-03-017 produced by the Washington State Department of Ecology (Parsons 2001). Pre-field research was conducted to select special-status plant species with potential to be found within the survey area. The list of potentially occurring special-status plants was derived from several sources including the California Natural Diversity Database, the CNPS On-line Inventory, and the California Consortium of Herbaria. Twenty-three special-status plant species, including nineteen vascular plants and four non-vascular plants (one liverwort and three mosses) were determined to have potential to occur within the survey area based on habitat preferences and known distribution. No federal or state-listed plant taxa were observed. One rare plant species was documented within the survey area: ribbon leaf pond weed (Potamogeton epihydrus), CRPR 2B.3. The number of occurrences and the approximate number of individuals observed is described in this report, and a map depicting the location of the occurrences is provided. A total of 184 taxa of vascular plants, one liverwort and four algae were identified in the survey area during the June survey. Of the vascular plant taxa observed, 171 are native, 9 are naturalized, and 4 are considered invasive or noxious weeds in California. Fourteen of the twenty-three special-status plants considered for occurrence within the survey area were determined to be absent based on the survey results. One of these three species, ribbon leaf pond weed, was found during the surveys and the remaining eight species are considered unlikely to occur, but could not be definitively ruled out due to their life cycle or because they are non-vascular plants. Habitat for non-vascular plants within the survey area was surveyed for noted but non-vascular plants were not identified or collected for identification during the survey. This was due to the low likelihood of occurrence and because the actions of this project will not impact potential habitat for these species. C.S. Ecological surveys and Assessments Lake Van Norden Special-status Plant Survey Page i Table of Contents 1 Introduction .......................................................................................................................................... 1 1.1 Project description ........................................................................................................................ 1 1.2 Project location and survey area .................................................................................................. 1 1.3 Project setting ................................................................................ Error! Bookmark not defined. 1.3.1 Environmental setting and climate ....................................................................................... 1 1.3.2 Vegetation communities ....................................................................................................... 4 2 Methods ................................................................................................................................................ 7 2.1 Pre-field research .......................................................................................................................... 7 2.2 Reference site visits .................................................................................................................... 13 2.3 Botanical surveys ........................................................................................................................ 14 3 Results ................................................................................................................................................. 14 3.1 Rare plant species observed ....................................................................................................... 14 3.2 Special-status plant taxa not observed, but with potential to occur ......................................... 17 3.3 Invasive non-native plant species and non-local species ........................................................... 19 4 Summary ............................................................................................................................................. 21 4.1 Ribbon leaf pond weed ............................................................................................................... 21 4.2 Other rare plants ......................................................................................................................... 22 5 References .......................................................................................................................................... 23 Figures Figure 1. Project vicinity map ........................................................................................................................ 2 Figure 2. Survey area map ............................................................................................................................ 3 Figure 3. Vegetation Map ............................................................................................................................. 6 Figure 4. Special-status plant locations ...................................................................................................... 16 Tables Table 1. Vegetation alliance and cover type acreages within the SMS survey area ..................................... 4 Table 2. Special-status plants considered for occurrence. ........................................................................... 9 Table 3. Special-status plant reference sites visited ................................................................................... 13 Table 4. Invasive non-native plant species observed. ................................................................................ 20 Appendices Appendix A List of observed species Appendix B List of Special-status plants retrieved from CNDDB and CCH databases Appendix C Botanical survey tracks Appendix D Representative photographs C.S. Ecological surveys and Assessments Lake Van Norden Special-status Plant Survey Page ii 1 Introduction 1.1 Project description The Truckee Donner Land Trust (TDLT) proposes the Lake Van Norden Dam Spillway Modification Project (proposed project). The proposed project involves constructing a 5-foot notch in the existing spillway or the complete removal of the Lake Van Norden dam at the existing spillway to reduce the volume of water retained behind the dam to less than 5-acre feet to comply with the regulatory requirements of the California Department of Water Resources' Division of Safety of Dams (DSOD) and the State Water Resources Control Board (SWRCB), and other safety standards. The proposed project is located in Nevada County, California. The survey was conducted prior to dewatering of the reservoir that was directed by the Cal dept of water resources and authorized by the CDFW in October 2015. 1.2 Project location and survey area 1.2.1 Environmental setting and climate The project area, Lake Van Norden and the surrounding meadow are located just west of the Sierra Crest at approximately 6,770 feet elevation. The Project area includes Lake Van Norden, the portions of Castle Creek and the South Yuba River that are affected by the dam and the adjacent wetlands bordering Lake Van Norden. Lake Van Norden is actually a reservoir that was first dammed in the late 1800’s or early 1900’s historical records are not clear on when the first significant dam was constructed but it is likely that flow in the South Yuba River has been altered since the 1850’s. An official earthen dam was constructed by the Pacific Gas and Electric Company (PG&E) in the early 1900’s which impounded 5,800 acre-feet of water at the peak of the summer season (Lindstrom 2014). In 1976 the dam was found to be “unsound” and was notched by PG&E such that from 1977 to present the capacity of the reservoir is around 175 acre-feet (Balance Hydrologic 2014). Mean annual precipitation at the project site is 67 inches (Balance 2014). The majority of this precipitation is in the form of winter and spring snow. This snowmelt supplies runoff to the rivers and creeks and supports shallow ground water that flows down gradient towards the Project area and is the main source of water that supports the wetland meadow and riparian vegetation within and around the Project area.
