Panx1 Channels Promote Both Anti- and Pro-Seizure-Like Activities in The

Total Page:16

File Type:pdf, Size:1020Kb

Panx1 Channels Promote Both Anti- and Pro-Seizure-Like Activities in The bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446992; this version posted June 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PWF et al. 2021 1 2 3 4 5 6 7 8 Panx1 channels promote both anti- and pro-seizure-like 9 activities in the zebrafish via p2rx7 receptors and ATP signaling 10 11 12 13 14 15 16 1,2,4* 1,2 1,2 1,2 17 Paige Whyte-Fagundes , Daria Taskina , Nickie Safarian , Christiane Zoidl , Peter L 18 Carlen3,4, Logan W Donaldson1, Georg R Zoidl1,2,4* 19 20 21 22 1 Department of Biology, York University; Toronto, Ontario, M3J1P3; Canada 23 2 Center of Vision Research (CVR), York University; Toronto, Ontario, M3J1P3; Canada 24 3 Department of Medicine, Physiology and BME, University of Toronto, 399 Bathurst St., 5w442, 25 Toronto, ON M5T 2S8, Canada 26 4 Department, Krembil Research Institute, University Health Network, 135 Nassau Street, 27 Toronto, ON M5T 1M8, Canada 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 *Corresponding authors: [email protected], [email protected] 45 46 Keywords: Pannexin1, seizures, epilepsy, electrophysiology, behavior, TALENs, Zebrafish, ATP 47 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446992; this version posted June 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 2 48 Abstract: 49 The molecular mechanisms of excitation-inhibition imbalances promoting seizure generation in 50 epilepsy patients are not fully understood. Experimental evidence suggests that Pannexin1 (Panx1), 51 an ATP release channel, modulates excitability of the brain. In this report, we have performed 52 behavioral and molecular phenotyping experiments on zebrafish larvae bearing genetic or 53 pharmacological knockouts of panx1a or panx1b channels, each highly homologous to human 54 PANX1. When Panx1a function is lost or both channels are under pharmacological blockage, 55 treatment with pentylenetetrazol to induce seizures causes reduced ictal-like events and seizure- 56 like locomotion. These observations were extended by transcriptome profiling, where a spectrum 57 of distinct metabolic and cell signaling states correlates with the loss of panx1a. The pro- and 58 anticonvulsant activities of both Panx1 channels affects ATP release and involves the purinergic 59 receptor p2rx7. We propose that Panx1 zebrafish models offer opportunities to explore the 60 molecular and physiological basis of seizures and assist anticonvulsant drug discovery. 61 62 63 64 Introduction 65 A widely accepted view in epilepsy research is that neuronal hyperexcitability during 66 epileptic seizures is caused by an imbalance of excitatory and inhibitory activities. This view places 67 the imbalance of neuronal transmitters glutamate and GABA release first, but evidence is 68 accumulating for altered ATP- and adenosine-mediated signaling between neurons and glial cells 69 contributing to heightened states of excitability and epileptic seizures 1. ATP release and signaling 70 can be both excitatory and inhibitory, but adenosine strongly inhibits electrical activity. Five groups 71 of ATP-release channels with expression in the nervous system are known: pannexin-1 (Panx1) 2, 72 connexin (Cx) hemichannels 3, calcium homeostasis modulator 1 (CALHM1) 4, volume-regulated 73 anion channels (VRACs, also known as volume-sensitive outwardly rectifying (VSOR) anion bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446992; this version posted June 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 3 74 channels) 5, and maxi-anion channels (MACs) 6. Panx1 is recognized as a pro-convulsant channel 75 after behavioral and electrophysiological markers of excitability are ameliorated in distinct models 76 of epilepsy once Panx1 is inhibited pharmacologically or by global deletion in mice 7-10. Other 77 evidence for pro-convulsant actions of Panx1 derived from increased expression of human and 78 rodent Panx1 found in epileptic tissue 8,11-13. However, the simplistic view of inhibiting mammalian 79 Panx1 and causing anti-convulsant effects is challenged. The targeted deletion of mouse Panx1 in 80 astrocytes potentiates, while the absence of Panx1 in neurons attenuates seizure manifestation 14. 81 Furthermore, the contribution of Panx1 to seizures is also brain region dependent 15, raising 82 questions about the underlying molecular and cellular mechanisms. 