PUBLICATION 1 SERVICE DESCRIPTION for BUSINESS VPN SERVICE 1.1 Definitions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TR-221: Technical Specifications for MPLS in Mobile Backhaul Networks
TECHNICAL REPORT TR-221 Technical Specifications for MPLS in Mobile Backhaul Networks Issue: 1 Amendment 2 Issue Date: September 2017 © The Broadband Forum. All rights reserved. Technical Specifications for MPLS in Mobile Backhaul Networks TR-221 Issue 1 Amendment 2 Notice The Broadband Forum is a non-profit corporation organized to create guidelines for broadband network system development and deployment. This Technical Report has been approved by members of the Forum. This Technical Report is subject to change. This Technical Report is copyrighted by the Broadband Forum, and all rights are reserved. Portions of this Technical Report may be copyrighted by Broadband Forum members. Intellectual Property Recipients of this Technical Report are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property rights of which they may be aware that might be infringed by any implementation of this Technical Report, or use of any software code normatively referenced in this Technical Report, and to provide supporting documentation. Terms of Use 1. License Broadband Forum hereby grants you the right, without charge, on a perpetual, non-exclusive and worldwide basis, to utilize the Technical Report for the purpose of developing, making, having made, using, marketing, importing, offering to sell or license, and selling or licensing, and to otherwise distribute, products complying with the Technical Report, in all cases subject to the conditions set forth in this notice and any relevant patent and other intellectual property rights of third parties (which may include members of Broadband Forum). This license grant does not include the right to sublicense, modify or create derivative works based upon the Technical Report except to the extent this Technical Report includes text implementable in computer code, in which case your right under this License to create and modify derivative works is limited to modifying and creating derivative works of such code. -
DSL-Based Access Solutions Thomas Martin Session SPL-211
SPL_211 © 2001, Cisco Systems, Inc. All rights reserved. 1 Design Principles for DSL-Based Access Solutions Thomas Martin Session SPL-211 SPL_211 © 2001, Cisco Systems, Inc. All rights reserved. 3 Agenda • Digital Subscriber Line Technologies • Subscriber Connection Models • Reaching the Services • Case Studies • Summary, Question and Answer SPL_211 © 2001, Cisco Systems, Inc. All rights reserved. 4 What is Digital Subscriber Line (DSL)? End-User DSL E’net ATM Value-Added Copper Loop Packet Network DSL DSL “Modem” “Modem” • DSL is a pair of “modems” on either end of a copper wire pair • DSL converts ordinary phone lines into high-speed data conduits • Like dial, cable, wireless, and E1, DSL by itself is a transmission technology, not a complete end-to-end solution • End-users don’t buy DSL, they buy services such as high-speed Internet access, intranet, leased-line, voice, VPN, and video on demand SPL_211 © 2001, Cisco Systems, Inc. All rights reserved. 5 DSL Modem Technology DSLDSL ServiceService Max.Max. DataData RateRate AnalogAnalog VoiceVoice Max.Max. ReachReach Down/UplinkDown/Uplink (bps)(bps) SupportSupport (km-feet)(km-feet) Residential VDSL–Very 25M/1.6M25M/1.6M YesYes .9–3,000.9–3,000 High Bit Rate oror 8M/8M8M/8M SOHO ADSL–Asymmetric 8M/1M8M/1M YesYes 5.5–18,0005.5–18,000 G.SHDSL 2.3M/2.3M.2.3M/2.3M. NoNo 8.15–26,0008.15–26,000 Business • Trade-off is reach vs. Bandwidth • Reach numbers imply “clean copper” • Different layer 1 transmission technologies, need a common upper protocol layer to tie them together SPL_211 © 2001, Cisco Systems, Inc. -
Best Practices for Deploying Ipv6 Over Broadband Access
WHITE PAPER Best Practices for Deploying IPv6 over Broadband Access www.ixiacom.com 915-0123-01 Rev. D, January 2016 2 Table of Contents Introduction ................................................................................................. 4 IPv6 Solutions for Broadband Access......................................................... 4 Translation ................................................................................................... 5 Tunneling ..................................................................................................... 5 Dual-Stack Lite (DS-Lite) ............................................................................ 5 IPv6 Rapid Deployment (6rd) ...................................................................... 6 Dual-Stack ................................................................................................... 8 How Dual-Stack PPP works ....................................................................... 8 Test Requirements ....................................................................................... 9 Testing Tunneling ......................................................................................... 9 Testing Dual-Stack PPP ............................................................................. 11 Conclusion ..................................................................................................12 3 Introduction Service Providers: The IPv6 Bell Tolls for Thee! After more than a decade of forewarning, the IPv4 to IPv6 transition has -
