sustainability Article Assessing Spatio-Temporal Variability of Wildfires and their Impact on Sub-Saharan Ecosystems and Air Quality Using Multisource Remotely Sensed Data and Trend Analysis Mahlatse Kganyago 1,* and Lerato Shikwambana 2,3,* 1 Earth Observation, South African National Space Agency, The Enterprise Building, Mark Shuttleworth Street, Pretoria 0001, South Africa 2 Space Science Directorate, South African National Space Agency, Hermanus 7200, South Africa 3 School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa * Correspondence:
[email protected] (M.K.);
[email protected] (L.S.); Tel.: +27-12-844-0424 (M.K.); +27-28-312-1196 (L.S.) Received: 17 October 2019; Accepted: 25 November 2019; Published: 30 November 2019 Abstract: Globally, wildfires are considered the most commonly occurring disasters, resulting from natural and anthropogenic ignition sources. Wildfires consist of burning standing biomass at erratic degrees of intensity, severity, and frequency. Consequently, wildfires generate large amounts of smoke and other toxic pollutants that have devastating impacts on ambient air quality and human health. There is, therefore, a need for a comprehensive study that characterizes land–atmosphere interactions with regard to wildfires, critical for understanding the interrelated and multidimensional impacts of wildfires. Current studies have a limited scope and a narrow focus, usually only focusing on one aspect of wildfire impacts, such as air quality without simultaneously considering the impacts on land surface changes and vice versa. In this study, we use several multisource data to determine the spatial distribution, frequency, disturbance characteristics of and variability and distribution of pollutants emitted by wildfires.