The Middle Wisconsinan History of the Laurentide Ice Sheet

Total Page:16

File Type:pdf, Size:1020Kb

The Middle Wisconsinan History of the Laurentide Ice Sheet Document généré le 29 sept. 2021 13:50 Géographie physique et Quaternaire The Middle Wisconsinan History of the Laurentide Ice Sheet Évolution de la calotte glaciaire laurentidienne au Wisconsinien moyen Geschichte der laurentischen Eisdecke im mittleren glazialen Wisconsin Lynda A. Dredge et L. Harvey Thorleifson La calotte glaciaire laurentidienne Résumé de l'article The Laurentide Ice Sheet Les indices sur les limites glaciaires et les climats du Wisconsinien moyen Volume 41, numéro 2, 1987 proviennent d'endroits situés en bordure de la calotte glaciaire laurentidienne et des basses terres de la baie d'Hudson. Les interprétations se fondent sur la URI : https://id.erudit.org/iderudit/032680ar datation du bois, de la tourbe, des coquilles et des sédiments, sur les DOI : https://doi.org/10.7202/032680ar indicateurs biologiques de climat et sur les séquences stratigraphiques des unités glaciaires et non glaciaires. Les meilleurs indices proviennent des Prairies et des Grands Lacs; ils révèlent un recul marqué de la glace à partir Aller au sommaire du numéro des limites méridionales antérieures et des climats frais de type boréal ou de toundra. L'ouest de l'Arctique a peut-être initialement connu une période chaude, mais cette région, les plaines du nord-ouest et les Maritimes seraient Éditeur(s) par la suite devenues des zones d'accumulation de glace. Trois cartes montrent les diverses limites glaciaires proposées. Dans la première, la couverture Les Presses de l'Université de Montréal glaciaire est très étendue dans l'Arctique et moins étendue dans les Prairies et les Grands Lacs; on y voit de grandes calottes glaciaires maritimes dans le ISSN sud-est et dans l'île de Baffin. Cette répartition de la glace pourrait résulter du 0705-7199 (imprimé) déplacement des masses d'air et des courants océaniques au cours du 1492-143X (numérique) Wisconsinien moyen. Un autre modèle, légèrement différent, résout certains problèmes associés aux basses terres de la baie d'Hudson; la baie de vêlage, qui s'avance jusqu'au centre de l'inlandsis, est le produit de l'instabilité dynamique Découvrir la revue de la masse glaciaire marine dans la baie d'Hudson. Un troisième modèle fait voir une déglaciation étendue provoquée par des changements climatiques; la glace laurentidienne persiste uniquement à certains endroits dans le Citer cet article nord-ouest, dans la région du Labrador et de l'Ungava et dans la zone appalachienne atlantique. Dredge, L. A. & Thorleifson, L. H. (1987). The Middle Wisconsinan History of the Laurentide Ice Sheet. Géographie physique et Quaternaire, 41(2), 215–235. https://doi.org/10.7202/032680ar Tous droits réservés © Les Presses de l'Université de Montréal, 1987 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des services d’Érudit (y compris la reproduction) est assujettie à sa politique d’utilisation que vous pouvez consulter en ligne. https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Cet article est diffusé et préservé par Érudit. Érudit est un consortium interuniversitaire sans but lucratif composé de l’Université de Montréal, l’Université Laval et l’Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche. https://www.erudit.org/fr/ Géographie physique et Quaternaire, 1987, vol. XLI, n° 2, p. 215-235, 4 fig. THE MIDDLE WISCONSINAN HISTORY OF THE LAURENTIDE ICE SHEET* Lynda A. DREDGE and L. Harvey THORLEIFSON, Geological Survey of Canada, Terrain Sciences Division, 601 Booth Street, Ottawa, Ontario K1A 0E8. ABSTRACT Evidence for Middle Wiscon- RÉSUMÉ Évolution de la calotte glaciaire ZUSAMMENFASSUNG Geschichte der sinan ice limits and climates comes from sites laurentidienne au Wisconsinien