Stars Outside the Hipparcos List Closely Encountering the Solar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1804.07377V1 [Astro-Ph.SR] 19 Apr 2018
submitted to The Astronomical Journal 20 April 2018 The Solar Neighborhood XLIV: RECONS Discoveries within 10 Parsecs Todd J. Henry1;8, Wei-Chun Jao2;8, Jennifer G. Winters3;8, Sergio B. Dieterich4;8, Charlie T. Finch5;8, Philip A. Ianna1;8, Adric R. Riedel6;8, Michele L. Silverstein2;8, John P. Subasavage7;8, Eliot Halley Vrijmoet2 1RECONS Institute, Chambersburg, PA 17201, USA; [email protected], [email protected] 2Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302, USA; [email protected], [email protected], [email protected] 3Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA; [email protected] 4Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015, USA; [email protected] 5Astrometry Department, U.S. Naval Observatory, Washington, DC 20392, USA; charlie.fi[email protected] 6Space Telescope Science Institute, Baltimore, MD 21218, USA; [email protected] 7United States Naval Observatory, Flagstaff, AZ 86001, USA; [email protected] ABSTRACT arXiv:1804.07377v1 [astro-ph.SR] 19 Apr 2018 We describe the 44 systems discovered to be within 10 parsecs of the Sun by the RECONS team, primarily via the long-term astrometry program at CTIO that began in 1999. The systems | including 41 with red dwarf primaries, 2 white dwarfs, and 1 brown dwarf | have been found to have trigonometric parallaxes 8Visiting Astronomer, Cerro Tololo Inter-American Observatory. CTIO is operated by AURA, Inc. under contract to the National Science Foundation. { 2 { greater than 100 milliarcseconds (mas), with errors of 0.4{2.4 mas in all but one case. -
100 Closest Stars Designation R.A
100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79, -
A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra
A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Diamond-Lowe, Hannah Zoe. 2020. A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365825 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A first reconnaissance of the atmospheres of terrestrial exoplanets using ground-based optical transits and space-based UV spectra A DISSERTATION PRESENTED BY HANNAH ZOE DIAMOND-LOWE TO THE DEPARTMENT OF ASTRONOMY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE SUBJECT OF ASTRONOMY HARVARD UNIVERSITY CAMBRIDGE,MASSACHUSETTS MAY 2020 c 2020 HANNAH ZOE DIAMOND-LOWE.ALL RIGHTS RESERVED. ii Dissertation Advisor: David Charbonneau Hannah Zoe Diamond-Lowe A first reconnaissance of the atmospheres of terrestrial exoplanets using ground-based optical transits and space-based UV spectra ABSTRACT Decades of ground-based, space-based, and in some cases in situ measurements of the Solar System terrestrial planets Mercury, Venus, Earth, and Mars have provided in- depth insight into their atmospheres, yet we know almost nothing about the atmospheres of terrestrial planets orbiting other stars. -
HOW to CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, and RADIUS Andrew W
The Astrophysical Journal, 804:64 (38pp), 2015 May 1 doi:10.1088/0004-637X/804/1/64 © 2015. The American Astronomical Society. All rights reserved. HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS Andrew W. Mann1,2,8,9, Gregory A. Feiden3, Eric Gaidos4,5,10, Tabetha Boyajian6, and Kaspar von Braun7 1 University of Texas at Austin, USA; [email protected] 2 Institute for Astrophysical Research, Boston University, USA 3 Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden 4 Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822, USA 5 Max Planck Institut für Astronomie, Heidelberg, Germany 6 Department of Astronomy, Yale University, New Haven, CT 06511, USA 7 Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff, AZ, USA Received 2015 January 6; accepted 2015 February 26; published 2015 May 4 ABSTRACT Precise and accurate parameters for late-type (late K and M) dwarf stars are important for characterization of any orbiting planets, but such determinations have been hampered by these stars’ complex spectra and dissimilarity to the Sun. We exploit an empirically calibrated method to estimate spectroscopic effective temperature (Teff) and the Stefan–Boltzmann law to determine radii of 183 nearby K7–M7 single stars with a precision of 2%–5%. Our improved stellar parameters enable us to develop model-independent relations between Teff or absolute magnitude and radius, as well as between color and Teff. The derived Teff–radius relation depends strongly on [Fe/H],as predicted by theory. -
