Unsupervised Extraction and Clustering of Key Phrases from Scientific Publications

Total Page:16

File Type:pdf, Size:1020Kb

Unsupervised Extraction and Clustering of Key Phrases from Scientific Publications Unsupervised Extraction and Clustering of Key Phrases from Scientific Publications Xiajing Li Uppsala University Department of Linguistics and Philology Master Programme in Language Technology Master’s Thesis in Language Technology, 30 ects credits September 25, 2020 Supervisors: Dr. Fredrik Wahlberg, Uppsala University Dr. Marios Daoutis, Ericsson AB Abstract Mapping a research domain can be of great signicance for understanding and structuring the state-of-art of a research area. Standard techniques for system- atically reviewing scientic literature entail extensive selection and intensive reading of manuscripts, a laborious and time consuming process performed by human experts. Researchers have spent eorts on automating methods in one or more sub-tasks of reviewing process. The main challenge of this work lies in the gap in semantic understanding of text and background domain knowledge. In this thesis we investigate the possibility of extracting keywords from scien- tic abstracts in an automated way. We intended to use the categories of these keywords to form a basis of a classication scheme in the context of systemati- cally mapping studies. We propose a framework by joint unsupervised keyphrase extraction and semantic keyphrase clustering. Specically, we (1) explore the eect of domain relevance and phrase quality measures in keyphrase extraction; (2) explore the eect of knowledge graph based word embedding in embedding rep- resentation of phrase semantics; (3) explore the eect of clustering for grouping semantically related keyphrases. Experiments are conducted on a dataset of publications pertaining the do- main of "Explainable Articial Intelligence (XAI)”. We further test the perfor- mance of clustering using terms and labels from publicly available academic taxonomies and keyword databases. Experiment results shows that: (1) Extended ranking score does improve the keyphrase extraction performance. Adapting pre-processing and candidate selection method to target document type would be more important. (2) Semantic network based word embeddings (ConceptNet) has fairly good performance, with less computational complexity. (3) Term-level semantic keyphrase clustering does not generate ideal categories for terms, how- ever it is shown that clustering can group semantically similar terms together. Finally, we conclude that it is considered particularly challenging to nd semantic related, but not morphologically similar terms. Contents Acknowledgements5 1. Introduction8 1.1. Challenges.................................8 1.2. Aim.....................................9 1.3. Structure of the Thesis..........................9 2. Background 10 2.1. Systematic Mapping Studies....................... 10 2.1.1. Background of Systematic Mapping Studies.......... 10 2.1.2. Previous Work of Systematic Mapping Studies......... 11 2.2. NLP Methods for Automation Support................. 12 2.2.1. NLP Techniques for Conducting Search............ 12 2.2.2. NLP Techniques for Screening of Papers............ 13 2.2.3. NLP Techniques for Keywording and Generation of Classi- cation Scheme........................... 13 2.3. Word Embedding Representations.................... 14 2.3.1. Word2Vec............................. 14 2.3.2. Contextual Word Embedding.................. 15 2.3.3. Knowledge Graph based Embedding.............. 15 2.4. Automatic Keyword Extraction...................... 15 2.5. Terms Clustering and Taxonomy..................... 18 3. Methodologies 20 3.1. Architecture Overview.......................... 20 3.2. Embedding Representation........................ 20 3.3. Keyphrases Extraction.......................... 21 3.3.1. Document Relevance Score................... 21 3.3.2. Domain Relevance Score..................... 23 3.3.3. Phrase Quality Score....................... 23 3.4. Semantic Keyphrase Clustering..................... 25 3.4.1. Spherical :-means........................ 25 3.4.2. Hierarchical Agglomerative Clustering............. 25 4. Experimental Evaluation 27 4.1. Dataset................................... 27 4.1.1. Scientic Publications Dataset.................. 27 4.1.2. Synthetic Dataset for Term Clustering............. 28 4.2. Implementation and Tools........................ 29 4.3. Evaluation Metrics............................. 