ECRS-Program.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

ECRS-Program.Pdf Friday, 6 July 08:00 10:00 Registration (ASU Build. D) 10:00 11:00 Opening Ceremony (Conference Hall) 11:00 11:30 Coffee-Break + Press 11:30 12:30 Plenary Session #1 (Conference Hall) Cosmic ray energy spectrum and composition between the knee and the ankle Investigations of the energy spectrum as well as the mass composition of cosmic rays in the energy range of PeV to EeV are important for understanding both, the origin of the galactic and the extragalactic cosmic rays. The multi-detector arrangement of KASCADE and its extension KASCADE-Grande was designed for observations of cosmic ray air showers in this energy range. Most important result from KASCADE is the proof that the knee feature at several PeV is due to a decrease in the flux of light atomic nuclei of primary cosmic rays. Recent results of KASCADE-Grande have now shown two more spectral features: a knee- like structure in the spectrum of heavy primaries at around 90 PeV and a hardening of the spectrum of light primaries at energies just above 100 PeV. These features are meanwhile confirmed by other experiments like Tunka, IceCube/IceTop, TALE and others. In this talk the present results on energy spectrum and composition are compared to each other and with astrophysical models for the energy range, where the transition from galactic to extragalactic origin of cosmic rays are expected. In addition, the effects of using different hadronic interaction models for interpreting the measured air-shower data will be discussed. Speaker: Andreas Haungs (KIT - Germany) Chairman: Anatoly Petrukhin The CALorimetric Electron Telescope (CALET) on the International Space Station The CALorimetric Electron Telescope (CALET) space experiment, which has been developed by Japan in collaboration with Italy and the United States, is a high-energy astroparticle physics mission installed on the International Space Station (ISS). The primary goals of the CALET mission include investigating possible nearby sources of high-energy electrons, studying the details of galactic particle propagation and searching for dark matter signatures. During a two-year mission, extendable to five years, the CALET experiment measures the flux of cosmic-ray electrons (including positrons) to 20 TeV, gamma-rays to 10 TeV and nuclei with Z=1 to 40 up to 1,000 TeV. The instrument consists of two layers of segmented plastic scintillators for the cosmic- ray charge identification (CHD), a 3 radiation length thick tungsten-scintillating fiber imaging calorimeter (IMC) and a 27 radiation length thick lead-tungstate calorimeter (TASC). CALET has sufficient depth, imaging capabilities and excellent energy resolution to allow for a clear separation between hadrons and electrons and between charged particles and gamma rays. The instrument was launched on August 19, 2015 to the ISS with HTV-5 (H-II Transfer Vehicle 5) and installed on the Japanese Experiment Module-Exposed Facility (JEM-EF) on August 25. Since the start of operation in mid-October, 2015, a continuous observation has being kept mainly by triggering high energy (>10 GeV) showers without any major interruption. The number of the triggered events over 10 GeV is nearly 20 million per month. By using the data obtained during the first two-years, we will have a summary of the CALET observations: 1) Electron+Positron energy spectrum, 2) Proton and Nuclei spectrum, 3) Gamma-ray observation, with results of the performance study on orbit. We also present the results of observations of the electromagnetic counterparts to LIGO-VIRGO gravitational wave events and high- energy counterparts to GRB events measured with the CALET Gamma-ray Burst Monitor (CGBM). Speaker: Yoichi Asaoka (Waseda University) Chairman: Jörg Hörandel 12:30 14:00 Lunch 14:00 16:00 Plenary Session #2 (Conference Hall) Cosmic Ray Anisotropy with the IceCube Observatory The IceCube Observatory is a neutrino telescope deployed at the geographic South Pole, aimed to detect and identify high energy neutrinos of astrophysical origin. IceCube is also able to detect cosmic rays with the 1 km^3 neutrino telescope buried 2500 meters under the Antarctic ice and with a dedicated 1 km^2 surface array. IceCube has analyzed data over the last several years to determine, for the first time in the southern hemisphere, the tiny anisotropy of cosmic ray arrival direction distribution. The anisotropy shows a complex angular structure and a strong energy dependence from 10 TeV to a few PeV per particle. TeV cosmic ray anisotropy is being investigated as a possible new probe into the properties of the local interstellar medium and the heliosphere. Its astrophysical reaches are also being investigated. Speaker: Markus Ahlers (Niels Bohr Institute, Copenhagen) Chairman: Giuseppe Di Sciascio Neutrino astronomy: recent results and perspectives Neutrino astronomy has begun with the detection by the Gton scale IceCube telescope in 2013 of the first high energy neutrino cosmic candidates followed until today by around 80 others. So far the signal has not shown any sign of clusterisation and it’s origin remains