A Protein Scaffold, Engineered SPINK2, for Generation of Inhibitors With
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Markers of Serine Protease Evolution
The EMBO Journal Vol. 20 No. 12 pp. 3036±3045, 2001 Molecular markers of serine protease evolution Maxwell M.Krem and Enrico Di Cera1 ment and specialization of the catalytic architecture should correspond to signi®cant evolutionary transitions in the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St Louis, history of protease clans. Evolutionary markers encoun- MO 63110-1093, USA tered in the sequences contributing to the catalytic apparatus would thus give an account of the history of 1Corresponding author e-mail: [email protected] an enzyme family or clan and provide for comparative analysis with other families and clans. Therefore, the use The evolutionary history of serine proteases can be of sequence markers associated with active site structure accounted for by highly conserved amino acids that generates a model for protease evolution with broad form crucial structural and chemical elements of applicability and potential for extension to other classes of the catalytic apparatus. These residues display non- enzymes. random dichotomies in either amino acid choice or The ®rst report of a sequence marker associated with serine codon usage and serve as discrete markers for active site chemistry was the observation that both AGY tracking changes in the active site environment and and TCN codons were used to encode active site serines in supporting structures. These markers categorize a variety of enzyme families (Brenner, 1988). Since serine proteases of the chymotrypsin-like, subtilisin- AGY®TCN interconversion is an uncommon event, it like and a/b-hydrolase fold clans according to phylo- was reasoned that enzymes within the same family genetic lineages, and indicate the relative ages and utilizing different active site codons belonged to different order of appearance of those lineages. -
Functional Characterization of BC039389-GATM and KLK4
Pflueger et al. BMC Genomics (2015) 16:247 DOI 10.1186/s12864-015-1446-z RESEARCH ARTICLE Open Access Functional characterization of BC039389-GATM and KLK4-KRSP1 chimeric read-through transcripts which are up-regulated in renal cell cancer Dorothee Pflueger1,2, Christiane Mittmann1, Silvia Dehler3, Mark A Rubin4,5, Holger Moch1,2 and Peter Schraml1* Abstract Background: Chimeric read-through RNAs are transcripts originating from two directly adjacent genes (<10 kb) on the same DNA strand. Although they are found in next-generation whole transcriptome sequencing (RNA-Seq) data on a regular basis, investigating them further has usually been refrained from. Therefore, their expression patterns or functions in general, and in oncogenesis in particular, are poorly understood. Results: We used paired-end RNA-Seq and a specifically designed computational data analysis pipeline (FusionSeq) to nominate read-through events in a small discovery set of renal cell carcinomas (RCC) and confirmed them in a larger validation cohort. 324 read-through events were called overall; 22/27 (81%) selected nominees passed validation with conventional PCR and were sequenced at the junction region. We frequently identified various isoforms of a given read-through event. 2/22 read-throughs were up-regulated: BC039389-GATM was higher expressed in RCC compared to benign adjacent kidney; KLK4-KRSP1 was expressed in 46/169 (27%) RCCs, but rarely in normal tissue. KLK4-KRSP1 expression was associated with worse clinical outcome in the patient cohort. In cell lines, both read-throughs influenced molecular mechanisms (i.e. target gene expression or migration/invasion) in a way that counteracted the effect of the respective parent transcript GATM or KLK4. -
Serine Proteases with Altered Sensitivity to Activity-Modulating
(19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants. -
Identification of New Substrates and Physiological Relevance