Recommended publications
  • Lehman Caves Management Plan
    National Park Service U.S. Department of the Interior Great Basin National Park Lehman Caves Management Plan June 2019 ON THE COVER Photograph of visitors on tour of Lehman Caves NPS Photo ON THIS PAGE Photograph of cave shields, Grand Palace, Lehman Caves NPS Photo Shields in the Grand Palace, Lehman Caves. Lehman Caves Management Plan Great Basin National Park Baker, Nevada June 2019 Approved by: James Woolsey, Superintendent Date Executive Summary The Lehman Caves Management Plan (LCMP) guides management for Lehman Caves, located within Great Basin National Park (GRBA). The primary goal of the Lehman Caves Management Plan is to manage the cave in a manner that will preserve and protect cave resources and processes while allowing for respectful recreation and scientific use. More specifically, the intent of this plan is to manage Lehman Caves to maintain its geological, scenic, educational, cultural, biological, hydrological, paleontological, and recreational resources in accordance with applicable laws, regulations, and current guidelines such as the Federal Cave Resource Protection Act and National Park Service Management Policies. Section 1.0 provides an introduction and background to the park and pertinent laws and regulations. Section 2.0 goes into detail of the natural and cultural history of Lehman Caves. This history includes how infrastructure was built up in the cave to allow visitors to enter and tour, as well as visitation numbers from the 1920s to present. Section 3.0 states the management direction and objectives for Lehman Caves. Section 4.0 covers how the Management Plan will meet each of the objectives in Section 3.0.
    [Show full text]
  • An Updated Checklist of Aquatic Plants of Myanmar and Thailand
    Biodiversity Data Journal 2: e1019 doi: 10.3897/BDJ.2.e1019 Taxonomic paper An updated checklist of aquatic plants of Myanmar and Thailand Yu Ito†, Anders S. Barfod‡ † University of Canterbury, Christchurch, New Zealand ‡ Aarhus University, Aarhus, Denmark Corresponding author: Yu Ito ([email protected]) Academic editor: Quentin Groom Received: 04 Nov 2013 | Accepted: 29 Dec 2013 | Published: 06 Jan 2014 Citation: Ito Y, Barfod A (2014) An updated checklist of aquatic plants of Myanmar and Thailand. Biodiversity Data Journal 2: e1019. doi: 10.3897/BDJ.2.e1019 Abstract The flora of Tropical Asia is among the richest in the world, yet the actual diversity is estimated to be much higher than previously reported. Myanmar and Thailand are adjacent countries that together occupy more than the half the area of continental Tropical Asia. This geographic area is diverse ecologically, ranging from cool-temperate to tropical climates, and includes from coast, rainforests and high mountain elevations. An updated checklist of aquatic plants, which includes 78 species in 44 genera from 24 families, are presented based on floristic works. This number includes seven species, that have never been listed in the previous floras and checklists. The species (excluding non-indigenous taxa) were categorized by five geographic groups with the exception of to reflect the rich diversity of the countries' floras. Keywords Aquatic plants, flora, Myanmar, Thailand © Ito Y, Barfod A. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Botany Biological Evaluation
