bioRxiv preprint doi: https://doi.org/10.1101/019257; this version posted May 30, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Layering genetic circuits to build a single cell, bacterial half adder 2 Adison Wong1,2,†, Huijuan Wang1, Chueh Loo Poh1* and Richard I Kitney2* 3 4 1School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, SG 5 2Department of Bioengineering, Imperial College London, London SW7 2AZ, UK 6 7 * To whom correspondence should be addressed: Chueh Loo Poh, Division of Bioengineering, School of 8 Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, SG. Tel: +65 9 6514 1088; Email:
[email protected] 10 11 * Correspondence may also be addressed to: Richard Ian Kitney, Centre for Synthetic Biology and Innovation, 12 and Department of Bioengineering, Imperial College London, London SW7 2AZ, UK. Tel: +44 (0)20 7594 6226; 13 Email:
[email protected] 14 15 †Present Address: NUS Synthetic Biology for Clinical and Technological Innovation, National University of 16 Singapore, Singapore 117456, SG 17 18 ABSTRACT 19 Gene regulation in biological systems is impacted by the cellular and genetic context-dependent 20 effects of the biological parts which comprise the circuit. Here, we have sought to elucidate the 21 limitations of engineering biology from an architectural point of view, with the aim of compiling a set of 22 engineering solutions for overcoming failure modes during the development of complex, synthetic 23 genetic circuits.