Appendix – International Standards Standards Int

Total Page:16

File Type:pdf, Size:1020Kb

Appendix – International Standards Standards Int 1097 Appendix – International Standards Int. Standards dard, it must be ensured that the supranational stan- Standardisation of materials characterisation dard adopted e.g. as DIN EN ISO in no way contradict methods is needed for various reasons, for relevant national standards. In most cases the relevant example: national standard will be cancelled. • To provide the basis for measurements and However, it might happen that the new EN ISO stan- tests that can be compared confidently with dard covers only a part of the existing national standard. thosemadebyothersaroundtheworld, In these cases it must be decided whether the part not • To ensure that a material conforms to a tech- covered by the new EN ISO standard can be abandoned nical specification of characteristics, or whether this part contains specifications that must • To be used in the design of a component or be retained due to their relevance for the national eco- structure nomic region. In the latter case it will be maintained as • To support investigations into the reasons for a so-called “residual standard”. failures in service. A further important purpose of standardization work is to decrease the measurement uncertainty of the test In addition, the results achieved from mater- methods and to give the users of standards guidelines to ials measurement and testing help guarantee handle. the quality, safety and reliability of products, With the publication of EN ISO/IEC 17025 “General components, and technical systems. requirements for the competency of testing and cali- The importance of measurement, testing and brating laboratories”, the test or calibration certificates standardisation to science, technology, and econ- provided by the laboratories shall incorporate the mea- omy was expressed as follows by the Commission surement results received including the measurement of the European Union: uncertainty. From these data it shall be possible to gather There is no science without measurements, no that the metrological specifications have been fulfilled. quality without testing and no global markets Moreover, it shall be ensured that the measurement re- without standards. sults are converted back to SI units using a metrological chain. In this Appendix of the Springer Handbook of Ma- Introducing the compilation of standards in the Ap- terials Measurement Methods a collection of standards pendix of this Handbook, some general remarks on related to the different chapters of this Handbook is com- standardisation in this field should be made. piled. The chapter standard collections are selective and Work on standardisation of materials measurement not complete; they differ in scope and volume and de- and test methods started between 1920 and 1930 for pend on the field and the state of the art of the pertinent the various methods in the individual countries. There- standards’ developments. fore, the National, European and ISO standards partly The references listed comprise the symbol S for stan- have contained different specifications. Whereas it is dard, the number of the chapter, the continued numbers generally accepted to strive for a complete alignment (separate for each chapter), the name of the editing stan- of standards at all standardization levels, problems can dards organization, the standards’ notation, the year of arise from the interlining of existing national standards publication, and the title of the standard. For the abbre- and new supranational standards (e.g. ISO/EN). When viations of the standards organizations see the following adopting a supranational standard as a national stan- explanation including the internet adress: AATCC American Association of Textile Chemists and Colorists PO Box 12215, Research Triangle Park, NC 27709, USA, http://www.aatcc.org ANSI American National Standards Institute 11 West 42nd Street, 13th floor, New York, NY 10036, USA, http://www.ansi.org 1098 Part Appendix – International Standards Int. Standards AS AS/NZS, Standards Australia, available: Beuth Verlag,Berlin, Germany, Foreign Standards Service, http://www.standards.com.au ASTM American Society for Testing and Materials 1916 Race Street, Philadelphia, PA 19103-1187, USA, http://www.astm.org AWPA American Wood-Preserver’s Association, P.O. Box 388, Selma, AL 36702-0388 USA, http://www.awpa.com