    APPENDIX I Botany Biological Evaluation Biological Evaluation for Threatened, Endangered and Sensitive Plants and Fungi Page 1 of 35 for the Upper Truckee River Sunset Stables Restoration Project November 2009 UNITED STATES DEPARTMENT OF AGRICULTURE – FOREST SERVICE LAKE TAHOE BASIN MANAGEMENT UNIT Upper Truckee River Sunset Stables Restoration Project El Dorado County, CA Biological Evaluation for Threatened, Endangered and Sensitive Plants and Fungi PREPARED BY: ENTRIX, Inc. DATE: November 2009 APPROVED BY: DATE: _____________ Name, Forest Botanist, Lake Tahoe Basin Management Unit SUMMARY OF EFFECTS DETERMINATION AND MANAGEMENT RECOMMENDATIONS AND/OR REQUIREMENTS One population of a special-status bryophyte, three-ranked hump-moss (Meesia triquetra), was observed in the survey area during surveys on June 30, 2008 and August 28, 2008. The proposed action will not affect the moss because the population is located outside the project area where no action is planned. The following species of invasive or noxious weeds were identified during surveys of the Project area: cheatgrass (Bromus tectorum); bullthistle (Cirsium vulgare); Klamathweed (Hypericum perforatum); oxe-eye daisy (Leucanthemum vulgare); and common mullein (Verbascum Thapsus). The threat posed by these weed populations would not increase if the proposed action is implemented. An inventory and assessment of invasive and noxious weeds in the survey area is presented in the Noxious Weed Risk Assessment for the Upper Truckee River Sunset Stables Restoration Project (ENTRIX 2009). Based on the description of the proposed action and the evaluation contained herein, we have determined the following: There would be no significant effect to plant species listed as threatened, endangered, proposed for listing, or candidates under the Endangered Species Act of 1973, as amended (ESA), administered by the U.S.
    [Show full text]
  • Introduction to Common Native & Invasive Freshwater Plants in Alaska
    Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting
    [Show full text]
  • Atlas of the Flora of New England: Fabaceae
    Angelo, R. and D.E. Boufford. 2013. Atlas of the flora of New England: Fabaceae. Phytoneuron 2013-2: 1–15 + map pages 1– 21. Published 9 January 2013. ISSN 2153 733X ATLAS OF THE FLORA OF NEW ENGLAND: FABACEAE RAY ANGELO1 and DAVID E. BOUFFORD2 Harvard University Herbaria 22 Divinity Avenue Cambridge, Massachusetts 02138-2020 [email protected] [email protected] ABSTRACT Dot maps are provided to depict the distribution at the county level of the taxa of Magnoliophyta: Fabaceae growing outside of cultivation in the six New England states of the northeastern United States. The maps treat 172 taxa (species, subspecies, varieties, and hybrids, but not forms) based primarily on specimens in the major herbaria of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut, with most data derived from the holdings of the New England Botanical Club Herbarium (NEBC). Brief synonymy (to account for names used in standard manuals and floras for the area and on herbarium specimens), habitat, chromosome information, and common names are also provided. KEY WORDS: flora, New England, atlas, distribution, Fabaceae This article is the eleventh in a series (Angelo & Boufford 1996, 1998, 2000, 2007, 2010, 2011a, 2011b, 2012a, 2012b, 2012c) that presents the distributions of the vascular flora of New England in the form of dot distribution maps at the county level (Figure 1). Seven more articles are planned. The atlas is posted on the internet at http://neatlas.org, where it will be updated as new information becomes available. This project encompasses all vascular plants (lycophytes, pteridophytes and spermatophytes) at the rank of species, subspecies, and variety growing independent of cultivation in the six New England states.