moyen. Les laurentischen Eisdecke im mittleren glazialen scattered around the periphery of the Lau- indices sur les limites glaciaires et les climats Wisconsin. Anhaltspunkte fur Eisgrenzen und rentide Ice domain and from the Hudson Bay du Wisconsinien moyen proviennent d'en­ Klima im mittleren glazialen Wisconsin er- Lowlands. Interpretations are based on dated droits situés en bordure de la calotte glaciaire geben sich aus Plàtzen, die um die Peripherie wood, peat, shell and sediment; biological laurentidienne et des basses terres de la baie des von der laurentischen Eisdecke bedeckten climate indicators (chiefly cool-climate indi­ d'Hudson. Les interprétations se fondent sur Gebiets verstreut sind, sowie aus dem Tiefland cators); and stratigraphie sequences of both la datation du bois, de la tourbe, des coquilles der Hudson Bay. Die lnterpretationen grunden glacial and nonglacial units. The best evidence et des sédiments, sur les indicateurs biolo­ sich auf datiertes HoIz, Torf, Muscheln und comes from the prairie provinces and the giques de climat et sur les séquences stra- Sedimente, biologische Klima-lndikatoren und Great Lakes areas, both of which indicate tigraphiques des unités glaciaires et non die stratigraphischen Abfolgen sowohl gla- substantial ice retreat from earlier southern glaciaires. Les meilleurs indices proviennent zialer als auch nichtglazialer Einheiten. Die glacial limits, and cool, boreal-tundra climates. des Prairies et des Grands Lacs; ils révèlent besten Zeugnisse stammen aus den Pràrie- The western arctic may have experienced an un recul marqué de la glace à partir des limites Provinzen und dem Gebiet der Gro(3en Seen. early warm period but both the western arctic méridionales antérieures et des climats frais Aus beiden Regionen zeigt sich ein bedeu- — northwestern plains and eastern maritime de type boréal ou de toundra. L'ouest de tender Eis-Rùckgang von den frùheren sud- areas may later have become ice accumu­ l'Arctique a peut-être initialement connu une lichen Eisgrenzen und kùhles nôrdliches lation areas. Three maps portray various période chaude, mais cette région, les plaines Tundra-Klima. In der westlichen Arktik mag possible ice limits. The first shows substantial du nord-ouest et les Maritimes seraient par wohl eine frùhe warme Période aufgetreten ice cover in the arctic, but reduced ice cover la suite devenues des zones d'accumulation sein, aber sowohl die westarktischen Ebenen in the prairies and Great Lakes, and expanded de glace. Trois cartes montrent les diverses als auch die ôstlichen Meeres-Gebiete sind maritime ice caps (rather than Laurentide Ice) limites glaciaires proposées. Dans la première, wohl spâter Gebiete starker Vereisung ge- in the southeast and on Baffin Island. This la couverture glaciaire est très étendue dans worden. Drei Karten illustrieren verschiedene ice mass distribution may reflect Middle Wis- l'Arctique et moins étendue dans les Prairies môgliche Eisdecken. Die erste zeigt eine be- consinan shifts in air masses and ocean cur­ et les Grands Lacs; on y voit de grandes tràchtliche Eisdecke in der Arktis, jedoch in rents. Ice volumes generated by this model calottes glaciaires maritimes dans le sud-est den Pràrien und dem Groften Seen-Gebiet are in accord with the marine oxygen isotope et dans l'île de Baffin. Cette répartition de la eine geringere Eisdecke und im Sùdosten record and perceived global sea level glace pourrait résulter du déplacement des und auf der Baffin-lnsel ausgedehnte Meeres- changes. A modification to this model, which masses d'air et des courants océaniques au Eiskappen. Dièse Verteilung der Eismasse resolves some of the controversy in the Hud­ cours du Wisconsinien moyen. Un autre mo­ mag die Folge von Verschiebungen von Luft- son Bay Lowlands, shows a calving bay pen­ dèle, légèrement