A Matter of Security, Privacy and Trust
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Advance Visual Model for Animating Behavior of Cryptographic Protocols
An Advance Visual Model for Animating Behavior of Cryptographic Protocols Mabroka Ali Mayouf Maeref1*, Fatma Alghali2, Khadija Abied2 1 Sebha University, Faculty of Science, Department of Computer Science, P. O. Box 18758 Sebha, Libya, Libyan. 2 Sebha University of Libya, Sebha, Libya. * Corresponding author. Tel.: 00218-925132935; email: [email protected] Manuscript submitted February 13, 2015; accepted July 5, 2015. doi: 10.17706/jcp.10.5.336-346 Abstract: Visual form description benefits from the ability of visualization to provide precise and clear description of object behavior especially if the visual form is extracted from the real world. It provides clear definition of object and the behavior of that object. Although the current descriptions of cryptographic protocol components and operations use a different visual representation, the cryptographic protocols behaviors are not actually reflected. This characteristic is required and included within our proposed visual model. The model uses visual form and scenario-based approach for describing cryptographic protocol behavior and thus increasing the ability to describe more complicated protocol in a simple and easy way. Key words: Animation, cryptographic protocols, interactive tool, visualization. 1. Introduction Cryptographic protocols (CPs) mostly combine both theory and practice [1], [2]. These cause protocol complexity describing and understanding. Therefore, separating the mathematical part from the protocol behavior should provide feeling of how the protocol works, thus increasing the ability to describe and to gain confidence in reflecting more complicated information about CPs, as well as to generate interest to know about other more complex protocol concepts. Several researchers realized the use of visual model and animation techniques to reflect the explanation of the learning objectives and their benefits [3]-[11]. -
NSA's Efforts to Secure Private-Sector Telecommunications Infrastructure
Under the Radar: NSA’s Efforts to Secure Private-Sector Telecommunications Infrastructure Susan Landau* INTRODUCTION When Google discovered that intruders were accessing certain Gmail ac- counts and stealing intellectual property,1 the company turned to the National Security Agency (NSA) for help in securing its systems. For a company that had faced accusations of violating user privacy, to ask for help from the agency that had been wiretapping Americans without warrants appeared decidedly odd, and Google came under a great deal of criticism. Google had approached a number of federal agencies for help on its problem; press reports focused on the company’s approach to the NSA. Google’s was the sensible approach. Not only was NSA the sole government agency with the necessary expertise to aid the company after its systems had been exploited, it was also the right agency to be doing so. That seems especially ironic in light of the recent revelations by Edward Snowden over the extent of NSA surveillance, including, apparently, Google inter-data-center communications.2 The NSA has always had two functions: the well-known one of signals intelligence, known in the trade as SIGINT, and the lesser known one of communications security or COMSEC. The former became the subject of novels, histories of the agency, and legend. The latter has garnered much less attention. One example of the myriad one could pick is David Kahn’s seminal book on cryptography, The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet.3 It devotes fifty pages to NSA and SIGINT and only ten pages to NSA and COMSEC. -
The First Collision for Full SHA-1
The first collision for full SHA-1 Marc Stevens1, Elie Bursztein2, Pierre Karpman1, Ange Albertini2, Yarik Markov2 1 CWI Amsterdam 2 Google Research [email protected] https://shattered.io Abstract. SHA-1 is a widely used 1995 NIST cryptographic hash function standard that was officially deprecated by NIST in 2011 due to fundamental security weaknesses demonstrated in various analyses and theoretical attacks. Despite its deprecation, SHA-1 remains widely used in 2017 for document and TLS certificate signatures, and also in many software such as the GIT versioning system for integrity and backup purposes. A key reason behind the reluctance of many industry players to replace SHA-1 with a safer alternative is the fact that finding an actual collision has seemed to be impractical for the past eleven years due to the high complexity and computational cost of the attack. In this paper, we demonstrate that SHA-1 collision attacks have finally become practical by providing the first known instance of a collision. Furthermore, the prefix of the colliding messages was carefully chosen so that they allow an attacker to forge two PDF documents with the same SHA-1 hash yet that display arbitrarily-chosen distinct visual contents. We were able to find this collision by combining many special cryptanalytic techniques in complex ways and improving upon previous work. In total the computational effort spent is equivalent to 263:1 SHA-1 compressions and took approximately 6 500 CPU years and 100 GPU years. As a result while the computational power spent on this collision is larger than other public cryptanalytic computations, it is still more than 100 000 times faster than a brute force search. -
FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications
FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications Luca Henzen and Wolfgang Fichtner Integrated Systems Laboratory, ETH Zurich, Switzerland E-mail: {henzen, fw}@iis.ee.ethz.ch Abstract—The forthcoming IEEE 802.3ba Ethernet standard Exploiting the parallelization of four cores plus the extensive will provide data transmission at a bandwidth of 100 Gbit/s. Cur- utilization of pipelining, we were able to design three different rently, the fastest cryptographic primitive approved by the U.S. National Institute for Standard and Technology, that combines 100G AES-GCM implementations for Xilinx Virtex-5 FPGAs. data encryption and authentication, is the Galois/Counter Mode (GCM) of operation. If the feasibility to increase the speed of the II. GCM AUTHENTICATED ENCRYPTION GCM up to 100 Gbit/s on ASIC technologies has already been The GCM is a block cipher mode of operation that is demonstrated, the FPGA implementation of the GCM in secure able to encrypt or decrypt data, providing at the same time 100G Ethernet network systems arises some important structural issues. In this paper, we report on an efficient FPGA architecture authentication and data integrity . In practice, it combines a of the GCM combined with the AES block cipher. With the block cipher in the counter mode with universal hashing over parallelization of four pipelined AES-GCM cores we were able the binary field GF(2128). In this work, we used the Advanced to reach the speed required by the new Ethernet standard. Encryption Standard (AES) [4] for encryption and decryption, Furthermore, the time-critical binary field multiplication of the authentication process relies on four pipelined 2-step Karatsuba- supporting key sizes of 128, 192 and 256bits. -
Julius: Secure Mode of Operation for Authenticated Encryption Based on ECB and Finite Field Multiplications
Julius: Secure Mode of Operation for Authenticated Encryption Based on ECB and Finite Field Multiplications Lear Bahack∗ Submission to the CAESAR competition, version 1.0, March 2014 Gaius Julius Caesar, 100 BC – 44 BC. Source: Mcleclat, GNU, Creative Commons via Wikimedia Commons. ∗Weizmann Institute of Science, Rehovot, Israel. E-mail: [email protected] 1 Abstract We present two new blockcipher modes of operation for authenti- cated encryption with associated data, designed to achieve the maxi- mal possible security in case of misused IV, while being efficient as the Galois/Counter Mode (GCM). Both of the modes are provably secure up to the birthday bound, are suitable for both software and hard- ware, and are based on GF(2128) multiplications by a secret element of the field. The Julius-CTR mode can be viewed as a certain variation combin- ing the GCM, SIV and Unbalanced Feistel Network, while the Julius- ECB mode can be viewed as a certain variation of the Naor-Reingold mode. We specify two versions for each mode: a regular version and a compact version, having different ciphertexts redundancies. Sev- eral variants aimed to achieve increased security, parallelization, and efficiency are briefly explored. Based on the two Julius modes of operation and the AES-128 block- cipher, we propose a family of four specific algorithms for authenti- cated encryption with associated data to the CAESAR competition. 1 Introduction Symmetric key authenticated encryption (AE) is in a sense the most basic and fundamental usage of cryptography. Although today’s cryptography is far broader and contains complicated algorithms aiming to achieve other (more complicated) goals, the vast majority of applications use "compli- cated" cryptographic algorithms only in addition to a "basic" symmetric key AE algorithm. -
Algebraic Frameworks for Cryptographic Primitives
Algebraic Frameworks for Cryptographic Primitives by Navid Alamati A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Science and Engineering) in the University of Michigan 2020 Doctoral Committee: Associate Professor Chris Peikert, Chair Professor Jeffrey Lagarias Professor Quentin Stout Professor Martin Strauss “It must be admitted that the use of geometric intuition has no logical necessity in mathematics, and is often left out of the formal presentation of results. If one had to construct a mathematical brain, one would probably use resources more efficiently than creating a visual system. But the system is there already, it is used to great advantage by human mathematicians, and it gives a special flavor to human mathematics.” David Ruelle [Conversations on Mathematics with a Visitor from Outer Space, 1998] Navid Alamati [email protected] ORCID iD: 0000-0001-8621-7486 2020 Acknowledgments Undoubtedly, I was more than fortunate to be advised by Chris Peikert. He has guided me during the past five years with unwavering patience and unparalleled percipience. No words can adequately describe my appreciation for him. I thank the other members of the committee—Jeffrey Lagarias, Quentin Stout, and Martin Strauss. I was lucky to be interned twice at Fujitsu Labs of America, during which I have had the chance of working with wonderful researchers—Arnab Roy, Hart Montgomery, and Sikhar Patranabis. I am grateful to Hart and Sikhar for the innumerable hours of discussion and the countless moments of wonder through which I tried to do research in cryptography. I am also thankful to Luca De Feo for being a great companion for an attempt on isogenies for dummies, one of whom has written this thesis. -
