Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 March 2021 doi:10.20944/preprints202103.0338.v1 TITLE: Living in the endosymbiotic world of Wolbachia: A centennial review Short Title: The Wolbachia World Authors: Rupinder Kaur1,2*, J. Dylan Shropshire1,2, Karissa L. Cross1,2, Brittany Leigh1,2, Alexander J. Mansueto1,2, Victoria Stewart1,2, Sarah R. Bordenstein1,2, and Seth R. Bordenstein1,2,3,4* 1Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA 2Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA 3Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA 4Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37235, USA *Correspondence to: Rupinder Kaur, Nashville, TN, 37235, email:
[email protected] Seth Bordenstein, Nashville, TN, 37235, email:
[email protected] Abstract The most widespread intracellular bacteria in the animal kingdom are maternally-inherited endosymbionts of the genus Wolbachia. Their prevalence in arthropods and nematodes worldwide and stunning arsenal of parasitic and mutualistic adaptations make these bacteria a biological archetype for basic studies of symbiosis and applied outcomes for curbing human and agricultural diseases. Here, we conduct a summative, centennial analysis of living in the Wolbachia world. We synthesize literature on Wolbachia’s host range, phylogenetic diversity, genomics, cell biology, and applications to filarial, arboviral, and agricultural diseases. We also review the mobilome of Wolbachia including phage WO and its essentiality to hallmark phenotypes in arthropods. Finally, the Wolbachia system is an exemplar for discovery-based science education using biodiversity, biotechnology, and bioinformatics lessons. As we approach a century of Wolbachia research, applications, and education, the interdisciplinary science and knowledge 1 © 2021 by the author(s).