30 4.3.1. Extraction Evaluation...................... 31 4.3.2. Clustering Evalution....................... 31 5. Results 34 5.1. Keyphrase Extraction........................... 34 5.1.1. Candidate Selection........................ 34 3 5.1.2. Candidate Ranking........................ 35 5.2. Word Embedding............................. 36 5.3. Clustering................................. 37 6. Conclusion 41 6.1. Future Work................................ 41 A. Clustering Results 43 4 Acknowledgements I would like to thank my academic supervisor, Fredrik Wahlberg, for his encouragement and suggestions in this thesis. I am deeply indebted to Ericsson AI research team, particularly my supervisor, Marios Daoutis, for providing this interesting thesis topic. I am grateful for his valuable guidance and support during the long phase of thesis work. Also, I am grateful for having had the chance to work with my colleagues in the project. Finally, I would like to thank all the teachers in Language Technology Program, who guided me to the world of NLP. I would like to thank my family, my friends and my boyfriend, who have been encouraging me and supporting me all the time. 5 List of Figures 2.1. The systematic mapping process. (Petersen et al., 2008)........ 10 2.2. Survey from Carver et al. (2013) shows two most dicult and time consuming steps are paper selection and data extraction........ 11 2.3. Word2vec (cbow and skip-gram), Figure from (Bilgin and Şentürk, 2017) 14 2.4. Example of "conceptnet" node from website https://conceptnet.io/ ... 16 2.5. Automatic keywords extraction process stages. (Figure from Merrouni et al. (2019))................................ 17 2.6. The taxonomy development method proposed by Nickerson et al. (2013) 18 3.1. Overall framework in this thesis...................... 20 3.2. The framework of the SIFRank model (Sun et al., 2020)......... 22 3.3. Example of Hierarchical Agglomerative Clustering Dendrogram... 26 4.1. An example of scientic papers with INSPEC Controlled Indexing and Non-Controlled Indexing. Phrases in bold are present in text...... 28 4.2. Numbers of tokens of phrases in "Controlled indexing terms", "Non- controlled indexing terms" and "candidates keyphrases". Here candidates selection applies noun phrase chunking................. 29 5.1. Example from top-15 extracted keyphrases................ 36 5.2. Results of silhouette coecient score with n clusters.......... 38 5.3. Results of Calinski-Harabasz Score with n clusters........... 38 5.4. Results of Davies Bouldin Index with n clusters............. 38 6 List of Tables 3.1. Conditions and score calculation for phrase quality.......... 24 4.1. Comparative analysis of Non-Controlled indexing terms and Controlled inxdexing terms............................... 27 4.2. Term frequency analysis of Non-Controlled indexing terms....... 27 4.3. Example of two synthetic clustering dataset............... 29 5.1. Analysis of candidates selection in base models. "- preprocess" means without dash tag removal and "+ preprocess" means with dash tag removal................................... 34 5.2. Comparison of three extraction methods with their title-weighted ranking.(e.g. TextRankCF uses title-weighted score for ranking.)... 35 5.3. Comparison of keyphrase extraction results from ensemble methods with three base models.......................... 35 5.4. Comparison of top candidates in domain relevance score using ELMo embedding and ConceptNet Numberbatch Embedding. Domain glos- saries from AI and Machine Learning................... 36 5.5. Running time (by seconds) of two keyphrase extraction methods. Note: execution time of phrase quality is not included, because it is done as corpus-level and applies the same to both methods........... 37 5.6. Clustering analysis on XAI publications dataset............. 38 5.7. Example of cluster-wise results on Spherical :-means clustering of XAI publications dataset.......................... 39 5.8. Clustering analysis on DM dataset and KG dataset........... 39 A.1. (Parts of) cluster-wise results on semantic term clustering using spher- ical :-means on XAI publications dataset................. 