83 Zebrafish have two panx1 ohnologues, panx1a and panx1b, with distinct expression 84 localizations and biophysical properties 16-18. Like mammalian Panx1 19-21, the zebrafish panx1a is 85 broadly expressed in all tissues tested 16,17, whereas the expression of panx1b is highest in the 86 nervous system 17. We had suggested that both pannexins fulfill different functions in vivo based 87 on differences in the unitary conductance of Panx1a (≈380pS) and Panx1b (480-500pS) channels, 88 the complexity of subconductance stages, and the cumulative open and closed times 17. Here, we 89 interrogated Panx1 channels genetically and pharmacologically, and induced seizure-like activities 90 in the zebrafish using pentylenetetrazole (PTZ) 22 to suppress inhibitory networks by blocking 91 gamma aminobutyric acid (GABA)-A receptors. The zebrafish responses to PTZ were 92 physiologically and behaviorally comparable to mammals 22,23. 93 Gene-edited zebrafish lacking panx1a or panx1b 24,25 revealed opposite seizure-like 94 phenotypes and PTZ-related morbidity. Targeted ablation of panx1b potentiates, while the absence 95 of panx1a attenuates seizure manifestations according to recordings of in vivo local field potentials 96 (ivLFP) and locomotor behavior. A deletion of both fish panx1 genes, in a double knockout fish 97 (DKO), causes a moderate phenotype with reduced seizures. In line with these observations are bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446992; this version posted June 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 4 98 significant changes to extracellular ATP levels and biological processes demonstrating that the 99 propensity of developing seizure like activities is correlated with altered regulation of energy 100 metabolism, cell death, and the cellular transportome. The acute pharmacological blocking of both 101 Panx1 channels using Probenecid (Pb) abolished PTZ-induced seizures. The molecular, 102 electrophysiological, and behavioral changes are overlapping, but not identical to genetic 103 interference. Likewise, pharmacological blocking of the Panx1 interaction partner P2rx7 26 reduces 104 seizure-like activities like Pb treatment. Finally, structural modeling and comparing the pores of 105 the two Panx1 ohnologues and the human PANX1 channel supports our experimental data 106 implicating the Panx1a protein as a driver of pro-convulsant activities. 107 In summary, our analysis of genetic and pharmacological models in the zebrafish 108 establishes Panx1a channels as the pro-convulsant Panx1 channel. The different propensities of 109 Panx1a and Panx1b channels in developing seizure-like activities opens opportunities for 110 comparative studies into seizure mechanisms and drug discovery by targeting shared properties of 111 zebrafish Panx1a and human PANX1. 112 113 114 Results: 115 Panx1 genotypes determine evoked seizure-like events. 116 Seven days post fertilization (7dpf) larvae were anesthetized, and agar embedded before an 117 electrode was placed into the optic tectum (OT). Seizure-like events (SLE) were recorded after 118 topical application of 15 mM PTZ, as described 27 (Fig. 1a). Characteristic SLEs induced by PTZ 119 demonstrate an initial action potential burst followed by short paroxysmal bursts, representative of 120 a seizure pattern, which was absent at baseline (Fig. 1b). The number of panx1a-/- larvae exhibiting 121 SLEs was reduced by 88% compared to PTZ treated Tubingen Longfin (TL) controls; only one bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446992; this version posted June 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 5 122 panx1a-/- larva responded to PTZ treatment (n = 8). All panx1b-/- larvae exhibited SLEs (n = 9). 123 33% of the DKO larvae seized (panx1a-/-: panx1b-/-; DKO; n = 12), which was significantly 124 reduced compared to controls (n = 7) and indistinguishable from panx1a-/- larvae (p=0.2) (Fig. 1c). 125 The average number of SLEs per hour was similar for DKOs and panx1a-/- larvae (p = 0.58), 126 with less than one event on average (DKO: 0.58 ± 0.29; panx1a-/-: 0.38 ± 0.38 events/hour,). Even 127 though all panx1b-/- fish had SLEs, the average number of events per hour were significantly less 128 compared to controls (panx1b-/-: 36.78 ± 2.67; TL: 49.86 ± 3.86 events/hour) (Fig. 1d). The 129 duration of events in all genotypes were comparable to TL controls (TL: 5.5s ± 0.4s; DKO: 4.1s ± 130 0.2s, p = 0.07; panx1a-/-: 4.2s, p = n/a; panx1b-/-: 4.8s ± 0.4s, p = 0.09) (Fig. 1e). 131 The latency until the first SLE showed differences amongst genotypes. TL larvae exhibited 132 the shortest latent period (12.9 ± 1.3min). Panx1b-/- fish presented a delay until the first SLE, with 133 events starting at 21 ± 1.2min. DKO (51.1 ± 4.5min) and panx1a-/- responded last to PTZ treatment 134 (47.3min) (Fig. 1f). 135 The fractional percentage of seizing time within the first hour revealed additional genotype 136 specific differences. SLEs in panx1b-/- larvae were reduced compared to TL controls (panx1b -/-: 137 4.8% ± 0.3%; TL: 7.6% ± 0.8%). However, both DKO and panx1a-/- fish displayed minimal seizing 138 time (<0.1%).