Qos Support in MPLS Networks
1 QoS Support in MPLS Networks MPLS/Frame Relay Alliance White Paper May 2003 By: Victoria Fineberg, Consultant [email protected] Abstract MPLS is sometimes used synonymously with QoS, but more accurately, it is a QoS- enabling technology that forces application flows into connection-oriented paths and provides mechanisms for traffic engineering and bandwidth guarantees along these paths. Furthermore, when an MPLS network supports DiffServ, traffic flows can receive class- based admission, differentiated queue servicing in the network nodes, preemption priority, and other network treatment that provide bases for QoS guarantees. The IETF work in this area has been augmented by the MPLS/Frame Relay Alliance Implementation Agreement which extends MPLS to the user-network interface, and thus serves as a foundation for implementing QoS end-to-end. This paper describes various QoS and MPLS mechanisms and analyzes their applicability. 2 Table of Contents 1. Introduction..................................................................................................................3 1.1 QoS Drivers .........................................................................................................3 1.2 Main Definitions ..................................................................................................4 1.3 Necessary Conditions for QoS.............................................................................5 2. Initial QoS and TE Models ..........................................................................................6 -
ISP Architecture – MPLS Overview, Design and Implementation for Wisps
www.iparchitechs.com 1-855-MIKROTI(K) ISP Architecture – MPLS Overview, Design and Implementation for WISPs. KEVIN MYERS, NETWORK ARCHITECT / MANAGING PARTNER MTCINE #1409 MIKROTIK CERTIFIED TRAINER •Kevin Myers, Network Architect • Jackson, Mississippi – United States • 18 + years in IT, Network Architecture and Engineering • Areas of Design Focus: •MikroTik integration with large multi-vendor networks •Design/Implement/Operate BGP/MPLS/OSPF Wireline and WISP service provider networks •Design/Implement/Operate Data Center (Enterprise and Cloud) networks • Certifications • MTCINE #1409 & MikroTik Certified Trainer • MikroTik – MTCWE, MTCUME, MTCRE, MTCTCE, MTCNA • Cisco/Microsoft – CCNP, CCNA, MCP •www.iparchitechs.com •Global Leaders in MikroTik Design and Engineering •#1 ranked MikroTik consulting firm in North America •The most successful MikroTik global integrator – we bill thousands of hours in MikroTik engineering across 6 continents. •The first consulting firm to offer 24/7 MikroTik technical assistance with enterprise level SLAs •Operate at large scale supporting networks with tens of thousands or routers, switches, firewalls, etc •www.iparchitechs.com •Our Services •Global Professional Services – Consulting for Design, Engineering, Integration and Operations •Fully Managed Network Services - per rack unit support for full network management and monitoring •24/7 support contracts per device – support all MikroTik devices with 24/7 TAC support and 4 hour SLAs. • MultiLingual Support in: English, Français, Polski, Español MPLS – What is it? • Theory: Briefly introduce the MPLS protocol and how it works in conjunction with existing L2/L3 networks • Design: Discuss an MPLS architecture and preparing your WISP for implementing MPLS. • Business Justification: Identify the business and financial use case for implementing MPLS in a WISP. -
MPLS Layer-2 Vpns • MPLS Traffic Engineering • Summary
Understanding MPLS BRKMPL - 1101 Khurram Waheed Systems Engineer #clmel Session Goals • Understand the problems MPLS is addressing • Understand major MPLS technology components • Understand typical MPLS applications • Understand benefits of deploying MPLS BRKMPL-1101 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public Agenda • Introduction • MPLS Basics • MPLS Layer-3 VPNs • MPLS Layer-2 VPNs • MPLS Traffic Engineering • Summary BRKMPL-1101 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public Introduction Why Multi-Protocol Label Switching? • SP/Carrier perspective – Reduce costs (CAPEX/OPEX); consolidate networks and maximise utilisation of resources. – Consolidated network for multiple Layer-2/3 services over same infrastructure – Support increasingly stringent SLAs (Voice + Video etc.) • Enterprise/end-user perspective – Campus/LAN – Need for network segmentation (users, applications, etc.) BRKMPL-1101 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public What is MPLS? Brief Summary • It’s all about labels … • Use the best of both worlds – Layer-2: efficient forwarding and traffic engineering – Layer-3: flexible and scalable • MPLS forwarding plane – Use of labels for forwarding Layer-2/3 data traffic – Labeled packets are switched; instead of routed • Leverage layer-2 forwarding efficiency • MPLS control/signalling plane – Use of existing IP control protocols extensions + new protocols to exchange label information • Leverage layer-3 control protocol flexibility and scalability BRKMPL-1101 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public MPLS Basics Topics Basics of MPLS Signalling and Forwarding • MPLS Reference Architecture Service (Clients) • MPLS Labels Layer-3 VPNs Layer-2 VPNs • MPLS Signalling and Forwarding Operations Transport IP/MPLS (LDP/RSVP-TE/BGP) MPLS Forwarding BRKMPL-1101 © 2015 Cisco and/or its affiliates. -