43 7 1. Introduction Understanding and structuring state-of-art research provides a signicant foundation of knowledge around that research area. Methods such as systematic mapping studies (SM) and systematic review studies (SR) have been widely applied to information mining and conceptualization of research articles. Typical procedure is commonly performed by human experts and researcher, including selecting (ltering) the rel- evant between an large amount of manuscripts, reading, extracting and organising key information and nally categorizing papers based on extracted information. In general, output can be analyzed and presented via reporting surveys, or graph-based visualizations that illustrate the mapping and structuring of the research domain. Research areas, such as that of Articial Intelligence and Machine learning, grow in popularity in recent years. Consequently, the increasing number of publications makes the manual reviewing process of such domains quite challenging and time-consuming. Various studies have been investigating various techniques that aim to automate one
Recommended publications
  • Domain-Based Sense Disambiguation in Multilingual Structured Data
    Domain-Based Sense Disambiguation in Multilingual Structured Data Gabor´ Bella and Alessio Zamboni and Fausto Giunchiglia1 Abstract. Natural language text is pervasive in structured data Techniques such as cross-lingual semantic matching [2], seman- sets—relational database tables, spreadsheets, XML documents, tic search [7], or semantic service integration [13] were designed RDF graphs, etc.—requiring data processing operations to possess to tackle diversity in data and therefore invariably have some kind some level of natural language understanding capability. This, in of built-in meaning extraction capabilities. In semantic search, nat- turn, involves dealing with aspects of diversity present in structured ural language queries should be interpreted and matched to data in data such as multilingualism or the coexistence of data from multi- a robust way so that search is based on meaning and not on sur- ple domains. Word sense disambiguation is an essential component face forms of words (a tourist’s query on ‘bars’ should also return of natural language understanding processes. State-of-the-art WSD establishments indicated as ‘winebar’, cf. fig. 1 a, but preferably techniques, however, were developed to operate on single languages no results on the physical unit of pressure). In classification tasks, and on corpora that are considerably different from structured data natural-language labels indicating classes need to be formalised sets, such as articles, newswire, web pages, forum posts, or tweets. and compared to each other (establishments categorised as ‘malga’, In this paper we present a WSD method that is designed for short i.e., Alpine huts specific to the region of Trento, should be classified text typically present in structured data, applicable to multiple lan- as lodging facilities, cf.
    [Show full text]
  • Formal Concept Analysis in Knowledge Processing: a Survey on Applications ⇑ Jonas Poelmans A,C, , Dmitry I
    Expert Systems with Applications 40 (2013) 6538–6560 Contents lists available at SciVerse ScienceDirect Expert Systems with Applications journal homepage: www.elsevier.com/locate/eswa Review Formal concept analysis in knowledge processing: A survey on applications ⇑ Jonas Poelmans a,c, , Dmitry I. Ignatov c, Sergei O. Kuznetsov c, Guido Dedene a,b a KU Leuven, Faculty of Business and Economics, Naamsestraat 69, 3000 Leuven, Belgium b Universiteit van Amsterdam Business School, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands c National Research University Higher School of Economics, Pokrovsky boulevard, 11, 109028 Moscow, Russia article info abstract Keywords: This is the second part of a large survey paper in which we analyze recent literature on Formal Concept Formal concept analysis (FCA) Analysis (FCA) and some closely related disciplines using FCA. We collected 1072 papers published Knowledge discovery in databases between 2003 and 2011 mentioning terms related to Formal Concept Analysis in the title, abstract and Text mining keywords. We developed a knowledge browsing environment to support our literature analysis process. Applications We use the visualization capabilities of FCA to explore the literature, to discover and conceptually repre- Systematic literature overview sent the main research topics in the FCA community. In this second part, we zoom in on and give an extensive overview of the papers published between 2003 and 2011 which applied FCA-based methods for knowledge discovery and ontology engineering in various application domains. These domains include software mining, web analytics, medicine, biology and chemistry data. Ó 2013 Elsevier Ltd. All rights reserved. 1. Introduction mining, i.e. gaining insight into source code with FCA.