BSI British Standards Instituion 389 Chiswick High Road, London W4 4AL, UK, http://www.bsi- global.com DIN German Standard (Deutsches Institut für Normung, DIN) 10772 Berlin, Germany, http://www.din.de EN European Standard (CEN-European Committee for Standardization) Rue de Stassart 36, B-1050 Brussels, Belgium, http://www.cenorm.be IEC International Electrotechnical Committee Rue de Varembé 3 P.O. Box 131, CH-1211 Geneva 20, Switzerland, http://iso.ch ISO International Standards Organization Rue de Varembé 1 P.O. Box 56, CH-1211 Geneva 20, Switzerland, http://www.iec.ch JIS Japanese Standard (JISC - Japanese Industrial Standards Committee) Agency of Industrial Science and Technology Ministry of International Trade and Industry 1-3-1, Kasumigaseki, Chiyoda-Ku, Tokyo 100, Japan, http://www.jisc.jp NF French Standard (AFNOR - Association française de normalisation) 11, avenue Francis de Pressensé, 93571 Saint-Denise La Phaine Cedex, France, http://afnor.fr OIML Organisation Internationale de Métrologie Légale 11, Rue Turgot, 75009 Paris, France, http://www.oiml.com SEP “Stahl-Eisen-Prüfblatt” Verein Deutscher Eisenhüttenleute, Verlag Stahleisen GmbH, P.O. BOX 10 51 64, 40042 Düsseldorf, Germany, http://www.stahleisen.de SN Swiss Association for Standardization (SNV) Mühlebachstraße 54, CH-8008 Zurich, Switzerland, http://www.snv.ch VDI Verein Deutscher Ingenieure P.O. Box 101139, 40002 Düsseldorf, Germany, http://www.vdi.de Part B Measurement Methods for Composition and Structure Chapter 4 Chemical Composition Chemical Separations (4.1.2) S-4-1 ANSI/ASTM D 6042: 1996-00-00 Test Method for Determination of Phenolic Antioxidants and Erucamide Slip Addi- tives in Polypropylene Homopolymer Formulations Using Liquid Chromatography (LC) S-4-2 ANSI/ASTM D 6060: 2001-00-00 Practice for Sampling of Process Vents with a Portable Gas Chromatograph S-4-3 ANSI/ASTM D 6159: 1997-00-00 Test Method for Determination of Hydrocarbon Impurities in Ethylene by Gas Chromatography/Note: reaffirmation of ANSI/ASTM D6159-1997 S-4-4 ANSI/ASTM D 6420: 2001-00-00 Test Method for Determination of Gaseous Organic Compounds by Direct Interface Gas Chromatography-Mass Spectrometry S-4-5 ANSI/ASTM D 6733: 2001-00-00 Test Method for Determination of Individual Components in Spark Ignition Engine Fuels by 50 Meter Capillary High Resolution Gas Chromatography S-4-6 ASTM D 4626: 1995-00-00 Standard Practice for Calculation of Gas Chromatographic Response Factors / Note: Reapproved 2000 Appendix – International Standards Part B Measurement Methods for Composition and Structure 1099 S-4-7 ASTM D 5399: 1995-00-00 Standard Test Method for Boiling Point Distribution of Hydrocarbon Solvents by Gas Int. Standards Chromatography/ Note: Reapproved 2000 S-4-8 ASTM D 5917: 2002-00-00 Standard Test Method for Trace Impurities in Monocyclic Aromatic Hydrocarbons by Gas Chromatography and External Calibration S-4-9 ASTM D 6060: 1996-00-00 Standard Practice for Sampling of Process Vents With a Portable Gas Chromatograph / Note: Reapproved 2001 S-4-10 ASTM E 260: 1996-00-00 Standard Practice for Packed Column Gas Chromatography / Note: Reapproved 2001 S-4-11 ASTM E 355: 1996-00-00 Standard Practice for Gas Chromatography Terms and Relationships / Note: Reapproved 2001 S-4-12 ASTM E 682 ANSI E 682: 1992- Standard Practice for Liquid Chromatography Terms and Relationships / Note: Reapproved 00-00 2000 S-4-13 ASTM E 685 ANSI E 685: 1993- Standard Practice for Testing Fixed-Wavelength Photometric Detectors Used in Liquid 00-00 Chromatography / Note: Reapproved 2000 S-4-14 ASTM E 697: 1996-00-00 Standard Practice for Use of Electron-Capture Detectors in Gas Chromatography / Note: Reapproved 2001 S-4-15 ASTM E 840: 1995-00-00 Standard Practice for Using Flame Photometric Detectors in Gas Chromatography / Note: Reapproved 2000 S-4-16 ASTM E 1140: 1995-00-00 Standard Practice for Testing Nitrogen/Phosphorus Thermionic Ionization Detectors for Use In Gas Chromatography / Note: Reapproved 2000 S-4-17 ASTM E 1303: 1995-00-00 Practice for Refractive Index Detectors Used in Liquid Chromatography / Note: Reap- proved 2000 S-4-18 ASTM E 1449: 1992-00-00 Standard Guide for Supercritical Fluid Chromatography Terms and Relationships / Note: Reapproved 2000 S-4-19 ASTM E 1510: 1995-00-00 Standard Practice for Installing Fused Silica Open Tubular Capillary Columns in Gas Chromatographs / Note: Reapproved 2000 S-4-20 ASTM E 1642: 2000-00-00 Standard Practice