Probability, algorithmic complexity, and subjective randomness Thomas L. Griffiths Joshua B. Tenenbaum
[email protected] [email protected] Department of Psychology Brain and Cognitive Sciences Department Stanford University Massachusetts Institute of Technology Abstract accounts that can express the strong prior knowl- We present a statistical account of human random- edge that contributes to our inferences. The struc- ness judgments that uses the idea of algorithmic tures that people find simple form a strict (and flex- complexity. We show that an existing measure of ible) subset of those easily expressed in a computer the randomness of a sequence corresponds to the as- sumption that non-random sequences are generated program. For example, the sequence of heads and by a particular probabilistic finite state automaton, tails TTHTTTHHTH appears quite complex to us, even and use this as the basis for an account that evalu- though, as the parity of the first 10 digits of π, it ates randomness in terms of the length of programs is easily generated by a computer. Identifying the for machines at different levels of the Chomsky hi- kinds of regularities that contribute to our sense of erarchy. This approach results in a model that pre- dicts human judgments better than the responses simplicity will be an important part of any cognitive of other participants in the same experiment. theory, and is in fact necessary since Kolmogorov complexity is not computable (Kolmogorov, 1965). The development of information theory prompted There is a crucial middle ground between Kol- cognitive scientists to formally examine how humans mogorov complexity and the arbitrary encoding encode experience, with a variety of schemes be- schemes to which Simon (1972) objected.