    [Show full text]
  • Role of Natural Language Processing in Information Retrieval; Challenges and Opportunities Khaled M
    World Academy of Science, Engineering and Technology International Journal of Computer and Information Engineering Vol:8, No:12, 2014 Role of Natural Language Processing in Information Retrieval; Challenges and Opportunities Khaled M. Alhawiti business intelligence. The enterprise systems of searching the Abstract—This paper aims to analyze the role of natural knowledge base may be developed based on ontologies or language processing (NLP). The paper will discuss the role in the computing that is meaning-based. The textual information in context of automated data retrieval, automated question answer, and these technologies is indexed and the knowledge base is text structuring. NLP techniques are gaining wider acceptance in real tagged. However, tagging in the current web is not in a proper life applications and industrial concerns. There are various complexities involved in processing the text of natural language that way semantically. Hence enterprise search methods do not could satisfy the need of decision makers. This paper begins with the result in meaningful information retrieval. There is a need of description of the qualities of NLP practices. The paper then focuses effective search methods for extracting the best and relevant on the challenges in natural language processing. The paper also information that could improve the decision making process discusses major techniques of NLP. The last section describes [3]. opportunities and challenges for future research. One of the approaches of NLP is evidence-based NLP. It consists of three integrative iterative processes. The first step Keywords—Data Retrieval, Information retrieval, Natural filters the search results to obtain a set of information that is Language Processing, Text Structuring.
    [Show full text]
  • Esis Titled, “MULTIMODAL LEGAL IN- FORMATION RETRIEVAL” and the Work Presented in It Are My Own
    PhD-FSTC-2018-31 The Faculty of University of Bologna Sciences, Technology and Law School Communication DISSERTATION Defence held on 27/04/2018 in Bologna to obtain the degree of DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN INFORMATIQUE AND DOTTORE DI RICERCA IN Law, Science and Technology by Kolawole John ADEBAYO Born on 31 January 1986 in Oyo (Nigeria). MULTIMODAL LEGAL INFORMATION RETRIEVAL Dissertation Defence Committee Dr. Leon van der Torre, Dissertation Supervisor Professor, Université du Luxembourg, Luxembourg Dr. Guido Boella, Dissertation Supervisor Professor, Università degli Studi di Torino, Italy Dr. Marie-Francine Moens, Chairman Professor, Katholieke Universiteit, Belgium Dr. Henry Prakken, Vice-Chairman Professor, Universiteit Utrecht, Netherlands Dr. Schweighofer Erich, Member Professor, Professor, Universität Wien, Austria Dr. Monica Palmirani, Discussant Professor, Università di Bologna, Italy Dr. Luigi Di Caro, Discussant Professor, Università degli Studi di Torino, Italy iii Declaration of Authorship I, Kolawole John ADEBAYO, declare that this thesis titled, “MULTIMODAL LEGAL IN- FORMATION RETRIEVAL” and the work presented in it are my own. I confirm that: • This work was done wholly or mainly while in candidature for a research degree at this University. • Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. • Where I have consulted the published work of others, this is always clearly at- tributed. • Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. • I have acknowledged all main sources of help.
    [Show full text]
  • Concept Maps Mining for Text Summarization
    UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO TECNOLÓGICO DEPARTAMENTO DE INFORMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA Camila Zacché de Aguiar Concept Maps Mining for Text Summarization VITÓRIA-ES, BRAZIL March 2017 Camila Zacché de Aguiar Concept Maps Mining for Text Summarization Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Informática da Universidade Federal do Espírito Santo, como requisito parcial para obtenção do Grau de Mestre em Informática. Orientador (a): Davidson CurY Co-orientador: Amal Zouaq VITÓRIA-ES, BRAZIL March 2017 Dados Internacionais de Catalogação-na-publicação (CIP) (Biblioteca Setorial Tecnológica, Universidade Federal do Espírito Santo, ES, Brasil) Aguiar, Camila Zacché de, 1987- A282c Concept maps mining for text summarization / Camila Zacché de Aguiar. – 2017. 149 f. : il. Orientador: Davidson Cury. Coorientador: Amal Zouaq. Dissertação (Mestrado em Informática) – Universidade Federal do Espírito Santo, Centro Tecnológico. 1. Informática na educação. 2. Processamento de linguagem natural (Computação). 3. Recuperação da informação. 4. Mapas conceituais. 5. Sumarização de Textos. 6. Mineração de dados (Computação). I. Cury, Davidson. II. Zouaq, Amal. III. Universidade Federal do Espírito Santo. Centro Tecnológico. IV. Título. CDU: 004 “Most of the fundamental ideas of science are essentially simple, and may, as a rule, be expressed in a language comprehensible to everyone.” Albert Einstein 4 Acknowledgments I would like to thank the manY people who have been with me over the years and who have contributed in one way or another to the completion of this master’s degree. Especially my advisor, Davidson Cury, who in a constructivist way disoriented me several times as a stimulus to the search for new answers.
