Unique Caudal Plumage of Jeholornis and Complex Tail Evolution in Early Birds

Total Page:16

File Type:pdf, Size:1020Kb

Unique Caudal Plumage of Jeholornis and Complex Tail Evolution in Early Birds Unique caudal plumage of Jeholornis and complex tail evolution in early birds Jingmai O’Connora,1, Xiaoli Wangb,c, Corwin Sullivana, Xiaoting Zhengb,c, Pablo Tubarod, Xiaomei Zhangc, and Zhonghe Zhoua,1 aKey Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; bInstitute of Geology and Paleontology, Linyi University, Linyi City, Shandong 276005, China; cShandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China; and dDivision Ornitologia, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia,” Consejo Nacional de Investigaciones Científicas y Técnicas, C1405DJR Buenos Aires, Argentina Contributed by Zhonghe Zhou, September 12, 2013 (sent for review July 2, 2013) The Early Cretaceous bird Jeholornis was previously only known to lift, and thus were interpreted as ornamental (8). Here, we have a distally restricted ornamental frond of tail feathers. We present a more complete description of the caudal plumage of describe a previously unrecognized fan-shaped tract of feathers Jeholornis based on a revised study of SDM 20090109 and several situated dorsal to the proximal caudal vertebrae. The position other published and unpublished specimens (Table 1), some of and morphology of these feathers is reminiscent of the specialized which preserve a previously undocumented pteryla (feather tract) upper tail coverts observed in males of some sexually dimorphic on the proximal tail. The new specimens indicate a previously neornithines. As in the neornithine tail, the unique “two-tail” unrecognized degree of diversity in the tail plumage config- plumage in Jeholornis probably evolved as the result of complex urations of Mesozoic birds and demonstrate that tail evolution interactions between natural and sexual selective pressures and did not follow a simple path from the “frond-like” arrangement served both aerodynamic and ornamental functions. We suggest seen in Archaeopteryx and some derived nonavian theropods to that the proximal fan would have helped to streamline the body the “fan-like” arrangement seen in ornithuromorphs. We de- and reduce drag whereas the distal frond was primarily ornamen- scribe the complete tail of Jeholornis, consider its possible func- tal. Jeholornis reveals that tail evolution was complex and not tions, and discuss trends in tail evolution in both Mesozoic and a simple progression from frond to fan. living birds. EVOLUTION Aves | Mesozoic | Jehol Description Several specimens of Jeholornis (Table 1) preserve elongate ail feathers are extraordinarily diverse in form and function pennaceous feathers that appear to project from an area dorsal Tin extant birds. A shallow forked tail is predicted by flight to the proximal caudal vertebrae (Figs. 1–3, Figs. S1 and S2). In models to be aerodynamically optimal in the sense of having the one specimen, these feathers were previously identified as dis- highest possible moment:drag ratio, but the rectrices (flight placed remiges (8), but new additional specimens clearly indicate feathers of the tail) and tectrices (upper tail coverts) that to- that the feathers represent a previously undescribed pteryla gether form the “tail” have been modified for other functions in forming a proximal tail fan. Most specimens preserve four clear many taxa (1). The elaborate ornamental tail feathers seen in the feathers, but these fans may well be incomplete. The feathers are males of some sexually dimorphic birds are the quintessential shorter than the remiges but slightly longer and much broader example of the power of sexual selection to dictate morphology than the distal tail feathers (Table 1). The feathers appear to (2). The Jehol Biota is recognized as the second oldest and most attach to the dorsal surface of the tail above the proximal caudal diverse Mesozoic avifauna but is most celebrated for its