Recommended publications
  • Biochemical and Functional Analyses of PANX1 Variants
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository June 2019 Biochemical and Functional Analyses of PANX1 Variants Daniel Nouri Nejad The University of Western Ontario Supervisor Penuela, Silvia The University of Western Ontario Graduate Program in Anatomy and Cell Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Daniel Nouri Nejad 2019 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Molecular Biology Commons Recommended Citation Nouri Nejad, Daniel, "Biochemical and Functional Analyses of PANX1 Variants" (2019). Electronic Thesis and Dissertation Repository. 6230. https://ir.lib.uwo.ca/etd/6230 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Pannexin 1 (PANX1) is a glycoprotein capable of forming large-pore single- membrane channels permeable to signaling molecules such as ATP. In this study, we interrogated different domains by introducing naturally occurring variants reported in melanoma and assessed their impact on the channel function of PANX1 at the cell surface. From this, we discovered a novel tyrosine phosphorylation site at Tyr150, that when disrupted via a missense mutation resulted in hypo-glycosylation and a greater capacity to traffic to the cell-surface and enhanced dye uptake. We have also uncovered a highly conserved ancestral allele, Gln5His, that has a greater allele frequency than the derived allele Gln5 in global and cancer cohorts but was not associated with cancer aggressiveness.
    [Show full text]
  • Mechanistic and Structural Studies of Pannexin Channels
    MECHANISTIC AND STRUCTURAL STUDIES OF PANNEXIN CHANNELS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Kevin Ronald Michalski August 2018 © 2018 Kevin Ronald Michalski MECHANISTIC AND STRUCTURAL STUDIES OF PANNEXIN CHANNELS Kevin Ronald Michalski, Ph.D Cornell University 2018 Pannexin channels are a family of recently discovered membrane proteins found in nearly every tissue of the human body. These channels have been classified as large ‘pore forming’ proteins which, when activated, create a passageway through the cell membrane through which ions and molecules transit. Current literature suggests that the actual pannexin channel is formed from a hexameric arrangement of individual monomeric pannexin subunits, resulting in a central permeation pathway for conducting ions. Opening of pannexin channels can be accomplished through several mechanisms. During apoptosis, for example, cleavage of the pannexin C-terminal domain results in a constitutively open channel through which ATP is released. However, curiously, pannexins have also been known to be activated by a variety of other stimuli such as cellular depolarization, exposure to signaling ions like Ca2+ and K+, and interacting with various other membrane receptors like members of the ATP- sensing P2X and P2Y family. How can pannexin channels sense and respond to such a diverse array of stimuli, and what is the fundamental ‘gating process’ that defines channel opening? Here, we use electrophysiology to study the activation of pannexin-1 (Panx1). We used a protein chimera approach to identify that the first extracellular domain of Panx1 is critical for inhibitor action.
