Neural Methods Towards Concept Discovery from Text Via Knowledge Transfer

Total Page:16

File Type:pdf, Size:1020Kb

Neural Methods Towards Concept Discovery from Text Via Knowledge Transfer Neural Methods Towards Concept Discovery from Text via Knowledge Transfer DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Manirupa Das, B.E., M.S. Graduate Program in Computer Science and Engineering The Ohio State University 2019 Dissertation Committee: Prof Rajiv Ramnath, Advisor Prof Eric Fosler-Lussier, Advisor Prof Huan Sun c Copyright by Manirupa Das 2019 ABSTRACT Novel contexts, consisting of a set of terms referring to one or more concepts, often arise in real-world querying scenarios such as; a complex search query into a document retrieval system or a nuanced subjective natural language question. The concepts in these queries may not directly refer to entities or canonical concept forms occurring in any fact-based or rule-based knowledge source such as a knowledge base or on- tology. Thus, in addressing the complex information needs expressed by such novel contexts, systems using only such sources can fall short. Moreover, hidden associa- tions meaningful in the current context, may not exist in a single document, but in a collection, between matching candidate concepts having different surface realizations, via alternate lexical forms. These may refer to underlying latent concepts, i.e., exist- ing or conceived concepts or semantic classes that are accessible only via their surface forms. Inferring these latent concept associations in an implicit manner, by transfer- ring knowledge from the same domain { within a collection, or from across domains (different collections), can potentially better address such novel contexts. Thus latent concept associations may act as a proxy for a novel context. This research hypothesizes that leveraging hidden associations between latent concepts may help to address novel contexts in a downstream recommendation task, and that knowledge transfer methods may aid and augment this process. With novel contexts and latent concept associations as the foundation, I define the process of concept discovery from text by two steps: ii first, \matching" the novel context to an appropriate hidden relation between latent concepts, and second, \retrieving" the surface forms of the matched related concept as the discovered terms or concept. Our prior study provides insight into how the transfer of knowledge within and across domains can help to learn associations between concepts, informing downstream prediction and recommendation tasks. In developing prediction models to explain factors affecting newspaper subscriber attrition or \churn", a set of \global" coarse- grained concepts or topics were learned on a corpus of web documents from a News domain , and later \inferred" on a parallel corpus of user search query logs belonging to a Clicklog domain. This process was then repeated in reverse and the topics learned on both domains were used in turn, as features into models predicting customer churn. The results in terms of the most predictive topics from the twin prediction tasks then allow us to reason about and understand how related factors across domains provide complementary signals to explain customer engagement. This dissertation focuses on three main research contributions to improve seman- tic matching for downstream recommendation tasks via knowledge transfer. First, I employ a phrasal embedding-based generalized language model (GLM), to rank the other documents in a collection against each \query document", as a pseudo rele- vance feedback (PRF){based scheme for generating semantic tag recommendations. This effectively leads to knowledge transfer \within" a domain by way of inferring re- lated terms or fine-grained concepts for semantic tagging of documents, from existing documents in a collection. These semantic tags when used downstream in query ex- pansion for information retrieval, both in direct and pseudo-relevance feedback query settings, give statistically significant improvement over baseline models that use word iii embedding-based or human expert-based query expansion terms. Next, inspired by the recent success of sequence-to-sequence neural models in delivering the state-of-the-art in a wide range of NLP tasks, I broaden the scope of the phrasal embedding-based generalized language model, to develop a novel end-end sequence-to-set framework (Seq2Set) with neural attention, for learning document representations for semanti- cally tagging a large collection of documents with no previous labels, in an inductive transfer learning setting via self-taught learning. Seq2Set extends the use case of the previous GLM framework from an unsupervised PRF{based query expansion task set- ting, to supervised and semi-supervised task settings for automated text categorization via multi-label prediction. Using the Seq2Set framework we obtain statistically signifi- cant improvement over both; the previous