nu- vertebrae, close to the transition from short to elongate mor- merous specimens preserving integumentary structures and phology that occurs at the fifth to sixth caudal vertebra and were other soft tissues that are normally exceedingly rare in the fossil record. Preserved tail feathers are known for nearly every major Significance avian clade in the Jehol (3), revealing patterns that strongly parallel those observed in the tails of living birds. The Jehol Biota We describe the presence of essentially two functional tails in contains the earliest known members of both Ornithuromorpha, the Early Cretaceous Jeholornis (the second most primitive the derived clade that includes living birds (3), and Enantior- bird)—one like that of some modern birds with a fan-shaped nithes, the dominant avians of the Cretaceous. These relatively tract of feathers over the proximal tail vertebrae and another derived birds lived alongside an array of more primitive groups distal frond like that of feathered dinosaurs such as Cau- including the basalmost pygostylian clades, Sapeornithiformes and dipteryx and Microraptor. We suggest that the unique “two- Confuciusornithiformes, and the long boney-tailed Jeholornis.In tail” plumage in Jeholornis probably evolved as the result of the latter taxon, the tail was even longer (and contained more in- complex interactions between natural and sexual selective dividual vertebrae) than in Archaeopteryx, despite most phylogenetic pressures and served both aerodynamic (flight and balance, analyses resolving Jeholornis in a more derived position (4, 5). etc.) and ornamental functions (communication/display, etc.). The tails of enantiornithines and confuciusornithiforms com- Our aerodynamic analysis also provides a plausible functional monly preserve a pair of elongate racket plumes, modified pen- explanation for the elongation of the boney tail in Jeholornis naceous feathers that carry barbs only near their distal ends. relative to Archaeopteryx. These feathers are the earliest record of an ornamental tail morphology within Aves and has been suggested to indicate Author contributions: J.O., X. Zheng, and Z.Z. designed research; J.O., X.W., C.S., P.T., X. Zhang, and Z.Z. performed research; X. Zheng contributed new reagents/analytic tools; sexual dimorphism in these two clades (6, 7). A recently described J.O., X.W., C.S., and P.T. analyzed data; and J.O., C.S., and Z.Z. wrote the paper. Jeholornis specimen of (SDM, Shandong Museum, 20090109) The authors declare no conflict of interest. preserves the complete distal caudal integument, a palm-like 1 To whom correspondence may be addressed. E-mail: [email protected] or frond of feathers near the tip of the tail (8). Unlike in Archae- [email protected]. opteryx , the tail feathers are restricted to the distal end of the tail This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. and do not form a large cohesive surface capable of generating 1073/pnas.1316979110/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1316979110 PNAS Early Edition | 1of5 Table 1. A list of Jeholornis sp. specimens preserving tail plumage Femur Fan, no. of Preserved Frond, no. of Preserved Specimen length Remiges feathers length, fan feathers length, frond SDM 20090109.1 57.9 — 4 90 Complete - 11 90 STM2-18 53 Preserved 4–6103 —— STM2-8 68.8 Preserved 4 83.7 Incomplete (45.9) STM2-11 47.6 Preserved ——Ventral half, 6 72.6 STM2-23 73* Preserved (1–3) —— — STM2-37 68.4 Preserved 4–6113 — STM3-3 66 — 4105 —— STM3-4 58 — 6(53–57) Incomplete (45) STM3-30 56 — 4 72 Dorsal half, 6–7 (52) IVPP V13350 55.6 —— —Incomplete — IVPP V13353 64 Preserved —— — — All measurements are in millimeters. Parentheses indicate incomplete measurements. Preserved feather lengths were taken from the longest of the feathers forming the fan and frond respectively. *Estimates. presumably rooted in the soft tissues of this region. Based on comparable in rachis thickness with the remiges and proximal tail their appearance in one specimen