    [Show full text]
  • Mouse Mol.Wt.: 48 Kda Panx1 Antibody
    #M040570 Panx1 Antibody Order 021-34695924 [email protected] Support 400-6123-828 50ul [email protected] 100 uL Web www.abmart.cn Description: The pannexin gene family encodes a second class of putative gap junction proteins and are highly conserved in invertebrates and mammals. Pannexins (Panx) are four-pass transmembrane proteins that oligomerize to form large pore ion and metabolite-permeable channels. Pannexin-1 (PANX1) and Pannexin-3 are closely related, while Pannexin-2 is a more distant relation. PANX1 is a transmembrane protein that forms a mechanosensitive ATP-permeable channel between adjacent cells and in the endoplasmic reticulum. PANX1 may play a role as a Ca2+ -leak channel to regulate ER Ca2+ homeostasis and regulates neural stem and progenitor cell proliferation. Uniprot: Q96RD7 Alternative Names: innexin; MRS1; Pannexin 1; Panx1; PX1; Specificity: Antibody detects endogenous levels of total PANX1. Reactivity: Human, Mouse, Rat Source: Mouse Mol.Wt.: 48 kDa Storage Condition: Store at -20 °C. Stable for 12 months from date of receipt. 1 For in vitro research use only and not intended for use in humans or animals. Application: WB 1:1000-1:2000;IHC/IF 1:100-1:1000 Western blot analysis of PANX1 expression in SH-SY5Y whole cell lysates, 其他推荐产品 #M20001 His-Tag (2A8) Mouse mAb #M20002 Myc-Tag (19C2) Mouse mAb #M20003 HA-Tag (26D11) Mouse mAb #M20004 GFP-Tag (7G9) Mouse mAb #M20007 GST-Tag (12G8) Mouse mAb #M20008 DYDDDDDK-Tag (3B9) Mouse mAb (Binds to same epitope as Sigma’s Anti- FLAG M2 Antibody) #M20012 Anti-Myc-Tag Mouse mAb (Agarose Conjugated) #M20013 Anti-HA-Tag Mouse mAb (Agarose Conjugated) #M20018 Anti-DYKDDDDK-Tag Mouse Antibody (Agarose Conjugated) (Same as Sigma’s Anti-FLAG M2) #M20118 Anti-DYKDDDDK-Tag Mouse Antibody (Magnetic Beads) (Same as Sigma’s Anti-FLAG M2) 2 For in vitro research use only and not intended for use in humans or animals.
    [Show full text]
  • GPCR Regulation of ATP Efflux from Astrocytes
    G PROTEIN-COUPLED RECEPTOR REGULATION OF ATP RELEASE FROM ASTROCYTES by ANDREW EDWARD BLUM Thesis advisor: Dr. George R. Dubyak Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Department of Physiology and Biophysics CASE WESTERN RESERVE UNIVERSITY May, 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Dedication I am greatly indebted to my thesis advisor Dr. George Dubyak. Without his support, patience, and advice this work would not have been possible. I would also like to acknowledge Dr. Robert Schleimer and Dr. Walter Hubbard for their encouragement as I began my research career. My current and past thesis committee members Dr. Matthias Buck, Dr. Cathleen Carlin, Dr. Edward Greenfield, Dr. Ulrich Hopfer, Dr. Gary Landreth, Dr. Corey Smith, Dr. Jerry Silver have provided invaluable guidance and advice for which I am very grateful. A special thanks to all of the past and present
    [Show full text]
  • Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: a High-Risk/High-Gain Endeavor
    biomolecules Review Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: A High-Risk/High-Gain Endeavor Raf Van Campenhout 1 , Serge Muyldermans 2 , Mathieu Vinken 1,†, Nick Devoogdt 3,† and Timo W.M. De Groof 3,*,† 1 Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; [email protected] (R.V.C.); [email protected] (M.V.) 2 Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; [email protected] 3 In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-2-6291980 † These authors share equal seniorship. Abstract: Cell plasma membrane proteins are considered as gatekeepers of the cell and play a major role in regulating various processes. Transport proteins constitute a subclass of cell plasma membrane proteins enabling the exchange of molecules and ions between the extracellular environment and the cytosol. A plethora of human pathologies are associated with the altered expression or dysfunction of cell plasma membrane transport proteins, making them interesting therapeutic drug targets. However, the search for therapeutics is challenging, since many drug candidates targeting cell plasma membrane proteins fail in (pre)clinical testing due to inadequate selectivity, specificity, potency or stability. These latter characteristics are met by nanobodies, which potentially renders them eligible therapeutics targeting cell plasma membrane proteins. Therefore, a therapeutic nanobody-based strategy seems a valid approach to target and modulate the activity of cell plasma membrane Citation: Van Campenhout, R.; transport proteins.