phrasal GLM framework for the unsupervised query expansion task and also over the current state-of-the-art for the automated text categorization task both in the supervised as well as the semi-supervised settings. The final contribution is to learn to answer complex, subjective, specific queries, given a source domain of \answered questions" about products that are labeled, by using a target domain of rich opinion data, i.e. \product reviews" that are unla- beled, by the novel application of neural domain adaptation in a transductive transfer learning setting. We learn to classify both labeled answers to questions as well as unla- beled review sentences via shared feature learning for appropriate knowledge transfer across the two domains, outperforming state-of-the-art baseline systems for sentence pair modeling tasks. Thus, given training labels on answer data, and by leveraging po- tential hidden associations between concepts in review and answer data, and reviews and query text, we are able to infer suitable answers from review text. We employ strategies such as maximum likelihood estimation-based neural generalized language iv modeling, sequence-to-set multi-label prediction with self-attention, and neural domain adaptation in these works. Combining these strategies with distributional semantics- based representations of surface forms of concepts, within neural frameworks that can facilitate knowledge transfer within and across domains, we demonstrate improved se- mantic matching, in downstream recommendation tasks, e.g. in finding related terms to address novel contexts in complex user queries, in a step towards really “finding what is meant" via concept discovery from text. v For Ryka, Rakesh, Ma and Baba vi ACKNOWLEDGMENTS First and foremost I am deeply grateful to have been mentored and guided by my advisors, Professors Rajiv Ramnath and Eric Fosler-Lussier. Thanks to Rajiv, for giving me the opportunity to pursue my studies with a great degree of independence and autonomy. Thank you for believing in my research, for believing in me, and for supporting me in every aspect along the way. Your marvelous ability to abstract out the essence of a problem to pinpoint exactly where I needed to focus, as well as to help break down a seemingly complex problem into manageable pieces so that a solution became feasible, have been invaluable to me. Be it while developing and writing any work, especially my candidacy proposal or journal articles, but most of all my dissertation, or be it with managing collaborations related to my research such as with The Columbus Dispatch or Nationwide Childrens Hospital, your patient listening, insightful advice and guidance, and your supportive and helpful feedback have been truly valuable, and made the biggest difference. Any words to describe what your support and your insights have meant, to my entire effort and to crystallizing the work, would fall short. Most of all, thanks for being the Jupiter to my Earth orbit, deflecting off stray objects that could derail that orbit and keeping me on track. For all of this and more I will be eternally grateful to you. I have also been most fortunate to have been advised by Prof. Eric Fosler-Lussier. You are not just my favorite classroom teacher of all things AI, you somehow manage to balance this with great intuition in your advising for very vii diverse areas of research in speech and language processing. I will take away great memories of all the intellectual as well as informal discussions about possible machine learning models and their enhancements, both from lab meetings and our one-on-ones, where I got to learn so much from you. Your insistence on the highest standards for any work has enabled me to push my own boundaries in developing and performing the kind of advanced research that even a year ago I didn't think I was capable of. While advising me in developing any research plans you ensured I critically evaluated every method and assumption, produced the highest quality of work and always pushed me to challenge my own perceived limitations as a researcher. Your keen attention to every detail pertaining to any work, right from concept and formulation to results and presentation, has instilled in me I hope the highest standard of work ethic, which I hope to carry forward into the world. For this, and every other lesson, I will be forever indebted to you. A Phd is a momentous journey of intellectual self-realization, of venturing into lands unknown, asking difficult questions, developing along the way the skills necessary for problem solving, learning courage in the face of uncertainty, course correcting, maybe finding
Recommended publications
  • Formal Concept Analysis in Knowledge Processing: a Survey on Applications ⇑ Jonas Poelmans A,C, , Dmitry I