that is preserved in dorsal view feathers (0.366–0.398 mm), their vanes are narrow and curved and (STM2-37; Fig. 1), the feathers are inferred to be arranged into taper sharply along their distal thirds. The vanes are preserved in a horizontal fan originating from a single area, a configuration only two specimens, and it is unclear whether they are symmetrical. broadly similar to the tail fans typical of living birds. However, in In STM2-11, only the caudal half of each vane is preserved most specimens, the skeleton is preserved in lateral view, and the whereas, in SDM 20090109, the feathers appear symmetrical on feathers are displaced and rotated so that their broad surfaces one side of the tail and asymmetrical on the other. are parallel to the surface of the slab (Fig. 2 A and D). The medial feathers are longer than the lateral feathers, giving the fan a graded morphology. The fan is consistently preserved as a unit, suggesting that the calami of the individual feathers were bound together by liga- ments. The absence of bending or distortion in any of the feathers indicates that the rachises were fairly stiff. The rachises are comparable in diameter with those of the remiges, rather than extremely wide as in the tail feathers of Confuciusornis and some enantiornithines (9). In STM2-37, the preserved rachises of the remiges range in diameter from 0.36 to 0.52 mm whereas those of the proximal tail feathers range from 0.32 to 0.44 mm, although poor preservation makes these values only approx- imations. In specimens preserved in lateral view, the vanes of the proximal tail feathers appear to be asymmetric and to taper distally (Fig. 2 A, B,andD). However, these characteristics probably result from distortion. In STM2-37, the feathers have symmetrical vanes, and one clearly preserved feather has a broad, rounded distal margin (Fig. 1). The amount of overlap between the feathers is unclear. In STM2-37, the preserved feathers are separated by small spaces, but the tail fan is probably incomplete. We interpret the feathers as having overlapped mediolaterally to some degree in life, forming a graded fan-shaped surface (Fig.
Recommended publications
  • New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia
    Bull. Natn. Sci. Mus., Tokyo, Ser. C, 30, pp. 95–130, December 22, 2004 New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia Junchang Lü1, Yukimitsu Tomida2, Yoichi Azuma3, Zhiming Dong4 and Yuong-Nam Lee5 1 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 2 National Science Museum, 3–23–1 Hyakunincho, Shinjukuku, Tokyo 169–0073, Japan 3 Fukui Prefectural Dinosaur Museum, 51–11 Terao, Muroko, Katsuyama 911–8601, Japan 4 Institute of Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 5 Korea Institute of Geoscience and Mineral Resources, Geology & Geoinformation Division, 30 Gajeong-dong, Yuseong-gu, Daejeon 305–350, South Korea Abstract Nemegtia barsboldi gen. et sp. nov. here described is a new oviraptorid dinosaur from the Late Cretaceous (mid-Maastrichtian) Nemegt Formation of southwestern Mongolia. It differs from other oviraptorids in the skull having a well-developed crest, the anterior margin of which is nearly vertical, and the dorsal margin of the skull and the anterior margin of the crest form nearly 90°; the nasal process of the premaxilla being less exposed on the dorsal surface of the skull than those in other known oviraptorids; the length of the frontal being approximately one fourth that of the parietal along the midline of the skull. Phylogenetic analysis shows that Nemegtia barsboldi is more closely related to Citipati osmolskae than to any other oviraptorosaurs. Key words : Nemegt Basin, Mongolia, Nemegt Formation, Late Cretaceous, Oviraptorosauria, Nemegtia. dae, and Caudipterygidae (Barsbold, 1976; Stern- Introduction berg, 1940; Currie, 2000; Clark et al., 2001; Ji et Oviraptorosaurs are generally regarded as non- al., 1998; Zhou and Wang, 2000; Zhou et al., avian theropod dinosaurs (Osborn, 1924; Bars- 2000).