    [Show full text]
  • Ubiquitination and Proteasomal Regulation of Pannexin 1 and Pannexin 3
    Ubiquitination and proteasomal regulation of Pannexin 1 and Pannexin 3 Anna Blinder A thesis submitted in partial fulfillment of the requirements for the Master’s degree in Cellular and Molecular Medicine Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa © Anna Blinder, Ottawa, Canada, 2020 ABSTRACT Pannexin 1 (PANX1) and Pannexin 3 (PANX3) are single-membrane channel glycoproteins that allow for communication between the cell and its environment to regulate cellular differentiation, proliferation, and apoptosis. Their expression is regulated through post-translational modifications, however, their regulation by ubiquitination and the ubiquitin proteasome pathway (UPP) has not been examined. Here, I show that PANX1 is monoubiquitinated and K48- and K63-polyubiquitinated, and PANX3 is polyubiquitinated. While treatment with MG132 altered the banding profile and subcellular distribution of both pannexins, data suggested that only PANX3 is degraded by the UPP. To study the purpose of PANX1 ubiquitination, a PANX1 mutant bearing nine lysine mutations was engineered. Results revealed increased cell surface expression of the mutant, suggesting that ubiquitination may regulate trafficking. I thus demonstrated for the first time that PANX1 and PANX3 are polyubiquitinated and differentially regulated by ubiquitin and by the proteasome, indicating distinct mechanisms that stringently regulate pannexin expression. II TABLE OF CONTENTS ABSTRACT ...............................................................................................................................................
    [Show full text]
  • Cryo-EM Structure of the Volume-Regulated Anion Channel
    bioRxiv preprint doi: https://doi.org/10.1101/331207; this version posted May 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cryo-EM structure of the volume-regulated anion channel LRRC8 Go Kasuya1*, Takanori Nakane1†*, Takeshi Yokoyama2*, Yanyan Jia3, Masato Inoue4, Kengo Watanabe4, Ryoki Nakamura1, Tomohiro Nishizawa1, Tsukasa Kusakizako1, Akihisa Tsutsumi5, Haruaki Yanagisawa5, Naoshi Dohmae6, Motoyuki Hattori7, Hidenori Ichijo4, Zhiqiang Yan3, Masahide Kikkawa5, Mikako Shirouzu2, Ryuichiro Ishitani1, Osamu Nureki1‡ 1Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; 2Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan; 3State Key Laboratory of Medical Neurobiology, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai 200438, China; 4Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; 5Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; 6RIKEN, Global Research Cluster, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; 7State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai 200438, China.
    [Show full text]
  • Pannexin 1 Transgenic Mice: Human Diseases and Sleep-Wake Function Revision
    International Journal of Molecular Sciences Article Pannexin 1 Transgenic Mice: Human Diseases and Sleep-Wake Function Revision Nariman Battulin 1,* , Vladimir M. Kovalzon 2,3 , Alexey Korablev 1, Irina Serova 1, Oxana O. Kiryukhina 3,4, Marta G. Pechkova 4, Kirill A. Bogotskoy 4, Olga S. Tarasova 4 and Yuri Panchin 3,5 1 Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; [email protected] (A.K.); [email protected] (I.S.) 2 Laboratory of Mammal Behavior and Behavioral Ecology, Severtsov Institute Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] 3 Laboratory for the Study of Information Processes at the Cellular and Molecular Levels, Institute for Information Transmission Problems, Russian Academy of Sciences, 119333 Moscow, Russia; [email protected] (O.O.K.); [email protected] (Y.P.) 4 Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; [email protected] (M.G.P.); [email protected] (K.A.B.); [email protected] (O.S.T.) 5 Department of Mathematical Methods in Biology, Belozersky Institute, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia * Correspondence: [email protected] Abstract: In humans and other vertebrates pannexin protein family was discovered by homology to invertebrate gap junction proteins. Several biological functions were attributed to three vertebrate pannexins members. Six clinically significant independent variants of the PANX1 gene lead to Citation: Battulin, N.; Kovalzon, human infertility and oocyte development defects, and the Arg217His variant was associated with V.M.; Korablev, A.; Serova, I.; pronounced symptoms of primary ovarian failure, severe intellectual disability, sensorineural hearing Kiryukhina, O.O.; Pechkova, M.G.; loss, and kyphosis.