for General Techniques of Gas Chromatography Infrared (GC/IR) Analysis S-4-21 ASTM E 1657: 1998-00-00 Standard Practice for Testing Variable-Wavelength Photometric Detectors Used in Liquid Chromatography / Note: Reapproved 2001 S-4-22 ASTM E 1698: 1995-00-00 Standard Practice for Testing Electrolytic Conductivity Detectors (ELCD) Used in Gas Chromatography / Note: Reapproved 2000 S-4-23 ISO 2718: 1974-04-00 Standard layout for a method of chemical analysis by gas chromatography S-4-24 JIS K 0114: 2000-07-20 General rules for gas chromatographic analysis S-4-25 JIS K 0115: 1992-02-01 General rules for molecular absorptiometric analysis S-4-26 JIS K 0123: 1995-04-01 General rules for analytical methods in gas chromatography mass spectrometry S-4-27 OIML R 83: 1990-00-00 Gas chromatograph/mass spectrometer/data
Recommended publications
  • Crystallization Kinetics of Chalcogenide Glasses
    2 Crystallization Kinetics of Chalcogenide Glasses Abhay Kumar Singh Department of Physics, Banaras Hindu University, Varanasi, India 1. Introduction 1.1 Background of chalcogenides Chalcogenide glasses are disordered non crystalline materials which have pronounced tendency their atoms to link together to form link chain. Chalcogenide glasses can be obtained by mixing the chalcogen elements, viz, S, Se and Te with elements of the periodic table such as Ga, In, Si, Ge, Sn, As, Sb and Bi, Ag, Cd, Zn etc. In these glasses, short-range inter-atomic forces are predominantly covalent: strong in magnitude and highly directional, whereas weak van der Waals' forces contribute significantly to the medium-range order. The atomic bonding structure is, in general more rigid than that of organic polymers and more flexible than that of oxide glasses. Accordingly, the glass-transition temperatures and elastic properties lay in between those of these materials. Some metallic element containing chalcogenide glasses behave as (super) ionic conductors. These glasses also behave as semiconductors or, more strictly, they are a kind of amorphous semi-conductors with band gap energies of 1±3eV (Fritzsche, 1971). Commonly, chalcogenide glasses have much lower mechanical strength and thermal stability as compared to existing oxide glasses, but they have higher thermal expansion, refractive index, larger range of infrared transparency and higher order of optical non-linearity. It is difficult to define with accuracy when mankind first fabricated its own glass but sources demonstrate that it discovered 10,000 years back in time. It is also difficult to point in time, when the field of chalcogenide glasses started.
    [Show full text]
  • Unraveling the Crystallization Kinetics of Supercooled Liquid Gete By
    Article pubs.acs.org/crystal Unraveling the Crystallization Kinetics of Supercooled Liquid GeTe by Ultrafast Calorimetry † ‡ § ‡ † § ‡ † † Yimin Chen, , , Guoxiang Wang, Lijian Song, , Xiang Shen,*, Junqiang Wang,*, Juntao Huo, ‡ † ‡ ‡ ‡ Rongping Wang, Tiefeng Xu, , Shixun Dai, and Qiuhua Nie † Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology & Engineering, Chinese of Sciences, Ningbo, 315201, China ‡ Laboratory of Infrared Material and Devices & Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Advanced Technology Research Institute, Ningbo, 315211, China § University of Chinese Academy of Sciences, Beijing, 100049, China *S Supporting Information ABSTRACT: Crystallization kinetics of phase change materials (PCMs) at high temperatures is of key importance for the extreme speed of data writing and erasing. In this work, the crystallization behavior of one of the typical PCMs, GeTe, has been studied using ultrafast differential scanning calorimetry (DSC) at high heating rates up to 4 × 104 Ks−1. A strong non-Arrhenius temperature-dependent viscosity has been observed. We considered two viscosity models for estimating the crystal growth kinetics ffi coe cient (Ukin). The results showed that the MYEGA model was more suitable to describe the temperature-dependent viscosity and the crystal growth kinetics for supercooled liquid GeTe. The glass transition temperature (Tg) and fragility m were estimated to be 432.1 K and 130.7, respectively. The temperature-dependent crystal growth rates, which were extrapolated by the MYEGA model, were in line with the experimental results that were measured by in situ transmission electron microscopy at a given temperature. The crystal growth rate reached a maximum of 3.5 m s−1 at 790 K.