    [Show full text]
  • The Oldest Record of Ornithuromorpha from the Early Cretaceous of China
    ARTICLE Received 6 Jan 2015 | Accepted 20 Mar 2015 | Published 5 May 2015 DOI: 10.1038/ncomms7987 OPEN The oldest record of ornithuromorpha from the early cretaceous of China Min Wang1, Xiaoting Zheng2,3, Jingmai K. O’Connor1, Graeme T. Lloyd4, Xiaoli Wang2,3, Yan Wang2,3, Xiaomei Zhang2,3 & Zhonghe Zhou1 Ornithuromorpha is the most inclusive clade containing extant birds but not the Mesozoic Enantiornithes. The early evolutionary history of this avian clade has been advanced with recent discoveries from Cretaceous deposits, indicating that Ornithuromorpha and Enantiornithes are the two major avian groups in Mesozoic. Here we report on a new ornithuromorph bird, Archaeornithura meemannae gen. et sp. nov., from the second oldest avian-bearing deposits (130.7 Ma) in the world. The new taxon is referable to the Hongshanornithidae and constitutes the oldest record of the Ornithuromorpha. However, A. meemannae shows few primitive features relative to younger hongshanornithids and is deeply nested within the Hongshanornithidae, suggesting that this clade is already well established. The new discovery extends the record of Ornithuromorpha by five to six million years, which in turn pushes back the divergence times of early avian lingeages into the Early Cretaceous. 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. 2 Institue of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China. 3 Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300, China. 4 Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, New South Wales 2019, Australia.
    [Show full text]
  • An Evaluation of Flapping-Based Locomotory Hypotheses in Bird
    The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents T. Alexander Dececchi1, Hans C.E. Larsson2 and Michael B. Habib3,4 1 Department of Geological Sciences, Queens University, Kingston, Ontario, Canada 2 Redpath Museum, McGill University, Montreal, Quebec, Canada 3 Keck School of Medicine of USC, Department of Cell and Neurobiology, University of Southern California, Los Angeles, California, United States 4 Dinosaur Institute, Natural History Museum of Los Angeles, Los Angeles, CA, United States ABSTRACT Background: Powered flight is implicated as a major driver for the success of birds. Here we examine the effectiveness of three hypothesized pathways for the evolution of the flight stroke, the forelimb motion that powers aerial locomotion, in a terrestrial setting across a range of stem and basal avians: flap running, Wing Assisted Incline Running (WAIR), and wing-assisted leaping. Methods: Using biomechanical mathematical models based on known aerodynamic principals and in vivo experiments and ground truthed using extant avians we seek to test if an incipient flight stroke may have contributed sufficient force to permit flap running, WAIR, or leaping takeoff along the phylogenetic lineage from Coelurosauria to birds. Results: None of these behaviours were found to meet the biomechanical threshold requirements before Paraves. Neither was there a continuous trend of refinement for any of these biomechanical performances across phylogeny nor a signal of universal applicability near the origin of birds. None of these flap-based locomotory models appear to have been a major influence on pre-flight character acquisition such as pennaceous feathers, suggesting non-locomotory behaviours, and less Submitted 23 January 2016 stringent locomotory behaviours such as balancing and braking, played a role in Accepted 27 May 2016 the evolution of the maniraptoran wing and nascent flight stroke.
    [Show full text]
  • And Sapeornis (Aves) and the Complex Early Evolution of the Avian Sternum
    On the absence of sternal elements in Anchiornis (Paraves) and Sapeornis (Aves) and the complex early evolution of the avian sternum Xiaoting Zhenga,b, Jingmai O’Connorc,1, Xiaoli Wanga, Min Wangc, Xiaomei Zhangb, and Zhonghe Zhouc,1 aInstitute of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China; bShandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China; and cKey Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China Contributed by Zhonghe Zhou, June 14, 2014 (sent for review April 13, 2014) Anchiornis (Deinonychosauria: Troodontidae), the earliest known inferred importance of the sternum as part of the avian flight feathered dinosaur, and Sapeornis (Aves: Pygostylia), one of the apparatus and at odds with the phylogenetic distribution of os- basalmost Cretaceous birds, are both known from hundreds of sified sterna among maniraptoran theropods. All other groups specimens, although remarkably not one specimen preserves any that are or have been considered closely related to birds (Scan- sternal ossifications. We use histological analysis to confirm the soriopterygidae, Dromaeosauridae, and Oviraptorosauria) pos- absence of this element in adult specimens. Furthermore, the excel- sess paired, ossified sternal plates that fuse into a singular lent preservation of soft-tissue structures in some specimens sug- element (sternum) late in ontogeny in at least some taxa (e.g., gests that no chondrified sternum was present. Archaeopteryx,the dromaeosaurid Microraptor, oviraptorosaur Ingenia) (16–19). oldest and most basal known bird, is known from only 10 specimens Admittedly, the sternum is not one of the best-known skeletal and the presence of a sternum is controversial; a chondrified ster- elements in these clades; the presence of sternal plates is af- num is widely considered to have been present.