Université de Montréal The Multifaceted Proprotein Convertases PC7 and Furin: Identification of New Substrates and Physiological Relevance Par Stéphanie Duval Biologie Moléculaire, Faculté de médecine Thèse présentée en vue de l’obtention du grade de Philosophiae doctor (Ph.D) en Biologie moléculaire, option médecine cellulaire et moléculaire Avril 2020 © Stéphanie Duval, 2020 Résumé Les proprotéines convertases (PCs) sont responsables de la maturation de plusieurs protéines précurseurs et sont impliquées dans divers processus biologiques importants. Durant les 30 dernières années, plusieurs études sur les PCs se sont traduites en succès cliniques, toutefois les fonctions spécifiques de PC7 demeurent obscures. Afin de comprendre PC7 et d’identifier de nouveaux substrats, nous avons généré une analyse protéomique des protéines sécrétées dans les cellules HuH7. Cette analyse nous a permis d’identifier deux protéines transmembranaires de fonctions inconnues: CASC4 et GPP130/GOLIM4. Au cours de cette thèse, nous nous sommes aussi intéressé au rôle de PC7 dans les troubles comportementaux, grâce à un substrat connu, BDNF. Dans le chapitre premier, je présenterai une revue de la littérature portant entre autres sur les PCs. Dans le chapitre II, l’étude de CASC4 nous a permis de démontrer que cette protéine est clivée au site KR66↓NS par PC7 et Furin dans des compartiments cellulaires acides. Comme CASC4 a été rapporté dans des études de cancer du sein, nous avons généré des cellules MDA- MB-231 exprimant CASC4 de type sauvage et avons démontré une diminution significative de la migration et de l’invasion cellulaire. Ce phénotype est causé notamment par une augmentation du nombre de complexes d’adhésion focale et peut être contrecarré par la surexpression d’une protéine CASC4 mutante ayant un site de clivage optimale par PC7/Furin ou encore en exprimant une protéine contenant uniquement le domaine clivé N-terminal. -
New Insights Into the Functional Mechanisms and Clinical Applications of the Kallikrein-Related Peptidase Family
MOLECULAR ONCOLOGY 1 (2007) 269–287 available at www.sciencedirect.com www.elsevier.com/locate/molonc Review New insights into the functional mechanisms and clinical applications of the kallikrein-related peptidase family Nashmil Emamia,b, Eleftherios P. Diamandisa,b,* aDepartment of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada bDepartment of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada ABSTRACT ARTICLE INFO Article history: The Kallikrein-related peptidase (KLK) family consists of fifteen conserved serine proteases Received 13 July 2007 that form the largest contiguous cluster of proteases in the human genome. While primar- Received in revised form ily recognized for their clinical utilities as potential disease biomarkers, new compelling 4 September 2007 evidence suggests that this family plays a significant role in various physiological pro- Accepted 7 September 2007 cesses, including skin desquamation, semen liquefaction, neural plasticity, and body fluid Available online 15 September 2007 homeostasis. KLK activation is believed to be mediated through highly organized proteo- lytic cascades, regulated through a series of feedback loops, inhibitors, auto-degradation Keywords: and internal cleavages. Gene expression is mainly hormone-dependent, even though tran- Kallikrein-related peptidases scriptional epigenetic regulation has also been reported. These regulatory mechanisms are PSA integrated with various signaling pathways to mediate multiple functions. Dysregulation of Proteolytic cascades these pathways has been implicated in a large number of neoplastic and non-neoplastic Skin desquamation pathological conditions. This review highlights our current knowledge of structural/ * Corresponding author. Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada. -
Cell Surface–Anchored Serine Proteases in Cancer Progression and Metastasis
Cancer and Metastasis Reviews (2019) 38:357–387 https://doi.org/10.1007/s10555-019-09811-7 Cell surface–anchored serine proteases in cancer progression and metastasis Carly E. Martin1,2 & Karin List1,2 Published online: 16 September 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Over the last two decades, a novel subgroup of serine proteases, the cell surface–anchored serine proteases, has emerged as an important component of the human degradome, and several members have garnered significant attention for their roles in cancer progression and metastasis. A large body of literature describes that cell surface–anchored serine proteases are deregulated in cancer and that they contribute to both tumor formation and metastasis through diverse molecular mechanisms. The loss of precise regulation of cell surface–anchored serine protease expression and/or catalytic activity may be contributing to the etiology of several cancer types. There is therefore a strong impetus to understand the events that lead to