    [Show full text]
  • Measurement of Crystal Growth Velocity in a Melt-Quenched Phase-Change Material
    ARTICLE Received 26 Mar 2013 | Accepted 29 Jul 2013 | Published 29 Aug 2013 DOI: 10.1038/ncomms3371 OPEN Measurement of crystal growth velocity in a melt-quenched phase-change material Martin Salinga1, Egidio Carria1, Andreas Kaldenbach1, Manuel Bornho¨fft2, Julia Benke1, Joachim Mayer2 & Matthias Wuttig1 Phase-change materials are the basis for next-generation memory devices and reconfigurable electronics, but fundamental understanding of the unconventional kinetics of their phase transitions has been hindered by challenges in the experimental quantification. Here we obtain deeper understanding based on the temperature dependence of the crystal growth velocity of the phase-change material AgInSbTe, as derived from laser-based time-resolved reflectivity measurements. We observe a strict Arrhenius behaviour for the growth velocity over eight orders of magnitude (from B10 nm s À 1 to B1msÀ 1). This can be attributed to the formation of a glass at elevated temperatures because of rapid quenching of the melt. Further, the temperature dependence of the viscosity is derived, which reveals that the supercooled liquid phase must have an extremely high fragility (4100). Finally, the new experimental evidence leads to an interpretation, which comprehensively explains existing data from various different experiments reported in literature. 1 I. Physikalisches Institut (IA) and JARA-FIT, RWTH Aachen University, Sommerfeldstrae 14, 52074 Aachen, Germany. 2 Gemeinschaftslabor fu¨r Elektronenmikroskopie, RWTH Aachen University, Ahornstrae 55, 52074 Aachen, Germany. Correspondence and requests for materials should be addressed to M.S. (email: [email protected]). NATURE COMMUNICATIONS | 4:2371 | DOI: 10.1038/ncomms3371 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited.
    [Show full text]
  • Structure of Liquid Phase Change Material Aginsbte from Density Functional/ Molecular Dynamics Simulations J
    Structure of liquid phase change material AgInSbTe from density functional/ molecular dynamics simulations J. Akola, and R. O. Jones Citation: Appl. Phys. Lett. 94, 251905 (2009); View online: https://doi.org/10.1063/1.3157166 View Table of Contents: http://aip.scitation.org/toc/apl/94/25 Published by the American Institute of Physics Articles you may be interested in Nanoscale nuclei in phase change materials: Origin of different crystallization mechanisms of Ge2Sb2Te5 and AgInSbTe Journal of Applied Physics 115, 063506 (2014); 10.1063/1.4865295 Nucleation of films employed in phase-change media Journal of Applied Physics 99, 064907 (2006); 10.1063/1.2184428 Crystallization kinetics of sputter-deposited amorphous AgInSbTe films Journal of Applied Physics 90, 3816 (2001); 10.1063/1.1405141 Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells Journal of Applied Physics 119, 025704 (2016); 10.1063/1.4938532 Investigation of switching region in superlattice phase change memories AIP Advances 6, 105104 (2016); 10.1063/1.4964729 Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires Applied Physics Letters 109, 213103 (2016); 10.1063/1.4968510 APPLIED PHYSICS LETTERS 94, 251905 ͑2009͒ Structure of liquid phase change material AgInSbTe from density functional/molecular dynamics simulations ͒ J. Akola1,2,3 and R. O. Jones1,a 1Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany 2Nanoscience Center, Department of Physics, P.O. Box 35, FI-40014 University of Jyväskylä, Finland 3Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland ͑Received 20 April 2009; accepted 28 May 2009; published online 23 June 2009͒ The liquid phase of the AgInSbTe phase change material Ag3.5In3.8Sb75.0Te17.7 has been studied using molecular dynamics/density functional simulations.