    [Show full text]
  • Testing the Neoflightless Hypothesis: Propatagium Reveals Flying Ancestry
    J Ornithol DOI 10.1007/s10336-015-1190-9 ORIGINAL ARTICLE Testing the neoflightless hypothesis: propatagium reveals flying ancestry of oviraptorosaurs 1 2 Alan Feduccia • Stephen A. Czerkas Received: 4 September 2014 / Revised: 31 December 2014 / Accepted: 23 February 2015 Ó Dt. Ornithologen-Gesellschaft e.V. 2015 Abstract Considerable debate surrounds the numerous Zusammenfassung avian-like traits in core maniraptorans (ovirap- torosaurs, troodontids, and dromaeosaurs), especially in the Die ,,Neoflightless‘‘-Hypothese im Test: Halsflughaut Chinese Early Cretaceous oviraptorosaur Caudipteryx, (Propatagium) offenbart flugfa¨hige Vorfahren der which preserves modern avian pennaceous primary remi- Oviraptorosauria ges attached to the manus, as is the case in modern birds. Was Caudipteryx derived from earth-bound theropod di- Es gibt eine ausgiebige Debatte u¨ber die zahlreichen vo- nosaurs, which is the predominant view among palaeon- gela¨hnlichen Eigenheiten der Maniraptora (Oviraptosaurus, tologists, or was it secondarily flightless, with volant avians Troodontidae, Dromaeosaurus), vor allem des (gefiederten) or theropods as ancestors (the neoflightless hypothesis), Oviraptorosauria Caudipteryx aus der fru¨hen chinesischen which is another popular, but minority view. The discovery Kreidezeit, der genau wie rezente Vo¨gel Handschwingen here of an aerodynamic propatagium in several specimens hatte, die an den Handknochen ansetzen. Stammt Cau- provides new evidence that Caudipteryx (and hence ovi- dipteryx von den nur am Erdboden lebenden Theropoda ab - raptorosaurs) represent secondarily derived flightless die unter den Pala¨ontologen vorherrschende Meinung -, oder ground dwellers, whether of theropod or avian affinity, and war er sekunda¨r flugunfa¨hig und stammte von flugfa¨higen that their presence and radiation during the Cretaceous may Theropoden ab - die ,,Neoflightless‘‘-Hypothese, eine alter- have been a factor in the apparent scarcity of many other native, wenn auch nur von Wenigen unterstu¨tzte These.
    [Show full text]
  • The Origin and Diversification of Birds
    Current Biology Review The Origin and Diversification of Birds Stephen L. Brusatte1,*, Jingmai K. O’Connor2,*, and Erich D. Jarvis3,4,* 1School of GeoSciences, University of Edinburgh, Grant Institute, King’s Buildings, James Hutton Road, Edinburgh EH9 3FE, UK 2Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China 3Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA 4Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA *Correspondence: [email protected] (S.L.B.), [email protected] (J.K.O.), [email protected] (E.D.J.) http://dx.doi.org/10.1016/j.cub.2015.08.003 Birds are one of the most recognizable and diverse groups of modern vertebrates. Over the past two de- cades, a wealth of new fossil discoveries and phylogenetic and macroevolutionary studies has transformed our understanding of how birds originated and became so successful. Birds evolved from theropod dino- saurs during the Jurassic (around 165–150 million years ago) and their classic small, lightweight, feathered, and winged body plan was pieced together gradually over tens of millions of years of evolution rather than in one burst of innovation. Early birds diversified throughout the Jurassic and Cretaceous, becoming capable fliers with supercharged growth rates, but were decimated at the end-Cretaceous extinction alongside their close dinosaurian relatives. After the mass extinction, modern birds (members of the avian crown group) explosively diversified, culminating in more than 10,000 species distributed worldwide today. Introduction dinosaurs Dromaeosaurus albertensis or Troodon formosus.This Birds are one of the most conspicuous groups of animals in the clade includes all living birds and extinct taxa, such as Archaeop- modern world.