    [Show full text]
  • Empowering Video Storytellers: Concept Discovery and Annotation for Large Audio-Video-Text Archives
    Empowering Video Storytellers: Concept Discovery and Annotation for Large Audio-Video-Text Archives A large amount of video content is available and stored by broadcasters, libraries and other enterprises. However, the lack of effective and efficient tools for searching and retrieving has prevented video becoming a major value asset. Much work has been done for retrieving video information from constrained structured domains, such as news and sports, but general solutions for unstructured audio-video-language intensive content are missing. Our goal is to transform the multimedia archive into an organized and searchable asset so that human efforts can focus on a more important aspect - storytelling. This project involves a cross- disciplinary effort towards development of new techniques for organizing, summarizing, and question answering over audio-video-language intensive content, such as raw documentary footage. Such domains offer the full range of real-world situations and events, manifested with interaction of rich multimedia information. The team includes investigators from Schools of Engineering and Applied Science, Journalism, and Arts. It has extensive experience and deep expertise in analysis of multimedia information - video, audio, and language - as well as broad experience with professional documentary film production and interactive media designs. The project includes two major content partners, WITNESS and WNET, both providing unique video archives, well-defined application domains and user communities. In particular, WITNESS collects and manages a documentary video archive from activists all over the world to support the promotion of human rights. This archive has several important qualities: it is diverse (including interviews, documentation of events, and ‘hidden camera’ reporting), it is relatively ‘raw’ (shot by semi-professional operators), it has been shot for specific purposes (e.g.
    [Show full text]
  • Technical Phrase Extraction for Patent Mining: a Multi-Level Approach
    2020 IEEE International Conference on Data Mining (ICDM) Technical Phrase Extraction for Patent Mining: A Multi-level Approach Ye Liu, Han Wu, Zhenya Huang, Hao Wang, Jianhui Ma, Qi Liu, Enhong Chen*, Hanqing Tao, Ke Rui Anhui Province Key Laboratory of Big Data Analysis and Application, School of Data Science & School of Computer Science and Technology, University of Science and Technology of China {liuyer, wuhanhan, wanghao3, hqtao, kerui}@mail.ustc.edu.cn, {huangzhy, jianhui, qiliuql, cheneh}@ustc.edu.cn Abstract—Recent years have witnessed a booming increase of TABLE I: Technical Phrases vs. Non-technical Phrases patent applications, which provides an open chance for revealing Domain Technical phrase Non-technical phrase the inner law of innovation, but in the meantime, puts forward Electricity wireless communication, wire and cable, TV sig- higher requirements on patent mining techniques. Considering netcentric computer service nal, power plug Mechanical fluid leak detection, power building materials, steer that patent mining highly relies on patent document analysis, Engineering transmission column, seat back this paper makes a focused study on constructing a technology portrait for each patent, i.e., to recognize technical phrases relevant works have been explored on phrase extraction. Ac- concerned in it, which can summarize and represent patents cording to the extraction target, they can be divided into Key from a technology angle. To this end, we first give a clear Phrase Extraction [8], Named Entity Recognition (NER) [9] and detailed description about technical phrases in patents and Concept Extraction [10]. Key Phrase Extraction aims to based on various prior works and analyses. Then, combining characteristics of technical phrases and multi-level structures extract phrases that provide a concise summary of a document, of patent documents, we develop an Unsupervised Multi-level which prefers those both frequently-occurring and closed to Technical Phrase Extraction (UMTPE) model.