    [Show full text]
  • Study of the Glass Press Molding Process
    Study of the glass press molding process Diplomová práce Studijní program: N2301 – Mechanical Engineering Studijní obor: 2302T010 – Machines and Equipment Design Autor práce: Selma Kunosic Vedoucí práce: doc. Ing. Tomáš Vít, Ph.D. Liberec 2016 Study of the glass press molding process Diploma thesis Study programme: N2301 – Mechanical Engineering Study branch: 2302T010 – Machines and Equipment Design Author: Selma Kunosic Supervisor: doc. Ing. Tomáš Vít, Ph.D. Liberec 2016 TABLE OF CONTENTS 1. Introduction ..................................................................................................................................... 8 1.1. Glass versus plastics as lens materials .................................................................................... 9 1.2. Advantages and benefits ......................................................................................................... 9 2. Research objectives ....................................................................................................................... 11 3. Literature overview ....................................................................................................................... 12 4. About the process ......................................................................................................................... 14 4.1. Heating cycle ......................................................................................................................... 15 4.2. Soaking cycle ........................................................................................................................
    [Show full text]
  • Crystallization Kinetics of Sputter-Deposited Amorphous Aginsbte Films Walter K
    Crystallization kinetics of sputter-deposited amorphous AgInSbTe films Walter K. Njoroge and Matthias Wuttig Citation: Journal of Applied Physics 90, 3816 (2001); doi: 10.1063/1.1405141 View online: http://dx.doi.org/10.1063/1.1405141 View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/90/8?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Improved phase-change characteristics of Zn-doped amorphous Sb7Te3 films for high-speed and low-power phase change memory Appl. Phys. Lett. 103, 031914 (2013); 10.1063/1.4816062 Studies on melt-quenched AgInSbTe system AIP Conf. Proc. 1512, 38 (2013); 10.1063/1.4790899 Crystallization and high temperature shape memory behavior of sputter-deposited NiMnCoIn thin films Appl. Phys. Lett. 96, 173102 (2010); 10.1063/1.3407670 Study on the crystallization by an electrical resistance measurement in Ge 2 Sb 2 Te 5 and N-doped Ge 2 Sb 2 Te 5 films J. Appl. Phys. 102, 113507 (2007); 10.1063/1.2818104 Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys Appl. Phys. Lett. 84, 5240 (2004); 10.1063/1.1764591 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP: 41.89.10.241 On: Wed, 15 Jun 2016 08:40:52 JOURNAL OF APPLIED PHYSICS VOLUME 90, NUMBER 8 15 OCTOBER 2001 Crystallization kinetics of sputter-deposited amorphous AgInSbTe films Walter K. Njoroge I. Physikalisches Institut der RWTH Aachen, D-52056 Aachen, Germany and Department of Physics, Kenyatta University, P.O.
    [Show full text]
  • 1/17 This Manuscript Was Published In: Nature Materials, Volume
    This manuscript was published in: Nature Materials, volume 17, pages 681–685 (2018) Link to published article: https://www.nature.com/articles/s41563-018-0110-9 DOI: 10.1038/s41563-018-0110-9 SharedIt link to access a view-only version of the article for free: https://rdcu.be/bhNaG This file also includes the supplementary information that accompanied the manuscript. Title: Monatomic phase change memory Authors: Martin Salinga*1,2, Benedikt Kersting1,2, Ider Ronneberger1,2, Vara Prasad Jonnalagadda1, Xuan Thang Vu2, Manuel Le Gallo1, Iason Giannopoulos1, Oana Cojocaru-Mirédin2, Riccardo Mazzarello2, Abu Sebastian1 1 IBM Research-Zurich, CH-8803 Rüschlikon, Switzerland 2 RWTH Aachen University, D-52074 Aachen, Germany Phase Change Memory (PCM) has been developed into a mature technology capable of storing information in a fast and non-volatile way1-3, with potential for neuromorphic computing applications4-6. However, its future impact in electronics depends crucially on how the materials at the core of this technology adapt to the requirements arising from continued scaling towards higher device densities. A common strategy to fine-tune the properties of PCM materials, reaching reasonable thermal stability in optical data storage, relies on mixing precise amounts of different dopants, resulting often in quaternary or even more complicated compounds6-8. Here we show how the simplest material imaginable, a single element (in this case antimony), can become a valid alternative when confined in extremely small volumes. This compositional simplification eliminates problems related to unwanted deviations from the optimized stoichiometry in the switching volume, which become increasingly pressing when devices are aggressively miniaturized9,10.