    [Show full text]
  • Oviraptorosaur Tail Forms and Functions
    Oviraptorosaur tail forms and functions W. SCOTT PERSONS, IV, PHILIP J. CURRIE, and MARK A. NORELL Persons, W.S., IV, Currie, P.J., and Norell, M.A. 2014. Oviraptorosaur tail forms and functions. Acta Palaeontologica Polonica 59 (3): 553–567. Oviraptorosaur caudal osteology is unique among theropods and is characterized by posteriorly persistent and exception- ally wide transverse processes, anteroposteriorly short centra, and a high degree of flexibility across the pre-pygostyle vertebral series. Three-dimensional digital muscle reconstructions reveal that, while oviraptorosaur tails were reduced in length relative to the tails of other theropods, they were muscularly robust. Despite overall caudal length reduction, the relative size of the M. caudofemoralis in most oviraptorosaurs was comparable with those of other non-avian theropods. The discovery of a second Nomingia specimen with a pygostyle confirms that the fused terminal vertebrae of the type specimen were not an abnormality. New evidence shows that pygostyles were also present in the oviraptorosaurs Citipati and Conchoraptor. Based on the observed osteological morphology and inferred muscle morphology, along with the recognition that many members of the group probably sported broad tail-feather fans, it is postulated that oviraptorosaur tails were uniquely adapted to serve as dynamic intraspecific display structures. Similarities, including a reduced verte- bral series and a terminal pygostyle, between the tails of oviraptorosaurs and the tails of theropods widely accepted as basal members of the Avialae, appear to be convergences. Key words: Dinosauria, Theropoda, Oviraptorosauria, pygostyle, caudal musculature, functional morphology. W. Scott Persons, IV [[email protected]] and Philip J. Currie [[email protected]], University of Alberta, Department of Biological Sciences, Edmonton, Alberta, T6G2E9, Canada; Mark A.
    [Show full text]
  • Herbivorous Ecomorphology and Specialization Patterns in Theropod Dinosaur Evolution
    Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution Lindsay E. Zanno1 and Peter J. Makovicky Department of Geology, The Field Museum, Chicago, IL 60605 Edited by Randall Irmis, Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, and accepted by the Editorial Board November 10, 2010 (received for review August 16, 2010) Interpreting key ecological parameters, such as diet, of extinct characteristics have been used to propose a myriad of dietary organisms without the benefit of direct observation or explicit preferences with little consensus (8, 11, 15–20). fossil evidence poses a formidable challenge for paleobiological Recently, a burst of theropod dinosaur discoveries bearing an studies. To date, dietary categorizations of extinct taxa are largely unexpected degree of ecomorphological disparity (particularly generated by means of modern analogs; however, for many with respect to dental anatomy) (12, 20–24) has sparked species the method is subject to considerable ambiguity. Here a renewed interest in the diet of coelurosaurian species. Yet, to we present a refined approach for assessing trophic habits in fossil date, a large scale quantitative analysis on theropod ecomor- taxa and apply the method to coelurosaurian dinosaurs—a clade phology has not been conducted. Serendipitously, an increasing for which diet is particularly controversial. Our findings detect 21 number of theropod specimens preserve unequivocal evidence of morphological features that exhibit statistically significant corre- diet in the form of fossilized gut contents (25–27), coprolites lations with extrinsic fossil evidence of coelurosaurian herbivory, (28), or a gastric mill (21–23, 29–31), which are known to cor- such as stomach contents and a gastric mill.