    [Show full text]
  • Topical Sequence Profiling and Cluster Labeling Sequence Flows from Left to Right, Thetopicsfromtopto Withrespecttodesiredtopiclabelproperties
    1 Topical Sequence Profiling Tim Gollub∗, Nedim Lipkay, Eunyee Kohy, Erdan Genc∗, and Benno Stein∗ ∗ Bauhaus-Universität Weimar <first name>.<last name>@uni-weimar.de y Adobe Systems [email protected], [email protected] Abstract—This paper introduces the problem of topical se- the goal of topical sequence profiling is to showcase research quence profiling. Given a sequence of text collections such as topics that peak as “hot topic” in distinct years but show a the annual proceedings of a conference, the topical sequence significant decline throughout the remaining years. We argue profile is the most diverse explicit topic embedding for that text collection sequence that is both representative and minimal. Topic that, in contrast to topics that never peak or that constantly embeddings represent a text collection sequence as numerical belong to the “usual suspects”, especially from these topics topic vectors by storing the relevance of each text collection valuable insights can be expected. for each topic. Topic embeddings are called explicit if human readable labels are provided for the topics. A topic embedding is representative for a sequence, if for each text collection the A. Problem Definition percentage of documents that address at least one of the topics exceeds a predefined threshold. If no topic can be removed from The problem of topical sequence profiling can be stated as the embedding without loosing representativeness, the embedding follows. Given a sequence of text collections D; D = (D1; is minimal. From the set of all minimal representative embed- D2;:::;Dn), where each D 2 D is a set of documents, find dings, the one with the highest mean topic variance is sought the most diverse, explicit topic embedding T∗ for the sequence and termed as the topical sequence profile.
    [Show full text]
  • BI SEARCH and TEXT ANALYTICS New Additions to the BI Technology Stack
    SECOND QUARTER 2007 TDWI BEST PRACTICES REPORT BI SEARCH AND TEXT ANALYTICS New Additions to the BI Technology Stack By Philip Russom TTDWI_RRQ207.inddDWI_RRQ207.indd cc11 33/26/07/26/07 111:12:391:12:39 AAMM Research Sponsors Business Objects Cognos Endeca FAST Hyperion Solutions Corporation Sybase, Inc. TTDWI_RRQ207.inddDWI_RRQ207.indd cc22 33/26/07/26/07 111:12:421:12:42 AAMM SECOND QUARTER 2007 TDWI BEST PRACTICES REPORT BI SEARCH AND TEXT ANALYTICS New Additions to the BI Technology Stack By Philip Russom Table of Contents Research Methodology and Demographics . 3 Introduction to BI Search and Text Analytics . 4 Defining BI Search . 5 Defining Text Analytics . 5 The State of BI Search and Text Analytics . 6 Quantifying the Data Continuum . 7 New Data Warehouse Sources from the Data Continuum . 9 Ramifications of Increasing Unstructured Data Sources . .11 Best Practices in BI Search . 12 Potential Benefits of BI Search . 12 Concerns over BI Search . 13 The Scope of BI Search . 14 Use Cases for BI Search . 15 Searching for Reports in a Single BI Platform Searching for Reports in Multiple BI Platforms Searching Report Metadata versus Other Report Content Searching for Report Sections Searching non-BI Content along with Reports BI Search as a Subset of Enterprise Search Searching for Structured Data BI Search and the Future of BI . 18 Best Practices in Text Analytics . 19 Potential Benefits of Text Analytics . 19 Entity Extraction . 20 Use Cases for Text Analytics . 22 Entity Extraction as the Foundation of Text Analytics Entity Clustering and Taxonomy Generation as Advanced Text Analytics Text Analytics Coupled with Predictive Analytics Text Analytics Applied to Semi-structured Data Processing Unstructured Data in a DBMS Text Analytics and the Future of BI .