    Expert Systems with Applications 40 (2013) 6538–6560 Contents lists available at SciVerse ScienceDirect Expert Systems with Applications journal homepage: www.elsevier.com/locate/eswa Review Formal concept analysis in knowledge processing: A survey on applications ⇑ Jonas Poelmans a,c, , Dmitry I. Ignatov c, Sergei O. Kuznetsov c, Guido Dedene a,b a KU Leuven, Faculty of Business and Economics, Naamsestraat 69, 3000 Leuven, Belgium b Universiteit van Amsterdam Business School, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands c National Research University Higher School of Economics, Pokrovsky boulevard, 11, 109028 Moscow, Russia article info abstract Keywords: This is the second part of a large survey paper in which we analyze recent literature on Formal Concept Formal concept analysis (FCA) Analysis (FCA) and some closely related disciplines using FCA. We collected 1072 papers published Knowledge discovery in databases between 2003 and 2011 mentioning terms related to Formal Concept Analysis in the title, abstract and Text mining keywords. We developed a knowledge browsing environment to support our literature analysis process. Applications We use the visualization capabilities of FCA to explore the literature, to discover and conceptually repre- Systematic literature overview sent the main research topics in the FCA community. In this second part, we zoom in on and give an extensive overview of the papers published between 2003 and 2011 which applied FCA-based methods for knowledge discovery and ontology engineering in various application domains. These domains include software mining, web analytics, medicine, biology and chemistry data. Ó 2013 Elsevier Ltd. All rights reserved. 1. Introduction mining, i.e. gaining insight into source code with FCA.
    [Show full text]
  • CS460/626 : Natural Language Processing/Speech, NLP and the Web
    CS460/626 : Natural Language Processing/Speech, NLP and the Web Lecture 24, 25, 26 Wordnet Pushpak Bhattacharyya CSE Dept., IIT Bombay 17th and 19th (morning and night), 2013 NLP Trinity Problem Semantics NLP Trinity Parsing Part of Speech Tagging Morph Analysis Marathi French HMM Hindi English Language CRF MEMM Algorithm NLP Layer Discourse and Corefernce Increased Semantics Extraction Complexity Of Processing Parsing Chunking POS tagging Morphology Background Classification of Words Word Content Function Word Word Verb Noun Adjective Adverb Prepo Conjun Pronoun Interjection sition ction NLP: Thy Name is Disambiguation A word can have multiple meanings and A meaning can have multiple words Word with multiple meanings Where there is a will, Where there is a will, There are hundreds of relatives Where there is a will There is a way There are hundreds of relatives A meaning can have multiple words Proverb “A cheat never prospers” Proverb: “A cheat never prospers but can get rich faster” WSD should be distinguished from structural ambiguity Correct groupings a must … Iran quake kills 87, 400 injured When it rains cats and dogs run for cover Should be distinguished from structural ambiguity Correct groupings a must … Iran quake kills 87, 400 injured When it rains, cats and dogs runs for cover When it rains cats and dogs, run for cover Groups of words (Multiwords) and names can be ambiguous Broken guitar for sale, no strings attached (Pun) Washington voted Washington to power pujaa ne pujaa ke liye phul todaa (Pujaa plucked
    [Show full text]
  • Machine Reading = Text Understanding! David Israel! What Is It to Understand a Text? !
    Machine Reading = Text Understanding! David Israel! What is it to Understand a Text? ! • To understand a text — starting with a single sentence — is to:! • determine its truth (perhaps along with the evidence for its truth)! ! • determine its truth-conditions (roughly: what must the world be like for it to be true)! • So one doesn’t have to check how the world actually is — that is whether the sentence is true! • calculate its entailments! • take — or at least determine — appropriate action in light of it (and some given preferences/goals/desires)! • translate it accurately into another language! • and what does accuracy come to?! • ground it in a cognitively plausible conceptual space! • …….! • These are not necessarily competing alternatives! ! For Contrast: What is it to Engage Intelligently in a Dialogue? ! • Respond appropriately to what your dialogue partner has just said (and done)! • Typically, taking into account the overall purpose(s) of the interaction and the current state of that interaction (the dialogue state)! • Compare and contrast dialogue between “equals” and between a human and a computer, trying to assist the human ! • Siri is a very simple example of the latter! A Little Ancient History of Dialogue Systems! STUDENT (Bobrow 1964) Question-Answering: Word problems in simple algebra! “If the number of customers Tom gets is twice the square of 20% of the number of advertisements he runs, and the number of advertisements he runs is 45, what is the number of customers Tom gets?” ! Overview of the method ! . 1 Map referential expressions to variables. ! ! . 2 Use regular expression templates to identify and transform mathematical expressions.