unknown. Meanwhile, other detectors of tens of Mton scale, like ANTARES in the Mediterranean Sea and Baikal in the Russian homonymous lake, have been taking data aiming at confirming this detection and constraining its origin, opening 1 the way for their Gton scale successors, KM3NeT and Baïkal-GVD both currently under construction and installation. In particular, the transparency of the water allows for a very good angular resolution in the reconstruction of signatures of interactions from neutrinos of all flavors. This results for Antares in unprecedented sensitivity for neutrino point-like or extended source searches in the Southern Sky at TeV energies, so that valuable constraints can be set on the origin of the cosmic neutrino flux discovered by the IceCube detector. Neutrino telescopes given their sky-scale instantaneous filed of view and degree to sub-degree scale angular resolution can bring crucial localisation information for transient multi-messenger astronomy and bring new insight into the physics of the most violent phenomena of the Universe. They have taken part in the massive multi-messenger follow-up campaign of the gravitational wave events detected by Ligo and Virgo, in particular GW170817. We will review the most recent results and present the perspectives opened by the new generation detectors currently in construction. They will represent a crucial asset in the multi-messenger observation and understanding of the non thermal Universe but also of fundamental physics like neutrino mass hierarchy with lower energy versions of the detectors like ORCA in KM3NeT. Speaker: Bruny Baret (APC) Chairman: Rostislav Kokoulin Fermi bubbles, their origin and possible connection to cosmic rays near the Earth Discovery of two giant structures seen in gamma-rays and radio, located above and below the Galactic center, known as Fermi bubbles, can be considered as one of the most interesting phenomena observed by Fermi-LAT. Their position and total energy content suggest a very strong energy outburst happened in the Galactic center in the past. During this talk we are going to review properties of the bubbles and point out what makes them so interesting, such as hard spectrum, correlation with radio emission and uniform brightness. We will cover some models of the origin of Fermi bubbles, discussing their pros and cons. We will also demonstrate how Fermi bubbles can affect spectrum of cosmic rays near the Earth at energies above 1 PeV. Speaker: Dmitry Chernyshov (Lebedev's Institute of Physics, Moscow, Russia) Chairman: Roman Raikin Astrospheres and Cosmic rays An ionization plays key role in formation of stars, planets ans their atmospheres. Cosmic rays are the main source of the ionization, therefore it is important to know and be able to estimate fluxes of galactic and stellar cosmic rays (GCR and SCR) at different stages of evolution of stars and planetary systems. Radiation conditions close to exoplanets might be important for creation and development of life. In our talk we will present a review of the current state of the problem of astrospheres and their interactions with GCR and SCR. It is supposed to pay a special attention to estimates of radiation conditions near exoplanets recently discovered in a habitable zone of their hosting stars. Speaker: Alexei Struminsky (Space Research Institute) Chairman: Yuri Stozhkov 16:00 16:15 Coffee-Break 16:15 19:00 Excursions to the Museum of Archeology and Ethnography of Altai and laboratories of the Altai State University (Remote Sensing Center, Russian-American Anti-Cancer Center, Engineering Center "Prombioteh") 16:15 19:00 Poster Session 19:00 21:00 Welcome Party Saturday, 7 July 09:30 11:30 Plenary Session #3 (Conference Hall) Muonography – a new method of investigations the near-terrastrial space¶ The method is based on precisial measurements of the space-angular characteristics of the muon flux registered in the hodoscopic mode. Opportunities of using muonography for investigations of heliospheric, magnetospheric and atmospheric disturbances are considered. The results of experimental studies of such fenomena are discussed and the possibilities of their early detection are estimated. Speaker: Natalya Barbashina (National research nuclear university MEPhI ) Chairman: Igor Yashin Latest Results from AMS The latest AMS charged cosmic ray measurements will be presented based on 100 billion cosmic ray events collected by AMS for the first 6 years of operation. Speaker: Vitali Choutko (MIT) Chairman: Igor Moskalenko 2 From YangBaJing Cosmic Ray Experiments to LHAASO I’ll briefly overview our cosmic ray researches with the old generation high altitude cosmic ray experiments at YangBaJing in the past decades and our pursuit for a new generation of gamma rays telescope in the very high energy region. Then I'll talk about the construction status and physics prospect of LHAASO. Speaker: Hongbo Hu (Institute of High Energy Physics,CAS) Chairman: Alexander Panov Coffee- UHECRs: Recent Results, New Insights, and Open Issues Break Enormous progress has been made over the last couple of years in improving the quality and statistics of UHECR observations.