Cryptographic Sponge Functions
Cryptographic sponge functions Guido B1 Joan D1 Michaël P2 Gilles V A1 http://sponge.noekeon.org/ Version 0.1 1STMicroelectronics January 14, 2011 2NXP Semiconductors Cryptographic sponge functions 2 / 93 Contents 1 Introduction 7 1.1 Roots .......................................... 7 1.2 The sponge construction ............................... 8 1.3 Sponge as a reference of security claims ...................... 8 1.4 Sponge as a design tool ................................ 9 1.5 Sponge as a versatile cryptographic primitive ................... 9 1.6 Structure of this document .............................. 10 2 Definitions 11 2.1 Conventions and notation .............................. 11 2.1.1 Bitstrings .................................... 11 2.1.2 Padding rules ................................. 11 2.1.3 Random oracles, transformations and permutations ........... 12 2.2 The sponge construction ............................... 12 2.3 The duplex construction ............................... 13 2.4 Auxiliary functions .................................. 15 2.4.1 The absorbing function and path ...................... 15 2.4.2 The squeezing function ........................... 16 2.5 Primary aacks on a sponge function ........................ 16 3 Sponge applications 19 3.1 Basic techniques .................................... 19 3.1.1 Domain separation .............................. 19 3.1.2 Keying ..................................... 20 3.1.3 State precomputation ............................ 20 3.2 Modes of use of sponge functions ......................... -
Chapter 1. Introducing Cryptography and ICSF
z/OS Version 2 Release 3 Cryptographic Services Integrated Cryptographic Service Facility Overview IBM SC14-7505-06 Note Before using this information and the product it supports, read the information in “Notices” on page 83. This edition applies to ICSF FMID HCR77C0 and Version 2 Release 3 of z/OS (5650-ZOS) and to all subsequent releases and modifications until otherwise indicated in new editions. Last updated: 2019-06-24 © Copyright International Business Machines Corporation 1996, 2019. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Figures................................................................................................................ vii Tables.................................................................................................................. ix About this information.......................................................................................... xi ICSF features............................................................................................................................................... xi Who should use this information................................................................................................................ xi How to use this information........................................................................................................................ xi Where to find more information.................................................................................................................xii -
State of the Art in Lightweight Symmetric Cryptography
State of the Art in Lightweight Symmetric Cryptography Alex Biryukov1 and Léo Perrin2 1 SnT, CSC, University of Luxembourg, [email protected] 2 SnT, University of Luxembourg, [email protected] Abstract. Lightweight cryptography has been one of the “hot topics” in symmetric cryptography in the recent years. A huge number of lightweight algorithms have been published, standardized and/or used in commercial products. In this paper, we discuss the different implementation constraints that a “lightweight” algorithm is usually designed to satisfy. We also present an extensive survey of all lightweight symmetric primitives we are aware of. It covers designs from the academic community, from government agencies and proprietary algorithms which were reverse-engineered or leaked. Relevant national (nist...) and international (iso/iec...) standards are listed. We then discuss some trends we identified in the design of lightweight algorithms, namely the designers’ preference for arx-based and bitsliced-S-Box-based designs and simple key schedules. Finally, we argue that lightweight cryptography is too large a field and that it should be split into two related but distinct areas: ultra-lightweight and IoT cryptography. The former deals only with the smallest of devices for which a lower security level may be justified by the very harsh design constraints. The latter corresponds to low-power embedded processors for which the Aes and modern hash function are costly but which have to provide a high level security due to their greater connectivity. Keywords: Lightweight cryptography · Ultra-Lightweight · IoT · Internet of Things · SoK · Survey · Standards · Industry 1 Introduction The Internet of Things (IoT) is one of the foremost buzzwords in computer science and information technology at the time of writing. -