deregulation at the gene and protein levels, how these precipitate in various stages of tumorigenesis, and whether targeting of selected proteases can lead to novel cancer intervention strategies. This review summarizes current knowledge about cell surface–anchored serine proteases and their role in cancer based on biochemical characterization, cell culture–based studies, expression studies, and in vivo experiments. Efforts to develop inhibitors to target cell surface–anchored serine proteases in cancer therapy will also be summarized. Keywords Type II transmembrane serine proteases . Cancer . Matriptase . Hepsin . TMPRSS2 . TMPRSS3 . TMPRSS4 . Prostasin . Testisin 1 Introduction PRSS31, transmembrane tryptase, and transmembrane prote- ase γ1) is expressed in cells of hematopoietic origin and has The class of serine proteases contains 175 predicted members been studied most extensively in mast cells [2]. -
Table of Contents
Table of Contents Preface V List of contributing authors VII Table of Contents XI Introduction to Volume 1: Kallikrein-related Peptidases. Characterization, Regulation, and Interactions Within the Protease Web 1 Bibliography 3 1 Genomic Structure of the KLK Locus 5 1.1 Introduction 5 1.2 Kallikreins in rodents 6 1.2.1 The mouse kallikrein gene family 7 1.2.2 The rat kallikrein gene family 8 1.3 Characterization and sequence analysis of the human KLK gene locus 9 1.3.1 Locus overview 9 1.3.2 Repeat elements and pleomorphism 11 1.4 Structural features of the human KLK genes and proteins 12 1.4.1 Common structural features 12 1.5 Sequence variations of human KLK genes 13 1.6 Regulation of KLK activity 14 1.6.1 At the mRNA level 14 1.6.2 Locus control of KLK expression 15 1.6.3 Epigenetic regulation of KLK gene expression 17 1.7 Isoforms and splice variants of human KLKs 18 1.8 Evolution of KLKs 21 Bibliography 22 2 Single Nucleotide Polymorphisms in the Human KLK Locus and Their Implication in Various Diseases 31 2.1 Introduction 31 2.2 KLK SNPs – data-mining from SNPdb and 1000 Genomes 32 2.3 Functional annotations using web-based prediction tools 34 2.4 Experimentally validated functional KLK SNPs 35 2.5 KLK SNP haplotypes and tagging 36 2.6 Malignant and non-malignant diseases and association with KLK SNPs 38 2.6.1 Association studies on high-risk variants in KLK genes 39 XII Table of Contents 2.6.2 Association studies on low-risk variants in KLK genes 39 2.7 Conclusions 71 Bibliography 71 3 Evolution of Kallikrein-related Peptidases 79 -
Strategies and Challenges for the Next Generation of Therapeutic Antibodies
FOCUS ON THERAPEUTIC ANTIBODIES PERSPECTIVES ‘validated targets’, either because prior anti- TIMELINE bodies have clearly shown proof of activity in humans (first-generation approved anti- Strategies and challenges for the bodies on the market for clinically validated targets) or because a vast literature exists next generation of therapeutic on the importance of these targets for the disease mechanism in both in vitro and in vivo pharmacological models (experi- antibodies mental validation; although this does not necessarily equate to clinical validation). Alain Beck, Thierry Wurch, Christian Bailly and Nathalie Corvaia Basically, the strategy consists of develop- ing new generations of antibodies specific Abstract | Antibodies and related products are the fastest growing class of for the same antigens but targeting other therapeutic agents. By analysing the regulatory approvals of IgG-based epitopes and/or triggering different mecha- biotherapeutic agents in the past 10 years, we can gain insights into the successful nisms of action (second- or third-generation strategies used by pharmaceutical companies so far to bring innovative drugs to antibodies, as discussed below) or even the market. Many challenges will have to be faced in the next decade to bring specific for the same epitopes but with only one improved property (‘me better’ antibod- more efficient and affordable antibody-based drugs to the clinic. Here, we ies). This validated approach has a high discuss strategies to select the best therapeutic antigen targets, to optimize the probability of success, but there are many structure of IgG antibodies and to design related or new structures with groups working on this class of target pro- additional functions. -
2010.01) C07k 14/74 (2006.01