Recommended publications
  • The Gran Sasso Underground Laboratory Program
    The Gran Sasso Underground Laboratory Program Eugenio Coccia INFN Gran Sasso and University of Rome “Tor Vergata” [email protected] XXXIII International Meeting on Fundamental Physics Benasque - March 7, 2005 Underground Laboratories Boulby UK Modane France Canfranc Spain INFN Gran Sasso National Laboratory LNGSLNGS ROME QuickTime™ and a Photo - JPEG decompressor are needed to see this picture. L’AQUILA Tunnel of 10.4 km TERAMO In 1979 A. Zichichi proposed to the Parliament the project of a large underground laboratory close to the Gran Sasso highway tunnel, then under construction In 1982 the Parliament approved the construction, finished in 1987 In 1989 the first experiment, MACRO, started taking data LABORATORI NAZIONALI DEL GRAN SASSO - INFN Largest underground laboratory for astroparticle physics 1400 m rock coverage cosmic µ reduction= 10–6 (1 /m2 h) underground area: 18 000 m2 external facilities Research lines easy access • Neutrino physics 756 scientists from 25 countries Permanent staff = 66 positions (mass, oscillations, stellar physics) • Dark matter • Nuclear reactions of astrophysics interest • Gravitational waves • Geophysics • Biology LNGS Users Foreigners: 356 from 24 countries Italians: 364 Permanent Staff: 64 people Administration Public relationships support Secretariats (visa, work permissions) Outreach Environmental issues Prevention, safety, security External facilities General, safety, electrical plants Civil works Chemistry Cryogenics Mechanical shop Electronics Computing and networks Offices Assembly halls Lab
    [Show full text]
  • Geo-Neutrino Program at Baksan Neutrino Observatory
    Geo-neutrino Program at Baksan Neutrino Observatory Yu.M. Malyshkin1,4, A.N. Fazilakhmetov1, A.M. Gangapshev1,3, V.N. Gavrin1, T.V. Ibragimova1, M.M. Kochkarov1, V.V. Kazalov1, D.Yu. Kudrin1, V.V. Kuzminov1,3, B.K. Lubsandorzhiev1, Yu.M. Malyshkin1,4, G.Ya. Novikova1, A.A. Shikhin1, A.Yu. Sidorenkov1, N.A. Ushakov1, E.P. Veretenkin1, D.M. Voronin1,E.A. Yanovich1 1Institute for Nuclear Research of RAS, Moscow, Russia 2Institute of Astronomy of RAS, Moscow, Russia 3Kabardino-Balkarian State University, Nalchik, Russia 4National Institute of Nuclear Physics, Rome, Italy “Neutrino Geoscience”, Prague October 20-23, 2019 Introduction Construction of a large volume scintillator detector has been discussed for a long time. The works aimed to its preparation has been resumed recently. We will discuss: ● Benefits of its location at Baksan Neutrino Observatory ● Its potential for geo-neutrino studies ● Current progress Neutrino Geoscience 2019 Yury Malyshkin et al, INR RAS 2 BNO Location BNO Nalchik Black See Neutrino Geoscience 2019 Yury Malyshkin et al, INR RAS 3 Baksan Valley Mountain Andyrchy Baksan valley Baksan Neutrino Observatory and Neutrino village Neutrino Geoscience 2019 Yury Malyshkin et al, INR RAS 4 BNO Facilities and Neutrino village Andyrchy EAS array Carpet-3 EAS array BUST Tunnel entrance Neutrino village Neutrino Geoscience 2019 Yury Malyshkin et al, INR RAS 5 Underground labs of BNO Entrance BUST’s hall Low Bkg Lab2 + Laser Interferom. 620 m – 1000 m w.e. Low Bkg Lab1 Low Bkg «НИКА» Lab3 GeoPhys «DULB- OGRAN’s hall GeoPhys Lab1 4900» Lab2 4000 m GGNT’s hall BLVST Neutrino Geoscience 2019 Yury Malyshkin et al, INR RAS 6 Muon shielding -9 Entrance (3.0±0.15)·10 μ/cm2/s Neutrino Geoscience 2019 Yury Malyshkin et al, INR RAS 7 Detector Layout The future neutrino detector at Baksan will have a standard layout, similar to KamLAND and Borexino, but with larger mass and deeper underground.