    [Show full text]
  • Molecular Phyloecology Suggests a Trophic Shift Concurrent with the Evolution of the First Birds
    ARTICLE https://doi.org/10.1038/s42003-021-02067-4 OPEN Molecular phyloecology suggests a trophic shift concurrent with the evolution of the first birds ✉ Yonghua Wu 1,2 Birds are characterized by evolutionary specializations of both locomotion (e.g., flapping flight) and digestive system (toothless, crop, and gizzard), while the potential selection pressures responsible for these evolutionary specializations remain unclear. Here we used a recently developed molecular phyloecological method to reconstruct the diets of the ancestral archosaur and of the common ancestor of living birds (CALB). Our results suggest a trophic shift from carnivory to herbivory (fruit, seed, and/or nut eater) at the archosaur-to- 1234567890():,; bird transition. The evolutionary shift of the CALB to herbivory may have essentially made them become a low-level consumer and, consequently, subject to relatively high predation risk from potential predators such as gliding non-avian maniraptorans, from which birds descended. Under the relatively high predation pressure, ancestral birds with gliding cap- ability may have then evolved not only flapping flight as a possible anti-predator strategy against gliding predatory non-avian maniraptorans but also the specialized digestive system as an evolutionary tradeoff of maximizing foraging efficiency and minimizing predation risk. Our results suggest that the powered flight and specialized digestive system of birds may have evolved as a result of their tropic shift-associated predation pressure. 1 School of Life Sciences, Northeast Normal University, Changchun, China. 2 Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, ✉ Northeast Normal University, Changchun, China. email: [email protected] COMMUNICATIONS BIOLOGY | (2021) 4:547 | https://doi.org/10.1038/s42003-021-02067-4 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02067-4 iet plays a fundamental role in the life of an animal.
    [Show full text]
  • Unenlagiid Theropods: Are They Members of the Dromaeosauridae (Theropoda, Maniraptora)?
    “main” — 2011/2/10 — 14:01 — page 117 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 117-162 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Unenlagiid theropods: are they members of the Dromaeosauridae (Theropoda, Maniraptora)? , FEDERICO L. AGNOLIN1 2 and FERNANDO E. NOVAS1 1Laboratorio de Anatomía Comparada y Evolución de los Vertebrados Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Ángel Gallardo, 470 (1405BDB), Buenos Aires, Argentina 2Fundación de Historia Natural “Félix de Azara”, Departamento de Ciencias Naturales y Antropología CEBBAD, Universidad Maimónides, Valentín Virasoro 732 (1405BDB), Buenos Aires, Argentina Manuscript received on November 9, 2009; accepted for publication on June 21, 2010 ABSTRACT In the present paper we analyze the phylogenetic position of the derived Gondwanan theropod clade Unen- lagiidae. Although this group has been frequently considered as deeply nested within Deinonychosauria and Dromaeosauridae, most of the features supporting this interpretation are conflictive, at least. Modification of integrative databases, such as that recently published by Hu et al. (2009), produces significant changes in the topological distribution of taxa within Deinonychosauria, depicting unenlagiids outside this clade. Our analysis retrieves, in contrast, a monophyletic Avialae formed by Unenlagiidae plus Aves. Key words: Gondwana, Deinonychosauria, Dromaeosauridae, Unenlagiidae, Avialae. INTRODUCTION Until recently, the deinonychosaurian fossil record has been geographically restricted to the Northern Hemisphere (Norell and Makovicky 2004), but recent discoveries demonstrated that they were also present and highly diversified in the Southern landmasses, suggesting that an important adaptive radiation took place in Gondwana during the Cretaceous. Gondwanan dromaeosaurids have been documented from Turonian through Maastrichtian beds of Argentina (Makovicky et al.