( (51) International Patent Classification: su 215 123 (CN). LIN, Yanni; F2, Building B20, Sangt- C07K 19/00 (2006.0 1) C12N 5/0783 (20 10.01) ian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu C07K 14/74 (2006.01) A61K 35/1 7 (2015.01) 215123 (CN). ZHENG, Xiaocui; F2, Building B20, Sangt- C12N 15/62 (2006.01) A61P 35/00 (2006.01) ian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu 215123 (CN). KONG, Hongmei; F2, Building B20, Sangt- (21) International Application Number: ian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu PCT/ CN2020/ 1081 16 215123 (CN). WANG, Wenbo; F2, Building B20, Sangtian (22) International Filing Date: Street 218, Suzhou Industrial Park, Suzhou, Jiangsu 215 123 10 August 2020 (10.08.2020) (CN). FENG, Aihua; F2, Building B20, Sangtian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu 215 123 (CN). (25) Filing Language: English (74) Agent: J. Z. M. C. PATENT AND TRADEMARK LAW (26) Publication Language: English OFFICE (GENERAL PARTNERSHIP); YU, Mingwei, (30) Priority Data: Room 5022, No. 335, Guo Ding Road, Yang Pu District, 201910746355.8 13 August 2019 (13.08.2019) CN Shanghai 200433 (CN). PCT/ CN20 19/124321 (81) Designated States (unless otherwise indicated, for every 10 December 2019 (10. 12.2019) CN kind of national protection av ailable) . AE, AG, AL, AM, (71) Applicant: CURE GENETICS CO., LTD. [CN/CN]; AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, Biobay A4-5 10, Xinghu Street 218, Suzhou Industrial Park, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, Suzhou, Jiangsu 215 123 (CN). -
Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................ -
Salivary Protein Panel to Diagnose Systolic Heart Failure
biomolecules Article Salivary Protein Panel to Diagnose Systolic Heart Failure Xi Zhang 1 , Daniel Broszczak 2, Karam Kostner 3, Kristyan B Guppy-Coles 4, John J Atherton 4 and Chamindie Punyadeera 1,* 1 Saliva and Liquid Biopsy Translational Research Team, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia; [email protected] 2 School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia; [email protected] 3 Department of Cardiology, Mater Adult Hospital, Brisbane, Queensland 4101, Australia; [email protected] 4 Cardiology Department, Royal Brisbane and Women’s Hospital and University of Queensland School of Medicine, Brisbane, Queensland 4029, Australia; [email protected] (K.B.G.-C.); [email protected] (J.J.A.) * Correspondence: [email protected]; Tel.: +61-7-3138-0830 Received: 22 October 2019; Accepted: 19 November 2019; Published: 22 November 2019 Abstract: Screening for systolic heart failure (SHF) has been problematic. Heart failure management guidelines suggest screening for structural heart disease and SHF prevention strategies should be a top priority. We developed a multi-protein biomarker panel using saliva as a diagnostic medium to discriminate SHF patients and healthy controls. We collected saliva samples from healthy controls (n = 88) and from SHF patients (n = 100). We developed enzyme linked immunosorbent assays to quantify three specific proteins/peptide (Kallikrein-1, Protein S100-A7, and Cathelicidin antimicrobial peptide) in saliva samples. The analytical and clinical performances and predictive value of the proteins were evaluated. -
EURL ECVAM Recommendation on Non-Animal-Derived Antibodies
EURL ECVAM Recommendation on Non-Animal-Derived Antibodies EUR 30185 EN Joint Research Centre This publication is a Science for Policy report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. EURL ECVAM Recommendations The aim of a EURL ECVAM Recommendation is to provide the views of the EU Reference Laboratory for alternatives to animal testing (EURL ECVAM) on the scientific validity of alternative test methods, to advise on possible applications and implications, and to suggest follow-up activities to promote alternative methods and address knowledge gaps. During the development of its Recommendation, EURL ECVAM typically mandates the EURL ECVAM Scientific Advisory Committee (ESAC) to carry out an independent scientific peer review which is communicated as an ESAC Opinion and Working Group report. In addition, EURL ECVAM consults with other Commission services, EURL ECVAM’s advisory body for Preliminary Assessment of Regulatory Relevance (PARERE), the EURL ECVAM Stakeholder Forum (ESTAF) and with partner organisations of the International Collaboration on Alternative Test Methods (ICATM). Contact information European Commission, Joint Research Centre (JRC), Chemical Safety and Alternative Methods Unit (F3) Address: via E.