différent, résout certains bewegungen und ozeanischen Strômungen etrating into the heart of the ice sheet, induced problèmes associés aux basses terres de la sein. Eine Abweichung von diesem Modell, by dynamic instability of the marine-based baie d'Hudson; la baie de vêlage, qui s'avance welche einige der Kontroversen im Hudson- ice mass in Hudson Bay during relatively high jusqu'au centre de l'inlandsis, est le produit Bay Tiefland klàrt, zeigt eine Kalbungs-Bucht, glacial isostatic and eustatic seas. A third de l'instabilité dynamique de la masse glaciaire welche in den Kern der Eisdecke vordringt. reconstruction portrays extensive climatically marine dans la baie d'Hudson. Un troisième Dièse Bucht wurde durch die dynamische induced déglaciation and retains Laurentide modèle fait voir une déglaciation étendue Instabilitât der marinen Eismasse in der ice only in parts of the northwest and Labrador- provoquée par des changements climatiques; Hudson-Bay wâhrend relativ hoher glazial- Ungava, with local ice in the Appalachian- la glace laurentidienne persiste uniquement isostatischer und eustatischer Gezeiten her- Atlantic region. This model is based on al­ à certains endroits dans le nord-ouest, dans vorgerufen. Ein drittes Modell beschreibt ternative genetic interpretations of lithologie la région du Labrador et de l'Ungava et dans ausgedehnte klimatisch bedingte Enteisung units and reassessment of age assignments. la zone appalachienne atlantique. und zeigt laurentisches Eis nur in Teilen des Nordwestens und von Labrador-Ungava mit ôrtlich begrenztem Eis im Gebiet der Atlantik- Appalachen. * Geological Survey of Canada Contribution 48986 216 L A. DREDGE and L. F. THORLEIFSON INTRODUCTION first major "warm climate' terrestrial or marine deposits rep­ resent an interglaciation, specifically the Sangamon ; whereas The Middle Wisconsinan Substage has long been regarded any nonglacial deposits above these units, are of mid-Wisconsin as a period of glacial recession between the two periods of age, particularly if biotic remains indicate climates cooler than Laurentide ice expansion which encompass the last glaciation. present. These assumptions presuppose that sub-till deposits However, the extent of ice recession and ice volume reduction, indicating a climate as warm as present must predate the the timing of onset of ice recession and of later glacier reex­ Wisconsinan and that deposits indicating a cooler climate pansion, the degree of synchrony of events along the Laurentide must be interstadial. The possibilities for incorrect age as­ ice margin, and the climatic character of the mid-Wisconsin signments using these criteria are obviously enormous.
Recommended publications
  • Lexicon of Pleistocene Stratigraphic Units of Wisconsin
    Lexicon of Pleistocene Stratigraphic Units of Wisconsin ON ATI RM FO K CREE MILLER 0 20 40 mi Douglas Member 0 50 km Lake ? Crab Member EDITORS C O Kent M. Syverson P P Florence Member E R Lee Clayton F Wildcat A Lake ? L L Member Nashville Member John W. Attig M S r ik be a F m n O r e R e TRADE RIVER M a M A T b David M. Mickelson e I O N FM k Pokegama m a e L r Creek Mbr M n e M b f a e f lv m m i Sy e l M Prairie b C e in Farm r r sk er e o emb lv P Member M i S ill S L rr L e A M Middle F Edgar ER M Inlet HOLY HILL V F Mbr RI Member FM Bakerville MARATHON Liberty Grove M Member FM F r Member e E b m E e PIERCE N M Two Rivers Member FM Keene U re PIERCE A o nm Hersey Member W le FM G Member E Branch River Member Kinnickinnic K H HOLY HILL Member r B Chilton e FM O Kirby Lake b IG Mbr Boundaries Member m L F e L M A Y Formation T s S F r M e H d l Member H a I o V r L i c Explanation o L n M Area of sediment deposited F e m during last part of Wisconsin O b er Glaciation, between about R 35,000 and 11,000 years M A Ozaukee before present.