    [Show full text]
  • Concept Maps Mining for Text Summarization
    UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO TECNOLÓGICO DEPARTAMENTO DE INFORMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA Camila Zacché de Aguiar Concept Maps Mining for Text Summarization VITÓRIA-ES, BRAZIL March 2017 Camila Zacché de Aguiar Concept Maps Mining for Text Summarization Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Informática da Universidade Federal do Espírito Santo, como requisito parcial para obtenção do Grau de Mestre em Informática. Orientador (a): Davidson CurY Co-orientador: Amal Zouaq VITÓRIA-ES, BRAZIL March 2017 Dados Internacionais de Catalogação-na-publicação (CIP) (Biblioteca Setorial Tecnológica, Universidade Federal do Espírito Santo, ES, Brasil) Aguiar, Camila Zacché de, 1987- A282c Concept maps mining for text summarization / Camila Zacché de Aguiar. – 2017. 149 f. : il. Orientador: Davidson Cury. Coorientador: Amal Zouaq. Dissertação (Mestrado em Informática) – Universidade Federal do Espírito Santo, Centro Tecnológico. 1. Informática na educação. 2. Processamento de linguagem natural (Computação). 3. Recuperação da informação. 4. Mapas conceituais. 5. Sumarização de Textos. 6. Mineração de dados (Computação). I. Cury, Davidson. II. Zouaq, Amal. III. Universidade Federal do Espírito Santo. Centro Tecnológico. IV. Título. CDU: 004 “Most of the fundamental ideas of science are essentially simple, and may, as a rule, be expressed in a language comprehensible to everyone.” Albert Einstein 4 Acknowledgments I would like to thank the manY people who have been with me over the years and who have contributed in one way or another to the completion of this master’s degree. Especially my advisor, Davidson Cury, who in a constructivist way disoriented me several times as a stimulus to the search for new answers.
    [Show full text]
  • Empowering Video Storytellers: Concept Discovery and Annotation for Large Audio-Video-Text Archives
    Empowering Video Storytellers: Concept Discovery and Annotation for Large Audio-Video-Text Archives A large amount of video content is available and stored by broadcasters, libraries and other enterprises. However, the lack of effective and efficient tools for searching and retrieving has prevented video becoming a major value asset. Much work has been done for retrieving video information from constrained structured domains, such as news and sports, but general solutions for unstructured audio-video-language intensive content are missing. Our goal is to transform the multimedia archive into an organized and searchable asset so that human efforts can focus on a more important aspect - storytelling. This project involves a cross- disciplinary effort towards development of new techniques for organizing, summarizing, and question answering over audio-video-language intensive content, such as raw documentary footage. Such domains offer the full range of real-world situations and events, manifested with interaction of rich multimedia information. The team includes investigators from Schools of Engineering and Applied Science, Journalism, and Arts. It has extensive experience and deep expertise in analysis of multimedia information - video, audio, and language - as well as broad experience with professional documentary film production and interactive media designs. The project includes two major content partners, WITNESS and WNET, both providing unique video archives, well-defined application domains and user communities. In particular, WITNESS collects and manages a documentary video archive from activists all over the world to support the promotion of human rights. This archive has several important qualities: it is diverse (including interviews, documentation of events, and ‘hidden camera’ reporting), it is relatively ‘raw’ (shot by semi-professional operators), it has been shot for specific purposes (e.g.