Ipv6 in Broadband Networks MR-244
IPv6 in Broadband Networks MR-244 January 2011 Agenda 1. Introduction to the Broadband Forum 2. Business drivers for IPv6 and IPv4 exhaustion 3. Key IPv6 attributes and deployment challenges 4. IPv6 strategies for broadband access to support Internet access and new services 5. Summary 2 IPv6 in Broadband Networks Tutorial Contributors Christophe Alter – France Telecom Salman Asadullah – Cisco David Allan – Ericsson Michel Borgne – France Telecom Dave Christophe – Alcatel-Lucent Guillaume Gottardi – Cisco Michael Hanrahan – Huawei Christian Jacquenet – France Telecom David Kessens – NSN Suresh Krishnan – Ericsson Roberta Maglione – Telecom Italia Drew Rexrode – Verizon 3 We are the Broadband Forum http://www.broadband-forum.org The Broadband Forum is the central organization driving broadband solutions and empowering converged packet networks worldwide to better meet the needs of vendors, service providers and their customers. We develop multi-service broadband packet networking specifications addressing interoperability, architecture and management. Our work enables home, business and converged broadband services, encompassing customer, access and backbone networks. 4 The BroadbandSuite Goals and Focus The BroadbandSuite is broken down into three major domains: BroadbandManagement – Goal – enhance network management capabilities and enable an intelligent, programmable control layer that unifies diverse networks – Focus - empower service providers to deliver and efficiently maintain personalized services that enhance the -
The Role of Emerging Broadband Technologies on the Converged
The Role of Emerging Broadband Technologies on the Converged Packet-Based Network Introduction The vision of network convergence toward a consolidated packet-based network has been discussed for years, though it is still not a reality. Currently, there are numerous overlay networks such as IP, ATM, FR, Ethernet, SONET, DWDM and wireless for different services. The evolution pace toward convergence has been slow due to economic, technical and regulatory issues. However, the fact is that data traffic volume is now surpassing voice traffic volume. Traditional TDM voice traffic is moving to IP packets and TDM private line is moving to Ethernet private line. The wave of broadband applications such as Internet access, VOD, and IPTV create high bandwidth requirements for the network. These applications are packet-based, but have a much lower margin of profit for the service providers when compared to traditional voice service. Today’s overlay and traditional circuit-based infrastructure will become less optimal for the new packet-based services as the profit margin decreases. Most of the wireless networks in North America today are still circuit-based because most of the current wireless service is still voice-based. However, with emerging wireless access technologies such as WiMAX and Wi-Fi, more broadband wireless data and video services can be deployed. As a result, the wireless core network evolves toward a packet-based network. Service offerings drive network evolution. As more packet-based broadband services are launched and bundled together in service offerings, service providers start to add more packet-aware features into their current network components. -
Service Provider Ipv6 Deployment BRKSPG-3300
Service Provider IPv6 Deployment BRKSPG-3300 Amarjit Gahir – Solutions Architect BRKSPG-3300 Prerequisites: Session Abstract • This session focuses on SP IPv6 deployment techniques in core networks which will help network designers and administrators understand IPv6 operation and implementation options for native IPv4 and MPLS core environments. This session will also shed light on IPv6 Multihoming, addressing and Cisco Carrier- Grade IPv6 (CGv6) Solution considerations in core networks. • Attendee must have a solid foundation of IPv6 basics (Protocol, Addressing, Routing), MPLS and Multicast. © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public 2 Agenda • SP IPv6 Integration Strategy • IPv6 in Core Networks and Deployment Models • IPv6 Addressing Considerations • IPv6 Multi-homing Considerations • Carrier-Grade IPv6 Solution – CGv6 • Conclusion Growing Internet Challenge & Evolution Moving from 1 to 2 to 3 to 1 ….. Public Public IPv4 IPv4 Public IPv6 IPv4 Private IPv6 Private IPv4 IPv4 • 2012: Mandates take effect – GlobAlization - WorldIPv6LAunch - Massive Mobile deployment. Transition to IPv6 forces Services & Applications running over IPv6 customers to acquire product or managed services to sustain business and IPv4/IPv6 Coexistence Infrastructure customer reach IPv6 Internet • 2015: IPv6 is mAinstreAm Customers without transition Preserve IPv4 infrastructure experience v4 run out reduced service levels, diminished customer reach 2012 2015 2020+ © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public IPv4 Runout RIR Projected RemAining ExhAustion Addresses in Date RIR Pool (/8s) APNIC 19-Apr-2011 0.6079 (actual) RIPE NCC 14-Sep-2012 0.9394 (actual) LACNIC 10-Jun-2014 0.1067 (actual) ARIN 24 Sep-2015 (actual) AFRINIC 11-Jan-2019 1.6947 5 © 2017 Cisco and/or its affiliates. -