    [Show full text]
  • Mushahid Husain Zishan Husain Khan Editors Advances in Nanomaterials Advanced Structured Materials
    Advanced Structured Materials Mushahid Husain Zishan Husain Khan Editors Advances in Nanomaterials Advanced Structured Materials Volume 79 Series editors Andreas Öchsner, Southport Queensland, Australia Lucas F.M. da Silva, Porto, Portugal Holm Altenbach, Magdeburg, Germany More information about this series at http://www.springer.com/series/8611 Mushahid Husain • Zishan Husain Khan Editors Advances in Nanomaterials 123 Editors Mushahid Husain Zishan Husain Khan M.J.P. Rohilkhand University Department of Applied Sciences Bareilly, Uttar Pradesh & Humanities India Jamia Millia Islamia New Delhi India ISSN 1869-8433 ISSN 1869-8441 (electronic) Advanced Structured Materials ISBN 978-81-322-2666-6 ISBN 978-81-322-2668-0 (eBook) DOI 10.1007/978-81-322-2668-0 Library of Congress Control Number: 2016930552 © Springer India 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication.
    [Show full text]
  • Exploring Ultrafast Threshold Switching in In3sbte2 Phase Change Memory Devices Nishant Saxena 1, Christoph Persch 2, Matthias Wuttig 2 & Anbarasu Manivannan 3*
    www.nature.com/scientificreports OPEN Exploring ultrafast threshold switching in In3SbTe2 phase change memory devices Nishant Saxena 1, Christoph Persch 2, Matthias Wuttig 2 & Anbarasu Manivannan 3* Phase change memory (PCM) ofers remarkable features such as high-speed and non-volatility for universal memory. Yet, simultaneously achieving better thermal stability and fast switching remains a key challenge. Thus, exploring novel materials with improved characteristics is of utmost importance. We report here, a unique property-portfolio of high thermal stability and picosecond threshold switching characteristics in In3SbTe2 (IST) PCM devices. Our experimental fndings reveal an improved thermal stability of amorphous IST compared to most other phase change materials. Furthermore, voltage dependent threshold switching and current-voltage characteristics corroborate an extremely fast, yet low electric feld threshold switching operation within an exceptionally small delay time of less than 50 picoseconds. The combination of low electric feld and high speed switching with improved thermal stability of IST makes the material attractive for next-generation high-speed, non-volatile memory applications. At present, there is an ever increasing demand for storing huge amounts of data. Tis is due to advancements in various key areas including embedded systems and the Internet of things (IoT), which enables interactions among various electronic devices used in our daily life. Te huge amount of interconnected data demands not only high memory density, but also better programming speed, and therefore a “universal memory” with all-encompassing features such as high speed, high density, low power consumption and non-volatility is highly desirable. In this context, phase change memory (PCM) has already demonstrated tremendous potential.
    [Show full text]
  • Variation of Microstructure and Electrical Conductivity of Amorphous Aginsbte and Sbte Films During Crystallization
    Materials Transactions, Vol. 48, No. 3 (2007) pp. 610 to 617 #2007 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Variation of Microstructure and Electrical Conductivity of Amorphous AgInSbTe and SbTe Films during Crystallization Chien-Chih Chou, Fei-Yi Hung and Truan-Sheng Lui* Department of Material Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R. O. China Two kinds of chalcogenide films with similar Sb/Te atomic ratios, AgInSbTe (AIST) and SbTe (ST) were deposited on alkali-free glass using the RF sputtering method. The microstructure characteristics of both ST and AIST films were demonstrated to correlate with the electrical properties. TEM observation and GI-XRD profiles revealed that the structures of as-deposited AIST and ST films were amorphous characteristics. The sheet resistance of the as-deposited AIST films was twice as high as that of ST films and the effect of Ag and In additives was proposed. After annealing at 523 K for 1 h, the sheet resistance of both chalcogenide films decreased by four orders of magnitude due to crystallizations and the sheet resistance of crystallized AIST film was still twice as large as that of crystallized ST film. DSC measurement was used to determine the crystallization temperature of AIST films as 476 K and that of ST films as 445 K. The activation energies of crystallization were determined using Kissinger’s method, and 0.94 eV and 0.84 eV were obtained for AIST and ST films, respectively. TEM observations showed that AgSbTe2 phase exists in the AIST film after heat treatment in addition to -Sb phase.
