Downloaded from http://sp.lyellcollection.org/ by guest on October 1, 2021 Archean granitoids of India: windows into early Earth tectonics – an introduction SUKANTA DEY1* & JEAN-FRANÇOIS MOYEN2* 1Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741 246, West Bengal, India 2Laboratoire Magmas et Volcans, UJM-UCA-CNRS-IRD, Université de Lyon, 23 rue Dr Paul Michelon, 42023 Saint Etienne, France SD, 0000-0003-1334-8455 Present address: J-FM, School of Earth, Environment and Atmosphere Sciences, Monash University, Clayton, VIC 3168, Australia *Correspondence: SD,
[email protected],
[email protected]; J-FM,
[email protected] Abstract: Granitoids form the dominant component of Archean cratons. They are generated by partial melting of diverse crustal and mantle sources and subsequent differentiation of the primary magmas, and are formed through a variety of geodynamic processes. Granitoids, therefore, are important archives for early Earth litho- spheric evolution. Peninsular India comprises five cratonic blocks bordered by mobile belts. The cratons that stabilized during the Paleoarchean–Mesoarchean (Singhbhum and Western Dharwar) recorded mostly diapir- ism or sagduction tectonics. Conversely, cratons that stabilized during the late Neoarchean (Eastern Dharwar, Bundelkhand, Bastar and Aravalli) show evidence consistent with terrane accretion–collision in a convergent setting. Thus, the Indian cratons provide testimony to a transition from a dominantly pre-plate tectonic regime in the Paleoarchean–Mesoarchean to a plate-tectonic-like regime in the late Neoarchean. Despite this diversity, all five cratons had a similar petrological evolution with a long period (250–850 myr) of episodic tonalite–trondh- jemite–granodiorite (TTG) magmatism followed by a shorter period (30–100 myr) of granitoid diversification (sanukitoid, K-rich anatectic granite and A-type granite) with signatures of input from both mantle and crust.