Implementing Trust-To-Trust with Customer Edge Switching
Implementing Trust-to-Trust with Customer Edge Switching Raimo A. Kantola, Member, IEEE, Department of Communications and Networking Aalto University Helsinki, Finland [email protected] for the duration of a session. Abstract — A Network Address Translator allows hosts in a The UNSAF architecture requires a STUN client in the private address space to communicate with servers in the pub- hosts and STUN servers to be deployed in the global net- lic Internet. There is no accepted solution for an arbitrary host work but it leaves the NATs themselves as they are. UNSAF from the public IP network to initiate communication with a uses IP addresses for identification. It clutters applications host in a private address space although attempts have been made to create one. This paper proposes the replace NATs with code that has nothing to do with the task of the with a more comprehensive concept we call Customer Edge application. It scales poorly particularly for mobile hosts. It Switching (CES). Customer edge switching assumes connection does not help in deploying servers in private address space state on the trust boundary between the user and the core net- and thus hampers the user innovation potential. works. The connection state is managed by implicit signaling. An application on a user device such as a mobile termi- The state gives means for the private network operator to ap- nal that wants to be reachable needs to maintain a NAT ply elaborate access control to packet flows arriving from the Internet to the private network. CES is a way of moving from mapping by a keep-alive mechanism that wakes the device the end-to-end principle to the trust-to-trust principle advo- at regular intervals and keeps the NAT state alive. -
VPLS: the Switched Ethernet
VPLS: The Switched Ethernet Executive Summary VPLS is becoming a popular networking option. Its inherent Ethernet any-to-any connectivity model makes VPLS a popular choice for enterprises adding or deleting sites. Existing Ethernet users may have a simple implementation by modifying existing Ethernet equipment, which will also scale easily to meet future bandwidth needs. Although it has many advantages, VPLS may not be right for every business. This paper explains VPLS and discusses when it is a good networking solution. VPLS: The Switched Ethernet __________________________________________________________________________________________________________________ 2 VPLS, or Virtual Private LAN Service, is a widely used term in today’s bottom half of the Data Link Layer. The Data Link Layer uses Media networking environment. Often referred to as “the network of the Access Control (MAC) Addresses to identify endpoints and it formats future”, VPLS seems to be evolving into the next “in” technology. When data in frames (see Figure 1). discussing the topic, it is important to understand the user’s definition. Ethernet can use either layer 2 or layer 3 services to create a Virtual Private LAN or Line? networking solution providing high-bandwidth connectivity between Although it is growing in popularity today, in fact, VPLS has been locations within a metropolitan area, between two cities or across a available for some time and care should be taken to understand how WAN. Ethernet can be implemented either as an access method to a the term is defined. Some believe VPLS stands for Virtual Private Line layer 3 technology, or as a point-to-point, point-to-multi-point or any- Service, and may consider it to be any long-haul service. -
MPLS FAQ: Does "No Mpls Ip Propagate-Ttl" on the Ingress PE Router Also Apply to Ipv6 Packets in 6PE Or 6VPE Networks?
MPLS FAQ: Does "no mpls ip propagate−ttl" on the ingress PE router also apply to IPv6 packets in 6PE or 6VPE networks? Document ID: 118697 Contributed by Luc De Ghein, Cisco TAC Engineer. Dec 23, 2014 Contents Introduction Does "no mpls ip propagate−ttl" on the ingress PE router also apply to IPv6 packets in 6PE or 6VPE networks? Introduction This document describes the impact of the command "mpls ip propagate−ttl" on IPv6 traffic. Does "no mpls ip propagate−ttl" on the ingress PE router also apply to IPv6 packets in 6PE or 6VPE networks? Answer: Yes, it does. This command hides the P routers from both an IPv4 and an IPv6 traceroute. Here is an IPv6 traceroute with "no mpls ip propagate−ttl" configured on the ingress Provider Edge (PE) router. CE1#trace Protocol [ip]: ipv6 Target IPv6 address: 2001:10:100:1::7 Source address: 2001:10:100:1::5 Insert source routing header? [no]: Numeric display? [no]: Timeout in seconds [3]: Probe count [3]: Minimum Time to Live [1]: Maximum Time to Live [30]: Priority [0]: Port Number [0]: Type escape sequence to abort. Tracing the route to 2001:10:100:1::7 1 2001:10:1:5::1 1 msec 1 msec 1 msec 2 2001:10:1:7::2 [AS 1] [MPLS: Label 23 Exp 0] 2 msec 1 msec 1 msec 3 2001:10:1:7::7 [AS 1] 2 msec 1 msec 2 msec The P routers are not present in the output of the traceroute. This proves that the propagation of Time To Live (TTL) from the IPv6 header to the Multiprotocol Label Switching (MPLS) header does not occur on the ingress PE router for IPv6 packets.