    [Show full text]
  • The Lower Cretaceous Kuwajima Formation, Tetori Group, Japan
    Bull. Kitakyushu Mus. Nat. Hist. Hum. Hist., Ser. A, 3: 123-133, March 31, 2005 Depositional environments and taphonomy of the bone-bearing beds of the Lower Cretaceous Kuwajima Formation, Tetori Group, Japan Shinji Isaji1 Hiroko Okazaki1 Ren Hirayama2 Hiroshige Matsuoka3 Paul M. Barrett4 Takehisa Tsubamoto5 Mikiko Yamaguchi6 Ichio Yamaguchi6 Tatsuya Sakumoto6 INatural History Museum and Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba 260-8682, Japan 2School of International Liberal Studies, Waseda University, 1-17-14 Nishiwaseda Shinjuku-ku, Tokyo 169-0051, Japan 3Department of Geology and Mineralogy, Faculty of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8224, Japan ^Department of Palaeontology, The Natural History Museum, London, Cromwell Road, London SW 7 5BD, UK 5Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan 6Shiramine Institute of Paleontology, 10-1-20 Kuwajima, Hakusan, Ishikawa 920-2502, Japan (Received August 21, 2004; accepted September 12, 2004) ABSTRACT—The bone-bearing beds of the Lower Cretaceous Kuwajima Formation (Tetori Group) are described. Three facies of bone-bearing beds (Facies I: carbonaceous sandstones; Facies II: dark grey fine-grained silty sandstones; Facies III: dark greenish-grey mudstones) are present in inter-channel deposits that originated on a floodplain. The grain size of the sediments, and plant and molluscan fossils occurring in each bone-bearing bed, indicate that Facies I was deposited in a peat marsh, Facies II in a shallow lake, and Facies III in a vegetated swamp. Isolated small bones and teeth are the most abundant vertebrate fossils. Common elements in Facies II are aquatic vertebratessuch as fishes and turtles.
    [Show full text]
  • The Remarkable Fossils from the Early Cretaceous Jehol Biota of China and How They Have Changed Our Knowledge of Mesozoic Life
    The remarkable fossils from the Early Cretaceous Jehol Biota of China and how they have changed our knowledge of Mesozoic life Presidential Address, delivered 2nd May 2008 Michael J. Benton1, Zhou Zhonghe2, Patrick J. Orr3, Zhang Fucheng2 & Stuart L. Kearns1 BENTON, M. J., ZHOU Z., ORR, P. J., ZHANG, F. & KEARNS, S. L. 2008. The remarkable fossils from the Early Cretaceous Jehol Biota of China and how they have changed our knowledge. Proceedings of the Geologists’ Association, 119, 209–228. Palaeontologists and others have been repeatedly amazed by reports of spectacularly well-preserved fossils from China, and one of the key sources has been the Jehol Biota of Liaoning, Hebei and Inner Mongolia in NE China. The Jehol Biota consists of three main horizons, the Dabeigou, Yixian and Jiufotang formations, spanning the late Hauterivian to early Aptian (131–120 Ma) of the Early Cretaceous and, collectively, these have produced thousands of essentially complete specimens of plants, insects, aquatic invertebrates, fishes, frogs, salamanders, turtles, lizards, choristoderes, pterosaurs, dinosaurs, birds and mammals. Most of the specimens show some aspect of exceptional preservation, ranging from clear impressions of the body outlines to traces of soft tissues (liver, teleost air sac, eye spots) and external body coverings (scales, feathers, hair). The claim was made that these discoveries have revolutionized our understanding of evolution through this critical part of the Cretaceous Terrestrial Revolution. Key insights have come from the numerous specimens of dinosaurs with feathers, but numerical study shows that only the finds of birds and mammals have substantially changed our views about global diversity and patterns of evolution through the Early Cretaceous.
    [Show full text]