    [Show full text]
  • Information Extraction in Text Mining Matt Ulinsm Western Washington University
    Western Washington University Western CEDAR Computer Science Graduate and Undergraduate Computer Science Student Scholarship 2008 Information extraction in text mining Matt ulinsM Western Washington University Follow this and additional works at: https://cedar.wwu.edu/computerscience_stupubs Part of the Computer Sciences Commons Recommended Citation Mulins, Matt, "Information extraction in text mining" (2008). Computer Science Graduate and Undergraduate Student Scholarship. 4. https://cedar.wwu.edu/computerscience_stupubs/4 This Research Paper is brought to you for free and open access by the Computer Science at Western CEDAR. It has been accepted for inclusion in Computer Science Graduate and Undergraduate Student Scholarship by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Information Extraction in Text Mining Matt Mullins Computer Science Department Western Washington University Bellingham, WA [email protected] Information Extraction in Text Mining Matt Mullins Computer Science Department Western Washington University Bellingham, WA [email protected] ABSTRACT Text mining’s goal, simply put, is to derive information from text. Using multitudes of technologies from overlapping fields like Data Mining and Natural Language Processing we can yield knowledge from our text and facilitate other processing. Information Extraction (IE) plays a large part in text mining when we need to extract this data. In this survey we concern ourselves with general methods borrowed from other fields, with lower-level NLP techniques, IE methods, text representation models, and categorization techniques, and with specific implementations of some of these methods. Finally, with our new understanding of the field we can discuss a proposal for a system that combines WordNet, Wikipedia, and extracted definitions and concepts from web pages into a user-friendly search engine designed for topic- specific knowledge.
    [Show full text]
  • Auto-Relevancy and Responsiveness Baseline II
    Auto-Relevancy and Responsiveness Baseline II Improving Concept Search to Establish a Subset with Maximized Recall for Automated First Pass and Early Assessment Using Latent Semantic Indexing [LSI], Bigrams and WordNet 3.0 Seeding Cody Bennett [[email protected]] – TREC Legal Track (Automatic; TCDI): TCDI - http://www.tcdi.com Abstract focus will be heavily skewed on the probability of attaining high Recall for the creation of a subset of the corpus. We experiment with manipulating the features at build time by indexing bigrams created from EDRM data and seeding the LSI index with thesaurus-like WordNet 3.0 strata. From Main Experiment Methods experimentation, this produces fewer false positives and a smaller, more focused relevant set. The method allows See the TREC website for details on the mock Requests for concept searching using bigrams and WordNet senses in Production, Reviewer Guidelines per topic and other addition to singular terms increasing polysemous value and information regarding scoring and assessing. Team TCDI’s precision; steps towards a unification of Semantic and participation will be discussed without the repetition of most of Statistical. Also, because of LSI and WordNet senses, WSD that information. appears enhanced. We then apply an automated method for selecting search criteria, query expansion and concept Baseline Participation searching from Reviewer Guidelines and the original Request for Production thereby returning a search result with scores TCDI’s baseline submissions assume that by building a blind across the Enron corpus for each topic. The result of the automated mechanism, the result is a distribution useful as a normalized cosine distance score for each document in each statistical snapshot, part of a knowledge and/or eDiscovery topic is then shifted based on the foundation of primes, golden paradigm, and/or ongoing quality assurance and control within standard, and golden ratio.
    [Show full text]
  • Concept Mining: a Conceptual Understanding Based Approach
    Concept Mining: A Conceptual Understanding based Approach by Shady Shehata A thesis presented to the University of Waterloo in ful¯llment of the thesis requirement for the degree of Doctor of Philosophy in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2009 °c Shady Shehata 2009 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required ¯nal revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Due to the daily rapid growth of the information, there are considerable needs to extract and discover valuable knowledge from data sources such as the World Wide Web. Most of the common techniques in text mining are based on the statistical analysis of a term either word or phrase. These techniques consider documents as bags of words and pay no attention to the meanings of the document content. In addition, statistical analysis of a term frequency captures the importance of the term within a document only. However, two terms can have the same frequency in their documents, but one term contributes more to the meaning of its sentences than the other term. Therefore, there is an intensive need for a model that captures the meaning of linguistic utterances in a formal structure. The underlying model should indicate terms that capture the semantics of text. In this case, the model can capture terms that present the concepts of the sentence, which leads to discover the topic of the document. A new concept-based model that analyzes terms on the sentence, document and corpus levels rather than the traditional analysis of document only is introduced.
    [Show full text]