Analysis and Implementation of the Messaging Layer Security Protocol
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AMS Tesi di Laurea Alma Mater Studiorum · Universita` di Bologna CAMPUS DI CESENA Dipartimento di Informatica - Scienza e Ingegneria Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche Analysis and Implementation of the Messaging Layer Security Protocol Tesi in Sicurezza delle Reti Relatore: Presentata da: Gabriele D'Angelo Nicola Giancecchi Anno Accademico 2018/2019 Parole chiave Network Security Messaging MLS Protocol Ratchet Trees \Oh me, oh vita! Domande come queste mi perseguitano. Infiniti cortei d'infedeli, citt`agremite di stolti, che v'`edi nuovo in tutto questo, oh me, oh vita! Risposta: Che tu sei qui, che la vita esiste e l’identit`a. Che il potente spettacolo continua, e che tu puoi contribuire con un verso." - Walt Whitman Alla mia famiglia. Introduzione L'utilizzo di servizi di messaggistica su smartphone `eincrementato in maniera considerevole negli ultimi anni, complice la sempre maggiore disponi- bilit`adi dispositivi mobile e l'evoluzione delle tecnologie di comunicazione via Internet, fattori che hanno di fatto soppiantato l'uso dei classici SMS. Tale incremento ha riguardato anche l'utilizzo in ambito business, un contesto dove `epi`ufrequente lo scambio di informazioni confidenziali e quindi la necessit`adi proteggere la comunicazione tra due o pi`upersone. Ci`onon solo per un punto di vista di sicurezza, ma anche di privacy personale. I maggiori player mondiali hanno risposto implementando misure di sicurezza all'interno dei propri servizi, quali ad esempio la crittografia end-to-end e regole sempre pi`ustringenti sul trattamento dei dati personali. -
Securing Audio Using AES-Based Authenticated Encryption with Python
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2021 doi:10.20944/preprints202108.0185.v1 Article Securing Audio Using AES-based Authenticated Encryption with Python Jessy Ayala 1 1 New York University, Tandon School of Engineering; [email protected] Featured Application: Securing communication of audio files utilizing symmetric authenticated encryption. Abstract: The focus of this research is to analyze the results of encrypting audio using various au- thenticated encryption algorithms implemented in the Python cryptography library for ensuring authenticity and confidentiality of the original contents. The Advanced Encryption Standard (AES) is used as the underlying cryptographic primitive in conjunction with various modes including Gal- ois Counter Mode (GCM), Counter with Cipher Block Chaining Message Authentication Code (CCM), and Cipher Block Chaining (CBC) with Keyed-Hashing for encrypting a relatively small audio file. The resulting encrypted audio shows similarity in the variance when encrypting using AES-GCM and AES-CCM. There is a noticeable reduction in variance of the performed encodings and an increase in the amount of time it takes to encrypt and decrypt the same audio file using AES- CBC with Keyed-Hashing. In addition, the corresponding encrypted using this mode audio spans a longer duration. As a result, AES should either have GCM or CCM for an efficient and reliable authenticated encryption integration within a workflow. Keywords: AES; Audio analysis; Authenticated encryption; Cryptography; Python 1. Introduction Cryptography is used worldwide for adhering to the security CIA triad: confidenti- ality, integrity, and availability. In an environment where mobile devices have become ubiquitous, voice messages are more common than one may think. -
Cryptography and Public Key Infrastructure on the Internet
Cryptography and Public Key Infrastructure on the Internet Klaus Schmeh Gesellsschaft für IT-Sicherheit AG Bochum, Germany Cryptography and Public Key Infrastructure on the Internet Cryptography and Public Key Infrastructure on the Internet Klaus Schmeh Gesellsschaft für IT-Sicherheit AG Bochum, Germany Copyright © 2001 by dpunkt.verlag GmbH, Heidelberg, Germany. Title of the German original: Kryptografie und Publik-Key-Infrastrukturen im Internet. ISBN: 3 932588 90 8 English translation Copyright 2003 by John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England. All rights reserved National 01243 779777 International (+44) 1243 779777 e-mail (for orders and customer service enquiries): [email protected] Visit our Home Page on http://www.wileyeurope.com or http://www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the publication. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770571.