    [Show full text]
  • Evolution and Diversification of the Plant Gibberellin Receptor GID1
    Evolution and diversification of the plant gibberellin receptor GID1 Hideki Yoshidaa,b, Eiichi Tanimotoc, Takaaki Hiraia, Yohei Miyanoirid,e, Rie Mitania, Mayuko Kawamuraa, Mitsuhiro Takedad,f, Sayaka Takeharaa, Ko Hiranoa, Masatsune Kainoshod,g, Takashi Akagih, Makoto Matsuokaa,1, and Miyako Ueguchi-Tanakaa,1 aBioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Aichi, Japan; bKihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813 Kanagawa, Japan; cGraduate School of Natural Sciences, Nagoya City University, Nagoya, 467-8501 Aichi, Japan; dStructural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, 464-8601 Aichi, Japan; eResearch Center for State-of-the-Art Functional Protein Analysis, Institute for Protein Research, Osaka University, Suita, 565-0871 Osaka, Japan; fDepartment of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, 862-0973 Kumamoto, Japan; gGraduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, 192-0397 Tokyo, Japan; and hGraduate School of Agriculture, Kyoto University, 606-8502 Kyoto, Japan Edited by Mark Estelle, University of California, San Diego, La Jolla, CA, and approved July 10, 2018 (received for review April 9, 2018) The plant gibberellin (GA) receptor GID1 shows sequence similarity erwort Marchantia polymorpha (5–7). Furthermore, Hirano et al. to carboxylesterase (CXE). Here, we report the molecular evolution (5) reported that GID1s in the lycophyte Selaginella moellen- of GID1 from establishment to functionally diverse forms in dorffii (SmGID1s) have unique properties in comparison with eudicots. By introducing 18 mutagenized rice GID1s into a rice angiosperm GID1s: namely, lower affinity to bioactive GAs and gid1 null mutant, we identified the amino acids crucial for higher affinity to inactive GAs (lower specificity).
    [Show full text]
  • APPENDIX D Biological Technical Report
    APPENDIX D Biological Technical Report CarMax Auto Superstore EIR BIOLOGICAL TECHNICAL REPORT PROPOSED CARMAX AUTO SUPERSTORE PROJECT CITY OF OCEANSIDE, SAN DIEGO COUNTY, CALIFORNIA Prepared for: EnviroApplications, Inc. 2831 Camino del Rio South, Suite 214 San Diego, California 92108 Contact: Megan Hill 619-291-3636 Prepared by: 4629 Cass Street, #192 San Diego, California 92109 Contact: Melissa Busby 858-334-9507 September 29, 2020 Revised March 23, 2021 Biological Technical Report CarMax Auto Superstore TABLE OF CONTENTS EXECUTIVE SUMMARY ................................................................................................ 3 SECTION 1.0 – INTRODUCTION ................................................................................... 6 1.1 Proposed Project Location .................................................................................... 6 1.2 Proposed Project Description ............................................................................... 6 SECTION 2.0 – METHODS AND SURVEY LIMITATIONS ............................................ 8 2.1 Background Research .......................................................................................... 8 2.2 General Biological Resources Survey .................................................................. 8 2.3 Jurisdictional Delineation ...................................................................................... 9 2.3.1 U.S. Army Corps of Engineers Jurisdiction .................................................... 9 2.3.2 Regional Water Quality
    [Show full text]
  • Phylogeny of the Genus Lotus (Leguminosae, Loteae): Evidence from Nrits Sequences and Morphology
    813 Phylogeny of the genus Lotus (Leguminosae, Loteae): evidence from nrITS sequences and morphology G.V. Degtjareva, T.E. Kramina, D.D. Sokoloff, T.H. Samigullin, C.M. Valiejo-Roman, and A.S. Antonov Abstract: Lotus (120–130 species) is the largest genus of the tribe Loteae. The taxonomy of Lotus is complicated, and a comprehensive taxonomic revision of the genus is needed. We have conducted phylogenetic analyses of Lotus based on nrITS data alone and combined with data on 46 morphological characters. Eighty-one ingroup nrITS accessions represent- ing 71 Lotus species are studied; among them 47 accessions representing 40 species are new. Representatives of all other genera of the tribe Loteae are included in the outgroup (for three genera, nrITS sequences are published for the first time). Forty-two of 71 ingroup species were not included in previous morphological phylogenetic studies. The most important conclusions of the present study are (1) addition of morphological data to the nrITS matrix produces a better resolved phy- logeny of Lotus; (2) previous findings that Dorycnium and Tetragonolobus cannot be separated from Lotus at the generic level are well supported; (3) Lotus creticus should be placed in section Pedrosia rather than in section Lotea; (4) a broad treatment of section Ononidium is unnatural and the section should possibly not be recognized at all; (5) section Heineke- nia is paraphyletic; (6) section Lotus should include Lotus conimbricensis; then the section is monophyletic; (7) a basic chromosome number of x = 6 is an important synapomorphy for the expanded section Lotus; (8) the segregation of Lotus schimperi and allies into section Chamaelotus is well supported; (9) there is an apparent functional correlation be- tween stylodium and keel evolution in Lotus.