    [Show full text]
  • Vegetation and Fire at the Last Glacial Maximum in Tropical South America
    Past Climate Variability in South America and Surrounding Regions Developments in Paleoenvironmental Research VOLUME 14 Aims and Scope: Paleoenvironmental research continues to enjoy tremendous interest and progress in the scientific community. The overall aims and scope of the Developments in Paleoenvironmental Research book series is to capture this excitement and doc- ument these developments. Volumes related to any aspect of paleoenvironmental research, encompassing any time period, are within the scope of the series. For example, relevant topics include studies focused on terrestrial, peatland, lacustrine, riverine, estuarine, and marine systems, ice cores, cave deposits, palynology, iso- topes, geochemistry, sedimentology, paleontology, etc. Methodological and taxo- nomic volumes relevant to paleoenvironmental research are also encouraged. The series will include edited volumes on a particular subject, geographic region, or time period, conference and workshop proceedings, as well as monographs. Prospective authors and/or editors should consult the series editor for more details. The series editor also welcomes any comments or suggestions for future volumes. EDITOR AND BOARD OF ADVISORS Series Editor: John P. Smol, Queen’s University, Canada Advisory Board: Keith Alverson, Intergovernmental Oceanographic Commission (IOC), UNESCO, France H. John B. Birks, University of Bergen and Bjerknes Centre for Climate Research, Norway Raymond S. Bradley, University of Massachusetts, USA Glen M. MacDonald, University of California, USA For futher
    [Show full text]
  • Stratigraphy and Correlation of Glacial Deposits of the Rocky Mountains, the Colorado Plateau and the Ranges of the Great Basin
    STRATIGRAPHY AND CORRELATION OF GLACIAL DEPOSITS OF THE ROCKY MOUNTAINS, THE COLORADO PLATEAU AND THE RANGES OF THE GREAT BASIN Gerald M. Richmond u.s. Geological Survey, Box 25046, Federal Center, MS 913, Denver, Colorado 80225, U.S.A. INTRODUCTION glaciations (Charts lA, 1B) see Fullerton and Rich- mond, Comparison of the marine oxygen isotope The Rocky Mountains, Colorado Plateau, and Basin record, the eustatic sea level record, and the chronology and Range Provinces (Fig. 1) together occupy much of of glaciation in the United States of America (this the western interior United States. These regions volume). include approximately 140 mountain ranges that were glaciated during the Pleistocene. Most of the glaciers Historical Perspective were valley glaciers, but ice caps formed on uplands Following early recognition of deposits of two alpine locally. Discussion of the deposits of all of these ranges glaciations (Gilbert, 1890; Ball, 1908; Capps, 1909; would require monographic analysis. To avoid this, Atwood, 1909), deposits of three glaciations gradually representative ranges in each province are reviewed. became widely recognized (Alden, 1912, 1932, 1953; Atwood and Mather, 1912, 1932; Alden and Stebinger, Purpose and Scope 1913; Blackwelder, 1915; Atwood, 1915; Fryxell, 1930; This report summarizes the evidence for correlation Bradley, 1936). Subsequently drift of the intermediate of the Quaternary glacial deposits in 26 broadly glaciation was shown to represent two glacial advances distributed mountain ranges selected on the basis of (Fryxell, 1930; Horberg, 1938; Richmond, 1948, 1962a; availability of detailed information and length of glacial Moss, 1951a; Nelson, 1954; Holmes and Moss, 1955), record. and the older drift was shown to include deposits of Because the glacial deposits rarely are traceable from three glaciations (Richmond, 1957, 1962a, 1964a).
    [Show full text]
  • Imaging Laurentide Ice Sheet Drainage Into the Deep Sea: Impact on Sediments and Bottom Water
    Imaging Laurentide Ice Sheet Drainage into the Deep Sea: Impact on Sediments and Bottom Water Reinhard Hesse*, Ingo Klaucke, Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec H3A 2A7, Canada William B. F. Ryan, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964-8000 Margo B. Edwards, Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822 David J. W. Piper, Geological Survey of Canada—Atlantic, Bedford Institute of Oceanography, Dartmouth, Nova Scotia B2Y 4A2, Canada NAMOC Study Group† ABSTRACT the western Atlantic, some 5000 to 6000 State-of-the-art sidescan-sonar imagery provides a bird’s-eye view of the giant km from their source. submarine drainage system of the Northwest Atlantic Mid-Ocean Channel Drainage of the ice sheet involved (NAMOC) in the Labrador Sea and reveals the far-reaching effects of drainage of the repeated collapse of the ice dome over Pleistocene Laurentide Ice Sheet into the deep sea. Two large-scale depositional Hudson Bay, releasing vast numbers of ice- systems resulting from this drainage, one mud dominated and the other sand bergs from the Hudson Strait ice stream in dominated, are juxtaposed. The mud-dominated system is associated with the short time spans. The repeat interval was meandering NAMOC, whereas the sand-dominated one forms a giant submarine on the order of 104 yr. These dramatic ice- braid plain, which onlaps the eastern NAMOC levee. This dichotomy is the result of rafting events, named Heinrich events grain-size separation on an enormous scale, induced by ice-margin sifting off the (Broecker et al., 1992), occurred through- Hudson Strait outlet.