Open Batalha-Dissertation.Pdf
The Pennsylvania State University The Graduate School Eberly College of Science A SYNERGISTIC APPROACH TO INTERPRETING PLANETARY ATMOSPHERES A Dissertation in Astronomy and Astrophysics by Natasha E. Batalha © 2017 Natasha E. Batalha Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2017 The dissertation of Natasha E. Batalha was reviewed and approved∗ by the following: Steinn Sigurdsson Professor of Astronomy and Astrophysics Dissertation Co-Advisor, Co-Chair of Committee James Kasting Professor of Geosciences Dissertation Co-Advisor, Co-Chair of Committee Jason Wright Professor of Astronomy and Astrophysics Eric Ford Professor of Astronomy and Astrophysics Chris Forest Professor of Meteorology Avi Mandell NASA Goddard Space Flight Center, Research Scientist Special Signatory Michael Eracleous Professor of Astronomy and Astrophysics Graduate Program Chair ∗Signatures are on file in the Graduate School. ii Abstract We will soon have the technological capability to measure the atmospheric compo- sition of temperate Earth-sized planets orbiting nearby stars. Interpreting these atmospheric signals poses a new challenge to planetary science. In contrast to jovian-like atmospheres, whose bulk compositions consist of hydrogen and helium, terrestrial planet atmospheres are likely comprised of high mean molecular weight secondary atmospheres, which have gone through a high degree of evolution. For example, present-day Mars has a frozen surface with a thin tenuous atmosphere, but 4 billion years ago it may have been warmed by a thick greenhouse atmosphere. Several processes contribute to a planet’s atmospheric evolution: stellar evolution, geological processes, atmospheric escape, biology, etc. Each of these individual processes affects the planetary system as a whole and therefore they all must be considered in the modeling of terrestrial planets. -
Thesis, Anton Pannekoek Institute, Universiteit Van Amsterdam
UvA-DARE (Digital Academic Repository) The peculiar climates of ultra-hot Jupiters Arcangeli, J. Publication date 2020 Document Version Final published version License Other Link to publication Citation for published version (APA): Arcangeli, J. (2020). The peculiar climates of ultra-hot Jupiters. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:09 Oct 2021 Jacob Arcangeli of Ultra-hot Jupiters The peculiar climates The peculiar climates of Ultra-hot Jupiters Jacob Arcangeli The peculiar climates of Ultra-hot Jupiters Jacob Arcangeli © 2020, Jacob Arcangeli Contact: [email protected] The peculiar climates of Ultra-hot Jupiters Thesis, Anton Pannekoek Institute, Universiteit van Amsterdam Cover by Imogen Arcangeli ([email protected]) Printed by Amsterdam University Press ANTON PANNEKOEK INSTITUTE The research included in this thesis was carried out at the Anton Pannekoek Institute for Astronomy (API) of the University of Amsterdam. -
To Trappist-1 RAIR Golaith Ship
Mission Profile Navigator 10:07 AM - 12/2/2018 page 1 of 10 Interstellar Mission Profile for SGC Navigator - Report - Printable ver 4.3 Start: omicron 2 40 Eri (Star Trek Vulcan home star) (HD Dest: Trappist-1 2Mass J23062928-0502285 in Aquarii [X -9.150] [Y - 26965) (Keid) (HIP 19849) in Eridani [X 14.437] [Y - 38.296] [Z -3.452] 7.102] [Z -2.167] Rendezvous Earth date arrival: Tuesday, December 8, 2420 Ship Type: RAIR Golaith Ship date arrival: Tuesday, January 8, 2419 Type 2: Rendezvous with a coasting leg ( Top speed is reached before mid-point ) Start Position: Start Date: 2-December-2018 Star System omicron 2 40 Eri (Star Trek Vulcan home star) (HD 26965) (Keid) Earth Polar Primary Star: (HIP 19849) RA hours: inactive Type: K0 V Planets: 1e RA min: inactive Binary: B, C, b RA sec: inactive Type: M4.5V, DA2.9 dec. degrees inactive Rank from Earth: 69 Abs Mag.: 5.915956445 dec. minutes inactive dec. seconds inactive Galactic SGC Stats Distance l/y Sector X Y Z Earth to Start Position: 16.2346953 Kappa 14.43696547 -7.10221947 -2.16744969 Destination Arrival Date (Earth time): 8-December-2420 Star System Earth Polar Trappist-1 2Mass J23062928-0502285 Primary Star: RA hours: inactive Type: M8V Planets 4, 3e RA min: inactive Binary: B C RA sec: inactive Type: 0 dec. degrees inactive Rank from Earth 679 Abs Mag.: 18.4 dec. minutes inactive Course Headings SGC decimal dec. seconds inactive RA: (0 <360) 232.905748 dec: (0-180) 91.8817176 Galactic SGC Sector X Y Z Destination: Apparent position | Start of Mission Omega -9.09279603 -38.2336637 -3.46695345 Destination: Real position | Start of Mission Omega -9.09548281 -38.2366036 -3.46626331 Destination: Real position | End of Mission Omega -9.14988933 -38.2961361 -3.45228825 Shifts in distances of Destination Distance l/y X Y Z Change in Apparent vs. -