    [Show full text]
  • Part 2 – Fruticose Species
    Appendix 5.2-1 Vegetation Technical Appendix APPENDIX 5.2‐1 Vegetation Technical Appendix Contents Section Page Ecological Land Classification ............................................................................................................ A5.2‐1‐1 Geodatabase Development .............................................................................................. A5.2‐1‐1 Vegetation Community Mapping ..................................................................................... A5.2‐1‐1 Quality Assurance and Quality Control ............................................................................ A5.2‐1‐3 Limitations of Ecological Land Classification .................................................................... A5.2‐1‐3 Field Data Collection ......................................................................................................... A5.2‐1‐3 Supplementary Results ..................................................................................................... A5.2‐1‐4 Rare Vegetation Species and Rare Ecological Communities ........................................................... A5.2‐1‐10 Supplementary Desktop Results ..................................................................................... A5.2‐1‐10 Field Methods ................................................................................................................. A5.2‐1‐16 Supplementary Results ................................................................................................... A5.2‐1‐17 Weed Species
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]
  • Appendix a Figure 1: Diameter Distributions-East Fork Units
    Appendix A Figure 1: Diameter Distributions-East Fork Units East Fork Control Unit East Fork Goshawk Guidelines Unit East Fork Evidence-based Ecological Restoration Unit Figure 2: Diameter Distributions-Redondo Units Redondo Control Unit Redondo Goshawk Guidelines Unit Redondo Evidence-based Ecological Restoration Unit Figure 3: FlamMap Simulated Crown Fire Behavior: East Fork Project Area 20 mph Southwest Wind 25 mph 30 mph 35 mph 40 mph Map Legend Crown Fire Activity N No crown fire Passive crown activity fire (torching) Active crown fire (spreading) Important Note: Expected Crown Fire Behavior by Percent The 97th percentile of low fuel of Project Area moistures for June from 34 No Crown Passive years of data from the Kaibab Fire Crown Fire Active National Forest, Arizona were used in all simulations. This Windspeed Activity (torching) Crown Fire 20 79.9 0.9 19.2 input represents potential 25 71.2 1.9 26.9 extremes of fire weather during the peak of the fire 30 64.9 2.9 32.3 season, not average fire 35 57.3 4.7 38.0 season conditions. 40 48.7 9.4 42.0 Figure 4: FlamMap Simulated Crown Fire Behavior: Redondo Project Area 20 mph Southwest Wind 25 mph 30 mph 35 mph 40 mph Map Legend Crown Fire Activity N Highway 4 Valles Caldera No crown fire Passive crown activity entrance road fire (torching) Active crown fire (spreading) Important Note: Expected Crown Fire Behavior by Percent The 97th percentile of low fuel of Project Area moistures for June from 34 Passive years of data from the Kaibab No Crown Crown Fire Active Crown National Forest, Arizona were Windspeed Fire Activity (torching) Fire used in all simulations.
    [Show full text]
  • A Natural Resource Condition Assessment for Sequoia and Kings Canyon National Parks Appendix 14 – Plants of Conservation Concern
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science A Natural Resource Condition Assessment for Sequoia and Kings Canyon National Parks Appendix 14 – Plants of Conservation Concern Natural Resource Report NPS/SEKI/ NRR—2013/665.14 In Memory of Rebecca Ciresa Wenk, Botaness ON THE COVER Giant Forest, Sequoia National Park Photography by: Brent Paull A Natural Resource Condition Assessment for Sequoia and Kings Canyon National Parks Appendix 14 – Plants of Conservation Concern Natural Resource Report NPS/SEKI/ NRR—2013/665.14 Ann Huber University of California Berkeley 41043 Grouse Drive Three Rivers, CA 93271 Adrian Das U.S. Geological Survey Western Ecological Research Center, Sequoia-Kings Canyon Field Station 47050 Generals Highway #4 Three Rivers, CA 93271 Rebecca Wenk University of California Berkeley 137 Mulford Hall Berkeley, CA 94720-3114 Sylvia Haultain Sequoia and Kings Canyon National Parks 47050 Generals Highway Three Rivers, CA 93271 June 2013 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability.
    [Show full text]