    [Show full text]
  • Technical Phrase Extraction for Patent Mining: a Multi-Level Approach
    2020 IEEE International Conference on Data Mining (ICDM) Technical Phrase Extraction for Patent Mining: A Multi-level Approach Ye Liu, Han Wu, Zhenya Huang, Hao Wang, Jianhui Ma, Qi Liu, Enhong Chen*, Hanqing Tao, Ke Rui Anhui Province Key Laboratory of Big Data Analysis and Application, School of Data Science & School of Computer Science and Technology, University of Science and Technology of China {liuyer, wuhanhan, wanghao3, hqtao, kerui}@mail.ustc.edu.cn, {huangzhy, jianhui, qiliuql, cheneh}@ustc.edu.cn Abstract—Recent years have witnessed a booming increase of TABLE I: Technical Phrases vs. Non-technical Phrases patent applications, which provides an open chance for revealing Domain Technical phrase Non-technical phrase the inner law of innovation, but in the meantime, puts forward Electricity wireless communication, wire and cable, TV sig- higher requirements on patent mining techniques. Considering netcentric computer service nal, power plug Mechanical fluid leak detection, power building materials, steer that patent mining highly relies on patent document analysis, Engineering transmission column, seat back this paper makes a focused study on constructing a technology portrait for each patent, i.e., to recognize technical phrases relevant works have been explored on phrase extraction. Ac- concerned in it, which can summarize and represent patents cording to the extraction target, they can be divided into Key from a technology angle. To this end, we first give a clear Phrase Extraction [8], Named Entity Recognition (NER) [9] and detailed description about technical phrases in patents and Concept Extraction [10]. Key Phrase Extraction aims to based on various prior works and analyses. Then, combining characteristics of technical phrases and multi-level structures extract phrases that provide a concise summary of a document, of patent documents, we develop an Unsupervised Multi-level which prefers those both frequently-occurring and closed to Technical Phrase Extraction (UMTPE) model.
    [Show full text]
  • Automatic Labeling of Troponymy for Chinese Verbs
    Automatic labeling of troponymy for Chinese verbs 羅巧Ê Chiao-Shan Lo*+ s!蓉 Yi-Rung Chen+ [email protected] [email protected] 林芝Q Chih-Yu Lin+ 謝舒ñ Shu-Kai Hsieh*+ [email protected] [email protected] *Lab of Linguistic Ontology, Language Processing and e-Humanities, +Graduate School of English/Linguistics, National Taiwan Normal University Abstract 以同©^Æ與^Y語意關¶Ë而成的^Y知X«,如ñ語^² (Wordnet)、P語^ ² (EuroWordnet)I,已有E分的研v,^²的úË_已øv完善。ú¼ø同的目的,- 研b語言@¦已úË'規!K-文^Y²路 (Chinese Wordnet,CWN),è(Ð供完t的 -文­YK^©@分。6而,(目MK-文^Y²路ûq-,1¼目M;要/¡(ºº$ 定來標記同©^ÆK間的語意關Â,因d這些標記KxÏ尚*T成可L應(K一定規!。 因d,,Ç文章y%針對動^K間的上下M^Y語意關 (Troponymy),Ðú一.ê動標 記的¹法。我們希望藉1句法上y定的句型 (lexical syntactic pattern),úË一個能 ê 動½取ú動^上下M的ûq。透N^©意$定原G的U0,P果o:,dûqê動½取ú 的動^上M^,cº率將近~分K七A。,研v盼能將,¹法應(¼c(|U-的-文^ ²ê動語意關Â標記,以Ê知X,體Kê動úË,2而能有H率的úË完善的-文^Y知 XÇ源。 關關關uuu^^^:-文^Y²路、語©關Âê動標記、動^^Y語© Abstract Synset and semantic relation based lexical knowledge base such as wordnet, have been well-studied and constructed in English and other European languages (EuroWordnet). The Chinese wordnet (CWN) has been launched by Academia Sinica basing on the similar paradigm. The synset that each word sense locates in CWN are manually labeled, how- ever, the lexical semantic relations among synsets are not fully constructed yet. In this present paper, we try to propose a lexical pattern-based algorithm which can automatically discover the semantic relations among verbs, especially the troponymy relation. There are many ways that the structure of a language can indicate the meaning of lexical items. For Chinese verbs, we identify two sets of lexical syntactic patterns denoting the concept of hypernymy-troponymy relation.