    [Show full text]
  • Supernova Warning System Will Give Astronomers Earlier Notice 28 September 2004
    Supernova warning system will give astronomers earlier notice 28 September 2004 Supernova Early Warning System (SNEWS) that A neutrino physicist who was corresponding author detects ghostlike neutrino particles that are the of the "New Journal of Physics" paper, she helped earliest emanations from the immense, explosive write the software for that computerized death throes of large stars will alert astronomers interconnection. This network can electronically of the blasts before they can see the flash. compare data to increase scientists' confidence that SNEWS "could allow astronomers a chance to that a neutrino signal is really from a supernova. make unprecedented observations of the very early turn-on of the supernova," wrote the authors The idea is that neutrino detectors sensing a type II of an article about the new system in the supernova will "basically light up at the same time," September issue of the "New Journal of Physics". she said. "We can't use just one detector because they are cranky enough to sometimes send out a They also noted that "no supernova has ever been fake alarm." observed soon after its birth." "Natural" neutrinos can also be detected in Big stars end their lives in explosive gravitational radiation from the sun and from cosmic rays that collapses so complete that even the brilliant strike Earth's atmosphere, she said. Neutrinos can flashes of light usually announcing these extremely be produced artificially too by nuclear power plants rare "supernova" events stay trapped inside, and research accelerators. Among those natural unseen by astronomers, for the first hours or days. and artificial sources, only solar neutrinos and those emitted by one type of accelerator have Fortunately gravitational collapse supernovas also energy levels that can overlap those from a release large numbers of subatomic neutrinos that supernova, she added.
    [Show full text]
  • The Gran Sasso Laboratory and the Neutrino Beam from CERN
    The Gran Sasso laboratory and the neutrino beam from CERN Eugenio Coccia [email protected] Erice 2 september 2006 Content • The Gran Sasso Laboratory • Neutrino physics activity • The Cern to Gran Sasso neutrino beam • First events • Perspectives Underground Laboratories Very high energy phenomena, such as proton decay and neutrinoless double beta decay, happen spontaneously, but at extremely low rates. The study of neutrino properties from natural and artificial sources and the detection of dark matter candidates requires capability of detecting extremely weak effects. Thanks to the rock coverage and the corresponding reduction in the cosmic ray flux, underground laboratories provide the necessary low background environment to investigate these processes. These laboratories appear complementary to those with accelerators in the basic research of the elementary constituents of matter, of their interactions and symmetries. LABORATORI NAZIONALI DEL GRAN SASSO - INFN Largest underground laboratory for astroparticle physics 1400 m rock coverage Research lines cosmic µ reduction= 10–6 (1 /m2 h) • Neutrino physics underground area: 18 000 m2 (mass, oscillations, stellar physics) external facilities • Dark matter easy access • Nuclear reactions of astrophysics interest 756 scientists from 24 countries • Gravitational waves Permanent staff = 70 positions • Geophysics • Biology LNGS most significant results with past experiments Evidence of neutrino oscillation GALLEX / GNO - solar ν MACRO - atmospheric ν Unique cosmic ray studies EAS-TOP with
    [Show full text]
  • Fn Ee Rw Ms I