    [Show full text]
  • The Cordilleran Ice Sheet 3 4 Derek B
    1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide.
    [Show full text]
  • The History of Ice on Earth by Michael Marshall
    The history of ice on Earth By Michael Marshall Primitive humans, clad in animal skins, trekking across vast expanses of ice in a desperate search to find food. That’s the image that comes to mind when most of us think about an ice age. But in fact there have been many ice ages, most of them long before humans made their first appearance. And the familiar picture of an ice age is of a comparatively mild one: others were so severe that the entire Earth froze over, for tens or even hundreds of millions of years. In fact, the planet seems to have three main settings: “greenhouse”, when tropical temperatures extend to the polesand there are no ice sheets at all; “icehouse”, when there is some permanent ice, although its extent varies greatly; and “snowball”, in which the planet’s entire surface is frozen over. Why the ice periodically advances – and why it retreats again – is a mystery that glaciologists have only just started to unravel. Here’s our recap of all the back and forth they’re trying to explain. Snowball Earth 2.4 to 2.1 billion years ago The Huronian glaciation is the oldest ice age we know about. The Earth was just over 2 billion years old, and home only to unicellular life-forms. The early stages of the Huronian, from 2.4 to 2.3 billion years ago, seem to have been particularly severe, with the entire planet frozen over in the first “snowball Earth”. This may have been triggered by a 250-million-year lull in volcanic activity, which would have meant less carbon dioxide being pumped into the atmosphere, and a reduced greenhouse effect.
    [Show full text]
  • Late Pleistocene Glacial Equilibrium-Line Altitudes in the Colorado Front Range: a Comparison of Methods
    QUATERNARY RESEARCH l&289-310 (1982) Late Pleistocene Glacial Equilibrium-Line Altitudes in the Colorado Front Range: A Comparison of Methods THOMAS C. MEIERDING Department of Geography and Center For Climatic Research, University of Delaware, Newark, Delaware 19711 Received July 6, 1982 Six methods for approximating late Pleistocene (Pinedale) equilibrium-line altitudes (ELAs) are compared for rapidity of data collection and error (RMSE) from first-order trend surfaces, using the Colorado Front Range. Trend surfaces computed from rapidly applied techniques, such as glacia- tion threshold, median altitude of small reconstructed glaciers, and altitude of lowest cirque floors have relatively high RMSEs @I- 186 m) because they are subjectively derived and are based on small glaciers sensitive to microclimatic variability. Surfaces computed for accumulation-area ratios (AARs) and toe-to-headwall altitude ratios (THARs) of large reconstructed glaciers show that an AAR of 0.65 and a THAR of 0.40 have the lowest RMSEs (about 80 m) and provide the same mean ELA estimate (about 3160 m) as that of the more subjectively derived maximum altitudes of Pinedale lateral moraines (RMSE = 149 m). Second-order trend surfaces demonstrate low ELAs in the latitudinal center of the Front Range, perhaps due to higher winter accumulation there. The mountains do not presently reach the ELA for large glaciers, and small Front Range cirque glaciers are not comparable to small glaciers existing during Pinedale time. Therefore, Pleistocene ELA depression and consequent temperature depression cannot reliably be ascertained from the calcu- lated ELA surfaces. INTRODUCTION existed in alpine regions (Charlesworth, Glacial equilibrium-line altitudes (ELAs) 1957; ostrem, 1966; Flint, 1971; Andrews, have been widely used to infer present and 1975).