    [Show full text]
  • Information Extraction in Text Mining Matt Ulinsm Western Washington University
    Western Washington University Western CEDAR Computer Science Graduate and Undergraduate Computer Science Student Scholarship 2008 Information extraction in text mining Matt ulinsM Western Washington University Follow this and additional works at: https://cedar.wwu.edu/computerscience_stupubs Part of the Computer Sciences Commons Recommended Citation Mulins, Matt, "Information extraction in text mining" (2008). Computer Science Graduate and Undergraduate Student Scholarship. 4. https://cedar.wwu.edu/computerscience_stupubs/4 This Research Paper is brought to you for free and open access by the Computer Science at Western CEDAR. It has been accepted for inclusion in Computer Science Graduate and Undergraduate Student Scholarship by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Information Extraction in Text Mining Matt Mullins Computer Science Department Western Washington University Bellingham, WA [email protected] Information Extraction in Text Mining Matt Mullins Computer Science Department Western Washington University Bellingham, WA [email protected] ABSTRACT Text mining’s goal, simply put, is to derive information from text. Using multitudes of technologies from overlapping fields like Data Mining and Natural Language Processing we can yield knowledge from our text and facilitate other processing. Information Extraction (IE) plays a large part in text mining when we need to extract this data. In this survey we concern ourselves with general methods borrowed from other fields, with lower-level NLP techniques, IE methods, text representation models, and categorization techniques, and with specific implementations of some of these methods. Finally, with our new understanding of the field we can discuss a proposal for a system that combines WordNet, Wikipedia, and extracted definitions and concepts from web pages into a user-friendly search engine designed for topic- specific knowledge.
    [Show full text]
  • Short-Text Clustering Using Statistical Semantics
    Short-Text Clustering using Statistical Semantics Sepideh Seifzadeh Ahmed K. Farahat Mohamed S. Kamel University of Waterloo University of Waterloo University of Waterloo Waterloo, Ontario, Canada. Waterloo, Ontario, Canada. Waterloo, Ontario, Canada. N2L 3G1 N2L 3G1 N2L 3G1 [email protected] [email protected] [email protected] Fakhri Karray University of Waterloo Waterloo, Ontario, Canada. N2L 3G1 [email protected] ABSTRACT 1. INTRODUCTION Short documents are typically represented by very sparse In social media, users usually post short texts. Twitter vectors, in the space of terms. In this case, traditional limits the length of each Tweet to 140 characters; therefore, techniques for calculating text similarity results in measures developing data mining techniques to handle the large vol- which are very close to zero, since documents even the very ume of short texts has become an important goal [1]. Text similar ones have a very few or mostly no terms in common. document clustering has been widely used to organize doc- In order to alleviate this limitation, the representation of ument databases and discover similarity and topics among short-text segments should be enriched by incorporating in- documents. Short text clustering is more challenging than formation about correlation between terms. In other words, regular text clustering; due to the sparsity and noise, they if two short segments do not have any common words, but provide very few contextual clues for applying traditional terms from the first segment appear frequently with terms data mining techniques [2]; therefore, short documents re- from the second segment in other documents, this means quire different or more adapted approaches.