    [Show full text]
  • Pannexin 1 and Adipose Tissue Samantha Elizabeth Adamson Fort
    Pannexin 1 and Adipose Tissue Samantha Elizabeth Adamson Fort Seybert, WV BA, Princeton University, 2006 MS, University of Virginia, 2013 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Pharmacology University of Virginia August, 2015 Norbert Leitinger, Ph.D. (Advisor) Doug Bayliss, Ph.D. Thurl Harris, Ph.D. Coleen McNamara, MD Bimal Desai, Ph.D. 2 Copyright Page 3 ABSTRACT Defective glucose uptake in adipocytes leads to impaired metabolic homeostasis and insulin resistance, hallmarks of type 2 diabetes. Extracellular ATP-derived nucleotides and nucleosides are important regulators of adipocyte function, but the pathway for controlled ATP release from adipocytes is unknown. Here, we investigated whether Pannexin 1 (Panx1) channels control ATP release from adipocytes and contribute to metabolic homeostasis. Our studies show that adipocytes express functional Pannexin 1 (Panx1) channels that can be activated to release ATP by known mechanisms including alpha adrenergic stimulation and caspase-mediated C-terminal cleavage during apoptosis. Further, we identify insulin as a novel activator of Panx1 channels. Pharmacologic inhibition or selective genetic deletion of Panx1 from adipocytes decreased insulin-induced glucose uptake in vitro and in vivo and exacerbated diet-induced insulin resistance in mice. In obese humans, Panx1 expression in adipose tissue is increased and correlates with the degree of insulin resistance. Although in other systems extracellular ATP has been shown to be chemotactic for immune cells such as macrophages, we observed no difference in the level of macrophage infiltration or inflammation in adipose tissue of diet- induced obese, insulin resistant AdipPanx1 KO mice, (mice in which Panx1 was selectively deleted in adipocytes).
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]
  • Activation of Pannexin 1 Channels by ATP Through P2Y Receptors and by Cytoplasmic Calcium
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 580 (2006) 239–244 Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium Silviu Locovei, Junjie Wang, Gerhard Dahl* Department of Physiology and Biophysics, University of Miami, School of Medicine, P.O. Box 016430, 1600 NW 10th Avenue, Miami, FL 33136, USA Received 28 September 2005; accepted 1 December 2005 Available online 12 December 2005 Edited by Maurice Montal in astrocytes of Cx43 null mice propagate at the same speed as Abstract The ability for long-range communication through intercellular calcium waves is inherent to cells of many tissues. in wild type cells, where Cx43 is the major gap junction protein A dual propagation mode for these waves includes passage of [15,16]. IP3 through gap junctions as well as an extracellular pathway A series of mysteries shroud the extracellular wave propaga- involving ATP. The wave can be regenerative and include tion scheme. What molecules sense a stimulus such as mechan- ATP-induced ATP release via an unknown mechanism. Here, ical stress? What links the stimulus to ATP release from the we show that pannexin 1 channels can be activated by extracel- cell? What is the ATP release mechanism in the stimulated cell? lular ATP acting through purinergic receptors of the P2Y group Does the same ATP release mechanism operate in the non- as well as by cytoplasmic calcium. Based on its properties, stimulated cells? If so, how is ATP release in the non-stimu- including ATP permeability, pannexin 1 may be involved in both lated cell activated? initiation and propagation of calcium waves.
    [Show full text]
  • Endothelial Pannexin 1 Channels Control Inflammation by Regulating Intracellular Calcium
    Published April 20, 2020, doi:10.4049/jimmunol.1901089 The Journal of Immunology Endothelial Pannexin 1 Channels Control Inflammation by Regulating Intracellular Calcium Yang Yang,*,† Leon J. Delalio,* Angela K. Best,* Edgar Macal,* Jenna Milstein,* Iona Donnelly,‡ Ashley M. Miller,‡ Martin McBride,‡ Xiaohong Shu,† Michael Koval,x,{ Brant E. Isakson,*,‖ and Scott R. Johnstone* The proinflammatory cytokine IL-1b is a significant risk factor in cardiovascular disease that can be targeted to reduce major 2+ 2+ cardiovascular events. IL-1b expression and release are tightly controlled by changes in intracellular Ca ([Ca ]i), which has been associated with ATP release and purinergic signaling. Despite this, the mechanisms that regulate these changes have not been identified. The pannexin 1 (Panx1) channels have canonically been implicated in ATP release, especially during inflammation. We examined Panx1 in human umbilical vein endothelial cells following treatment with the proinflammatory cytokine TNF-a. Anal- ysis by whole transcriptome sequencing and immunoblot identified a dramatic increase in Panx1 mRNA and protein expression that is regulated in an NF-kB–dependent manner. Furthermore, genetic inhibition of Panx1 reduced the expression and release of IL-1b. We initially hypothesized that increased Panx1-mediated ATP release acted in a paracrine fashion to control cytokine expression. However, our data demonstrate that IL-1b expression was not altered after direct ATP stimulation in human umbilical vein endothelial cells. Because Panx1 forms a large pore channel, we hypothesized it may permit Ca2+ diffusion into the cell to 2+ regulate IL-1b. High-throughput flow cytometric analysis demonstrated that TNF-a treatments lead to elevated [Ca ]i, corre- sponding with Panx1 membrane localization.
    [Show full text]