    [Show full text]
  • Quarrernary GEOLOGY of MINNESOTA and PARTS of ADJACENT STATES
    UNITED STATES DEPARTMENT OF THE INTERIOR Ray Lyman ,Wilbur, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director P~ofessional Paper 161 . QUArrERNARY GEOLOGY OF MINNESOTA AND PARTS OF ADJACENT STATES BY FRANK LEVERETT WITH CONTRIBUTIONS BY FREDERICK w. SARDE;30N Investigations made in cooperation with the MINNESOTA GEOLOGICAL SURVEY UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON: 1932 ·For sale by the Superintendent of Documents, Washington, D. C. CONTENTS Page Page Abstract ________________________________________ _ 1 Wisconsin red drift-Continued. Introduction _____________________________________ _ 1 Weak moraines, etc.-Continued. Scope of field work ____________________________ _ 1 Beroun moraine _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 47 Earlier reports ________________________________ _ .2 Location__________ _ __ ____ _ _ __ ___ ______ 47 Glacial gathering grounds and ice lobes _________ _ 3 Topography___________________________ 47 Outline of the Pleistocene series of glacial deposits_ 3 Constitution of the drift in relation to rock The oldest or Nebraskan drift ______________ _ 5 outcrops____________________________ 48 Aftonian soil and Nebraskan gumbotiL ______ _ 5 Striae _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 48 Kansan drift _____________________________ _ 5 Ground moraine inside of Beroun moraine_ 48 Yarmouth beds and Kansan gumbotiL ______ _ 5 Mille Lacs morainic system_____________________ 48 Pre-Illinoian loess (Loveland loess) __________ _ 6 Location__________________________________
    [Show full text]
  • Post-Glacial Sea-Level Change Along the Pacific Coast of North America Dan H
    University of Washington Tacoma UW Tacoma Digital Commons SIAS Faculty Publications School of Interdisciplinary Arts and Sciences 8-1-2014 Post-glacial sea-level change along the Pacific coast of North America Dan H. Shugar University of Washington Tacoma, [email protected] Ian J. Walker Olav B. Lian Jordan BR Eamer Christina Neudorf See next page for additional authors Follow this and additional works at: https://digitalcommons.tacoma.uw.edu/ias_pub Recommended Citation Shugar, Dan H.; Walker, Ian J.; Lian, Olav B.; Eamer, Jordan BR; Neudorf, Christina; McLaren, Duncan; and Fedje, Daryl, "Post-glacial sea-level change along the Pacific oc ast of North America" (2014). SIAS Faculty Publications. 339. https://digitalcommons.tacoma.uw.edu/ias_pub/339 This Article is brought to you for free and open access by the School of Interdisciplinary Arts and Sciences at UW Tacoma Digital Commons. It has been accepted for inclusion in SIAS Faculty Publications by an authorized administrator of UW Tacoma Digital Commons. Authors Dan H. Shugar, Ian J. Walker, Olav B. Lian, Jordan BR Eamer, Christina Neudorf, Duncan McLaren, and Daryl Fedje This article is available at UW Tacoma Digital Commons: https://digitalcommons.tacoma.uw.edu/ias_pub/339 1 Post-glacial sea-level change along the Pacific coast of North 2 America 3 Dan H. Shugar1,*, Ian J. Walker1, Olav B. Lian2, Jordan B.R. Eamer1, Christina 4 Neudorf2,4, Duncan McLaren3,4, Daryl Fedje3,4 5 6 1Coastal Erosion & Dune Dynamics Laboratory, Department of Geography, 7 University of Victoria, Victoria, BC,
    [Show full text]
  • Oxygen Isotope Geochemistry of Laurentide Ice-Sheet Meltwater Across Termination I
    Quaternary Science Reviews 178 (2017) 102e117 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Oxygen isotope geochemistry of Laurentide ice-sheet meltwater across Termination I * Lael Vetter a, , Howard J. Spero a, Stephen M. Eggins b, Carlie Williams c, Benjamin P. Flower c a Department of Earth and Planetary Sciences, University of California Davis, Davis, CA 95616, USA b Research School of Earth Sciences, The Australian National University, Canberra 0200, ACT, Australia c College of Marine Sciences, University of South Florida, St. Petersburg, FL 33701, USA article info abstract Article history: We present a new method that quantifies the oxygen isotope geochemistry of Laurentide ice-sheet (LIS) Received 3 April 2017 meltwater across the last deglaciation, and reconstruct decadal-scale variations in the d18O of LIS Received in revised form meltwater entering the Gulf of Mexico between ~18 and 11 ka. We employ a technique that combines 1 October 2017 laser ablation ICP-MS (LA-ICP-MS) and oxygen isotope analyses on individual shells of the planktic Accepted 4 October 2017 18 foraminifer Orbulina universa to quantify the instantaneous d Owater value of Mississippi River outflow, which was dominated by meltwater from the LIS. For each individual O. universa shell, we measure Mg/ Ca (a proxy for temperature) and Ba/Ca (a proxy for salinity) with LA-ICP-MS, and then analyze the same 18 18 O. universa for d O using the remaining material from the shell. From these proxies, we obtain d Owater and salinity estimates for each individual foraminifer. Regressions through data obtained from discrete 18 18 core intervals yield d Ow vs.