    [Show full text]
  • Distributional Semantics
    Distributional semantics Distributional semantics is a research area that devel- by populating the vectors with information on which text ops and studies theories and methods for quantifying regions the linguistic items occur in; paradigmatic sim- and categorizing semantic similarities between linguis- ilarities can be extracted by populating the vectors with tic items based on their distributional properties in large information on which other linguistic items the items co- samples of language data. The basic idea of distributional occur with. Note that the latter type of vectors can also semantics can be summed up in the so-called Distribu- be used to extract syntagmatic similarities by looking at tional hypothesis: linguistic items with similar distributions the individual vector components. have similar meanings. The basic idea of a correlation between distributional and semantic similarity can be operationalized in many dif- ferent ways. There is a rich variety of computational 1 Distributional hypothesis models implementing distributional semantics, includ- ing latent semantic analysis (LSA),[8] Hyperspace Ana- The distributional hypothesis in linguistics is derived logue to Language (HAL), syntax- or dependency-based from the semantic theory of language usage, i.e. words models,[9] random indexing, semantic folding[10] and var- that are used and occur in the same contexts tend to ious variants of the topic model. [1] purport similar meanings. The underlying idea that “a Distributional semantic models differ primarily with re- word is characterized by the company it keeps” was pop- spect to the following parameters: ularized by Firth.[2] The Distributional Hypothesis is the basis for statistical semantics. Although the Distribu- • tional Hypothesis originated in linguistics,[3] it is now re- Context type (text regions vs.
    [Show full text]
  • Ontology and the Lexicon
    Ontology and the Lexicon Graeme Hirst Department of Computer Science, University of Toronto, Toronto M5S 3G4, Ontario, Canada; [email protected] Summary. A lexicon is a linguistic object and hence is not the same thing as an ontology, which is non-linguistic. Nonetheless, word senses are in many ways similar to ontological concepts and the relationships found between word senses resemble the relationships found between concepts. Although the arbitrary and semi-arbitrary distinctions made by natural lan- guages limit the degree to which these similarities can be exploited, a lexicon can nonetheless serve in the development of an ontology, especially in a technical domain. 1 Lexicons and lexical knowledge 1.1 Lexicons A lexicon is a list of words in a language—a vocabulary—along with some knowl- edge of how each word is used. A lexicon may be general or domain-specific; we might have, for example, a lexicon of several thousand common words of English or German, or a lexicon of the technical terms of dentistry in some language. The words that are of interest are usually open-class or content words, such as nouns, verbs, and adjectives, rather than closed-class or grammatical function words, such as articles, pronouns, and prepositions, whose behaviour is more tightly bound to the grammar of the language. A lexicon may also include multi-word expressions such as fixed phrases (by and large), phrasal verbs (tear apart), and other common expressions (merry Christmas!; teach someone ’s grandmother to suck eggs; Elvis has left the building). ! " Each word or phrase in a lexicon is described in a lexical entry; exactly what is included in each entry depends on the purpose of the particular lexicon.
    [Show full text]
  • Concept Mining: a Conceptual Understanding Based Approach
    Concept Mining: A Conceptual Understanding based Approach by Shady Shehata A thesis presented to the University of Waterloo in ful¯llment of the thesis requirement for the degree of Doctor of Philosophy in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2009 °c Shady Shehata 2009 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required ¯nal revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Due to the daily rapid growth of the information, there are considerable needs to extract and discover valuable knowledge from data sources such as the World Wide Web. Most of the common techniques in text mining are based on the statistical analysis of a term either word or phrase. These techniques consider documents as bags of words and pay no attention to the meanings of the document content. In addition, statistical analysis of a term frequency captures the importance of the term within a document only. However, two terms can have the same frequency in their documents, but one term contributes more to the meaning of its sentences than the other term. Therefore, there is an intensive need for a model that captures the meaning of linguistic utterances in a formal structure. The underlying model should indicate terms that capture the semantics of text. In this case, the model can capture terms that present the concepts of the sentence, which leads to discover the topic of the document. A new concept-based model that analyzes terms on the sentence, document and corpus levels rather than the traditional analysis of document only is introduced.
    [Show full text]