    [Show full text]
  • Crystallization Dynamics of As-Deposited Amorphous Aginsbte Thin Film Induced by Picosecond Laser Pulses
    Home Search Collections Journals About Contact us My IOPscience Crystallization dynamics of as-deposited amorphous AgInSbTe thin film induced by picosecond laser pulses This content has been downloaded from IOPscience. Please scroll down to see the full text. 2010 J. Phys. D: Appl. Phys. 43 175401 (http://iopscience.iop.org/0022-3727/43/17/175401) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 130.237.29.138 This content was downloaded on 06/09/2015 at 03:40 Please note that terms and conditions apply. IOP PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 43 (2010) 175401 (6pp) doi:10.1088/0022-3727/43/17/175401 Crystallization dynamics of as-deposited amorphous AgInSbTe thin film induced by picosecond laser pulses Huan Huang1, Fangyuan Zuo2, Fengxiao Zhai1, Yang Wang1,3, Tianshu Lai2,3, Yiqun Wu1 and Fuxi Gan1 1 Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China 2 State Key Laboratory of Optoelectronic Materials and Technology, Department of Physics, Sun Yet-Sen University, Guangzhou 510275, People’s Republic of China E-mail: [email protected] and [email protected] Received 21 January 2010, in final form 9 March 2010 Published 15 April 2010 Online at stacks.iop.org/JPhysD/43/175401 Abstract The time-resolved crystallization dynamics of as-deposited amorphous AgInSbTe thin films induced by single picosecond laser pulses has been studied. The crystallization process was shown to be a threshold-dependent multi-stage process.
    [Show full text]
  • Thermal Characterization of Se80-Xte20inx Glasses Using Iso-Conversional Methods
    Journal of Crystallization Process and Technology, 2012, 2, 64-71 http://dx.doi.org/10.4236/jcpt.2012.22009 Published Online April 2012 (http://www.SciRP.org/journal/jcpt) Thermal Characterization of Se80-xTe20Inx Glasses Using Iso-Conversional Methods Renu Shukla1, Pragya Agarwal1, Ashok Kumar2* 1Department of Physics, D. B. S. College, Kanpur, India; 2Department of Physics, Harcourt Butler Technological Institute, Kanpur, India. Email: *[email protected] Received November 27th, 2011; revised January 21st, 2012; accepted February 7th, 2012 ABSTRACT Alloys of Se80-xTe20Inx glassy system are obtained by quenching technique and crystallization kinetics has been studied using Differential Scanning Calorimetric [DSC] technique. Well defined endothermic and exothermic peaks are ob- served at glass transition temperature (Tg) and crystallization temperature (Tc). From DSC scans, Tc is obtained at dif- ferent heating rates (5, 10, 15, 20, 25 K/min). It is observed that Tc increases with increasing heating rate for a particular glassy alloy. Activation energy of crystallization (Ec) has been calculated by different Non-isothermal Iso-conversional methods, i.e., Kissinger-Akahira-Sunose [KAS], Friedman, Flynn-wall-Ozawa [FWO], Friedman-Ozawa [FO] and Starink methods. It is observed that Ec is dependent on extent of crystallization (α). Activation energy is also found to vary with atomic percentage of In in ternary Se80-xTe20Inx glassy system. The compositional dependence of Ec shows a reversal in the trend at x = 15 in Se80-x-Te20-Inx, which is explained in terms of mechanically stabilized structure at this composition. Keywords: Crystallization Kinetics; DSC; Iso-Conversional Methods 1. Introduction by changing the amorphous spots back to crystal-line form.
    [Show full text]