The Solar Neighborhood XLIV: RECONS Discoveries Within 10 Parsecs
The Astronomical Journal, 155:265 (23pp), 2018 June https://doi.org/10.3847/1538-3881/aac262 © 2018. The American Astronomical Society. All rights reserved. The Solar Neighborhood XLIV: RECONS Discoveries within 10 parsecs Todd J. Henry1,8, Wei-Chun Jao2,8 , Jennifer G. Winters3,8 , Sergio B. Dieterich4,8, Charlie T. Finch5,8, Philip A. Ianna1,8, Adric R. Riedel6,8 , Michele L. Silverstein2,8 , John P. Subasavage7,8 , and Eliot Halley Vrijmoet2 1 RECONS Institute, Chambersburg, PA 17201, USA; [email protected], [email protected] 2 Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302, USA; [email protected], [email protected], [email protected] 3 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA; [email protected] 4 Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015, USA; [email protected] 5 Astrometry Department, U.S. Naval Observatory, Washington, DC 20392, USA; charlie.fi[email protected] 6 Space Telescope Science Institute, Baltimore, MD 21218, USA; [email protected] 7 United States Naval Observatory, Flagstaff, AZ 86001, USA; [email protected] Received 2018 April 12; revised 2018 April 27; accepted 2018 May 1; published 2018 June 4 Abstract We describe the 44 systems discovered to be within 10 pc of the Sun by the RECONS team, primarily via the long- term astrometry program at the CTIO/SMARTS 0.9 m that began in 1999. The systems—including 41 with red dwarf primaries, 2 white dwarfs, and 1 brown dwarf—have trigonometric parallaxes greater than 100 mas, with errors of 0.4–2.4 mas in all but one case. -
20 NEW MEMBERS of the RECONS 10 PARSEC SAMPLE Todd J
THE SOLAR NEIGHBORHOOD. XVII. PARALLAX RESULTS FROM THE CTIOPI 0.9 m PROGRAM: 20 NEW MEMBERS OF THE RECONS 10 PARSEC SAMPLE Todd J. Henry,1 Wei-Chun Jao,1 John P. Subasavage,1 and Thomas D. Beaulieu1 Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302-4106; [email protected], [email protected], [email protected], [email protected] Philip A. Ianna1 Department of Physics and Astronomy, University of Virginia, Charlottesville, VA 22903; [email protected] and Edgardo Costa1 and Rene´ A. Me´ndez1 Departamento de Astronom«õa, Universidad de Chile, Santiago, Chile; [email protected], [email protected] ABSTRACT Astrometric measurements for 25 red dwarf systems are presented, including the first definitive trigonometric par- allaxes for 20 systems within 10 pc of the Sun, the horizon of the RECONS sample. The three nearest systems that had no previous trigonometric parallaxes (other than perhaps rough preliminary efforts) are SO 0253+1652 (3:84 Æ 0:04 pc, the 23rd nearest system), SCR 1845À6357 AB (3:85 Æ 0:02 pc, 24th nearest), and LHS 1723 (5:32 Æ 0:04 pc, 56th nearest). In total, seven of the systems reported here rank among the nearest 100 stellar systems. Sup- porting photometric and spectroscopic observations have been made to provide full characterization of the systems, including complete VRIJHKs photometry and spectral types. A study of the variability of 27 targets reveals six ob- vious variable stars, including GJ 1207, for which we observed a flare event in the V band that caused it to brighten by 1.7 mag. -
Magnetic Fields in M Dwarfs from the CARMENES Survey
Astronomy & Astrophysics manuscript no. version08 c ESO 2019 April 30, 2019 Magnetic fields in M dwarfs from the CARMENES survey D. Shulyak1; 2, A. Reiners1, E. Nagel3, L. Tal-Or1; 4, J. A. Caballero9, M. Zechmeister2, V.J. S. Béjar11; 15, M. Cortés-Contreras9, E. L. Martin9, A. Kaminski7, I. Ribas5; 6, A. Quirrenbach7, P.J. Amado8, G. Anglada-Escudé8; 10, F. F. Bauer8, S. Dreizler2, E. W. Guenther12, T. Henning13, S. V. Jeffers2, M. Kürster12, M. Lafarga5; 6, J. C. Morales5; 6, and S. Pedraz14 1 Max-Planck-Institute für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37075 Göttingen, Germany e-mail: [email protected] 2 Institut für Astrophysik, Göttingen Universität, Friedrich-Hund-Platz 1, D-37075 Göttingen, Germany 3 Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany 4 Department of Geophysics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel 5 Institut de Ciéncies de l’Espai (ICE, CSIC), Campus UAB, c/ de Can Magrans s/n, E-08193, Bellaterra, Barcelona, Spain 