Cenozoic Relative Movements of Greenland and North America by Closure of the North Atlantic-arctic Plate Circuit: the Labrador Sea, Davis Strait and Ban Bay Annabel Causer (
[email protected] ) Royal Holloway, University of London Graeme Eagles Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Lucía Pérez-Díaz Department of Earth Sciences, Oxford University Jürgen Adam Royal Holloway, University of London Article Keywords: plate divergence, Cenozoic relative movements, North Atlantic-Arctic plate circuit, Labrador Sea, Davis Strait, Ban Bay, Greenland and North America Posted Date: August 26th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-840254/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/16 Abstract The processes that accommodated plate divergence between Greenland and North America are most condently interpretable from a short-lived (61-42 Ma) sequence of magnetic isochrons in the Labrador Sea. Understanding of the preceding and following periods is impeded by the lack of clear isochrons in the basin’s continent-ocean transition and axial zones. By closing the regional plate circuit, we build and interpret a detailed plate motion model for Greenland and North America that is applicable in, but unaffected by data uncertainty from, the Labrador Sea, Davis Strait, and Ban Bay. Among our ndings, we show the Labrador Sea initially opened during a ~8.3-16.5 Myr-long period of focused extension culminating in continental breakup no earlier than 74-72 Ma, and experienced a ~80° change in spreading direction around 56 Ma.