    [Show full text]
  • Bildnachweis
    Bildnachweis Im Bildnachweis verwendete Abkürzungen: With permission from the Geological Society of Ame- rica l – links; m – Mitte; o – oben; r – rechts; u – unten 4.65; 6.52; 6.183; 8.7 Bilder ohne Nachweisangaben stammen vom Autor. Die Autoren der Bildquellen werden in den Bildunterschriften With permission from the Society for Sedimentary genannt; die bibliographischen Angaben sind in der Literaturlis- Geology (SEPM) te aufgeführt. Viele Autoren/Autorinnen und Verlage/Institutio- 6.2ul; 6.14; 6.16 nen haben ihre Einwilligung zur Reproduktion von Abbildungen gegeben. Dafür sei hier herzlich gedankt. Für die nachfolgend With permission from the American Association for aufgeführten Abbildungen haben ihre Zustimmung gegeben: the Advancement of Science (AAAS) Box Eisbohrkerne Dr; 2.8l; 2.8r; 2.13u; 2.29; 2.38l; Box Die With permission from Elsevier Hockey-Stick-Diskussion B; 4.65l; 4.53; 4.88mr; Box Tuning 2.64; 3.5; 4.6; 4.9; 4.16l; 4.22ol; 4.23; 4.40o; 4.40u; 4.50; E; 5.21l; 5.49; 5.57; 5.58u; 5.61; 5.64l; 5.64r; 5.68; 5.86; 4.70ul; 4.70ur; 4.86; 4.88ul; Box Tuning A; 4.95; 4.96; 4.97; 5.99; 5.100l; 5.100r; 5.118; 5.119; 5.123; 5.125; 5.141; 5.158r; 4.98; 5.12; 5.14r; 5.23ol; 5.24l; 5.24r; 5.25; 5.54r; 5.55; 5.56; 5.167l; 5.167r; 5.177m; 5.177u; 5.180; 6.43r; 6.86; 6.99l; 6.99r; 5.65; 5.67; 5.70; 5.71o; 5.71ul; 5.71um; 5.72; 5.73; 5.77l; 5.79o; 6.144; 6.145; 6.148; 6.149; 6.160; 6.162; 7.18; 7.19u; 7.38; 5.80; 5.82; 5.88; 5.94; 5.94ul; 5.95; 5.108l; 5.111l; 5.116; 5.117; 7.40ur; 8.19; 9.9; 9.16; 9.17; 10.8 5.126; 5.128u; 5.147o; 5.147u;
    [Show full text]
  • Glaciation of Wisconsin Educational Series 36 | 2011 Fourth Edition
    WISCONSIN GEOLOGICAL AND NATURAL HISTORY SURVEY Glaciation of Wisconsin Educational Series 36 | 2011 Fourth edition For the past 2.5 million years, Earth’s climate has fluctuated During the last part of the Wisconsin Glaciation, the between conditions of warm and cold. These cycles are the Laurentide Ice Sheet expanded southward into the Midwest result of changes in the shape of the Earth’s orbit and the tilt as far as Indiana, Illinois, and Iowa. The ice sheet advanced of the Earth’s axis. The colder periods allowed the growth of to its maximum extent by about 30,000 years ago and didn’t glaciers that covered large parts of the world’s high altitude melt back until thousands of years later. It readvanced a and high latitude areas. number of times before finally disappearing from Wisconsin about 11,000 years ago. Many of the state’s most prominent The last cycle of climate cooling and glacier expansion in landscape features were formed during the last part of the North America is known as the Wisconsin Glaciation. About Wisconsin Glaciation. 100,000 years ago, the climate cooled and a glacier, the Laurentide Ice Sheet, began to cover northern North America. The maps and diagrams in this publication show the tim- For the first 70,000 years the ice sheet expanded and con- ing and location of major ice-margin positions as well as the tracted but did not enter what is now Wisconsin. distribution of the glacial and related stratigraphic units that were deposited in Wisconsin. Tracking the glacier Maps showing the extent of the Laurentide Ice Sheet and changes to glacial lakes at several times.
    [Show full text]