6 Institut d’Estudis Espacials de Catalunya (IEEC), E-08034, Barcelona, Spain 7 Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, D-69117, Heidelberg, Germany 8 Instituto de Astrofisica de Andalucia (IAA-CSIC), Glorieta de la Astronomia s/n, E-18008, Granada, Spain 9 Centro de Astrobiologia (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692, Villanueva de la Cañada, Madrid, Spain 10 Queen Mary University of London, Mile End Road, London E1 4NS, UK 11 Universidad de La Laguna, Departamento de Astrofisica, C/ Via Láctea s/n, La Laguna, Tenerife, E-38206, Spain 12 Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg, Germany 13 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg, Germany 14 Centro Astronómico Hispano-Alemán (CSIC-MPG), Observatorio Astronómico de Calar Alto, Sierra de los Filabres, E-04550, Gérgal, Almeria, Spain 15 Instituto de Astrofísica de Canarias, Vía Láctea, s/n E38205, La Laguna, Tenerife, Spain Received ; accepted ABSTRACT Context. -
A Low-Resolution Near-Infrared Spectral Library of M-, L-, and T-Dwarfs
A&A 503, 639–650 (2009) Astronomy DOI: 10.1051/0004-6361/200810699 & c ESO 2009 Astrophysics A low-resolution near-infrared spectral library of M-, L-, and T-dwarfs L. Testi1,2 1 INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy e-mail: [email protected] 2 European Southern Observatory, Karl Schwarzschild str. 2, 85748 Garching, Germany Received 28 July 2008 / Accepted 6 April 2009 ABSTRACT We present complete near-infrared (0.85–2.45 μm), low-resolution (R ∼ 100) spectra of a sample of 54 disk M-, L-, and T-dwarfs with reliable optical or near infrared spectral-type classification from the literature. The observations were obtained with a prism-based optical element, the Amici device, which provides a complete spectrum of the source on the detector. Our observations indicate that low-resolution near-infrared spectroscopy can be used to determine the spectral classification of late-type field dwarfs in a fast but accurate way. We derive a set of near-infrared spectral indices that are useful to the classification of field dwarfs not seriously affected by reddening. Finally, we show that the comparison of Amici spectra with model atmospheres allows us to obtain a reliable estimate of the dwarf effective temperatures. Key words. stars: low-mass, brown dwarfs – stars: fundamental parameters – infrared: stars 1. Introduction schemes have been proposed (e.g., Burgasser et al. 2002a, 2003; Geballe et al. 2002; Cushing et al. 2005). Because of the higher We have witnessed an extraordinary evolution in the field of very brightnesses of objects in the near infrared, these classification low-mass stars and brown dwarfs. -
Further Defining Spectral Type" Y" and Exploring the Low-Mass End of The
Submitted to The Astrophysical Journal Further Defining Spectral Type “Y” and Exploring the Low-mass End of the Field Brown Dwarf Mass Function J. Davy Kirkpatricka, Christopher R. Gelinoa, Michael C. Cushingb, Gregory N. Macec Roger L. Griffitha, Michael F. Skrutskied, Kenneth A. Marsha, Edward L. Wrightc, Peter R. Eisenhardte, Ian S. McLeanc, Amanda K. Mainzere, Adam J. Burgasserf , C. G. Tinneyg, Stephen Parkerg, Graeme Salterg ABSTRACT We present the discovery of another seven Y dwarfs from the Wide-field In- frared Survey Explorer (WISE). Using these objects, as well as the first six WISE Y dwarf discoveries from Cushing et al., we further explore the transition between spectral types T and Y. We find that the T/Y boundary roughly coincides with the spot where the J − H colors of brown dwarfs, as predicted by models, turn back to the red. Moreover, we use preliminary trigonometric parallax measure- ments to show that the T/Y boundary may also correspond to the point at which the absolute H (1.6 µm) and W2 (4.6 µm) magnitudes plummet. We use these discoveries and their preliminary distances to place them in the larger context of the Solar Neighborhood. We present a table that updates the entire stellar and substellar constinuency within 8 parsecs of the Sun, and we show that the cur- rent census has hydrogen-burning stars outnumbering brown dwarfs by roughly a factor of six. This factor will decrease with time as more brown dwarfs are iden- tified within this volume, but unless there is a vast reservoir of cold brown dwarfs arXiv:1205.2122v1 [astro-ph.SR] 9 May 2012 aInfrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125; [email protected] bDepartment of Physics and Astronomy, MS 111, University of Toledo, 2801 W.