    F N E E R W M S I FERMILAB AU.S. DEPARTMENT OF E NERGY L ABORATORY New Neutrino Experiment at Fermilab Goes Live 2 Jeff Jeff Kallenbach, Fermilab and Jon Link, BooNE collaboration Volume 25 INSIDE: Friday, September 20, 2002 Number 15 6 Last Rites 8 FYI f 12 Computing by the Truckload New neutrino experiment at Fermilab goes LiveLive by Kurt Riesselmann Scientists of the Booster Neutrino Experiment collaboration announced on September 9 that a new detector at the U.S. Department of Energy’s Fermi National Accelerator Laboratory has observed its first neutrino events. The BooNE scientists identified neutrinos that created ring-shaped flashes of light inside a 250,000-gallon detector filled with mineral oil. The major goal of the MiniBooNE experiment, the first phase of the BooNE project, is either to confirm or refute startling experimental results reported ON THE COVER by a group of scientists at the Los Alamos National Laboratory. In 1995, the Scientists of the Booster Neutrino Liquid Scintillator Neutrino Detector collaboration at Los Alamos stunned the Experiment collaboration announced particle physics community when it reported a few instances in which the on September 9 that a new detector at Fermilab has observed its first neutrino antiparticle of a neutrino had presumably transformed into a different type events. The BooNE scientists identified of antineutrino, a process called neutrino oscillation. neutrinos that created ring-shaped flashes “Today, there exist three very different independent experimental results of light, here read out by a computer display, inside a 250,000-gallon detector that indicate neutrino oscillations,” said Janet Conrad, a physics professor filled with mineral oil.
    [Show full text]
  • LVD Collaboration
    32nd International Cosmic Ray Conference, Beijing 2011 Search for supernova neutrino bursts with the Large Volume Detector W.Fulgione1,2, A.Molinario1,2,3, C.F.Vigorito1,2,3 on behalf of the LVD collaboration 1INFN, sezione Torino, via Pietro Giuria 1, Torino, Italy 2INAF, IFSI-TO, Corso Fiume 4, Torino, Italy 3Dipartimento di Fisica Generale, Universit`a di Torino, Italy '[email protected] ,,&5&9 Abstract: The Large Volume Detector (LVD) in the INFN Gran Sasso National Laboratory, Italy, is a 1 kt liquid scintillator neutrino observatory mainly designed to study low energy neutrinos from gravitational stellar collapses in the Galaxy. The experiment has been taking data since June 1992, under increasing larger mass configurations. The telescope duty cycle, in the last ten years, has been greater than 99%. We have searched for neutrino bursts analysing LVD data in the last run, from May 1st, 2009 to March 27th, 2011, for a total live time of 696.32 days. The candidates selection acts on a pure statistical basis, and it is followed by a second level analysis in case a candidate is actually found in the first step. We couldn’t find any evidence for neutrino bursts from gravitational stellar collapses over the whole period under study. Considering the null results from the previous runs of data analysis, we conclude that no neutrino burst candidate has been found over 6314 days of live-time, during which LVD has been able to monitor the whole Galaxy. The 90% c.l. upper limit to the rate of gravitational stellar collapses in the Galaxy results to be 0.13 events / year.
    [Show full text]
  • Status and Results of the LVD Experiment
    Subnuclear Physics: Past, Present and Future Pontifical Academy of Sciences, Scripta Varia 119, Vatican City 2014 www.pas.va/content/dam/accademia/pdf/sv119/sv119-giusti.pdf Status and Results of the LVD Experiment PAOLO GIUSTI 1 Introduction and generalities The sudden appearance of a new bright star in the otherwise immutable sky was observed since ancient times. The study of historical records worldwide allows to identify 6 such events as supernova explosions occurred in our Galaxy, the first one recorded by Chinese astronomers in 185 AD, the last one observed in Europe in 1604 and studied in detail by Kepler. In the XXth century nuclear and particle physics made possible the early recognition of the role of nuclear fusion reactions and neutrinos in the stellar evolution and in particular in the gravitational core collapse of massive stars where neutrinos are thought to be the instrumental in causing the final supernova explosion. Stars are maintained in a quasi equilibrium state by the opposite effects of ƚŚĞŐƌĂǀŝƚLJ͛ƐƉƵůůĂŶĚŽĨ the energy released by the nuclear reaction that fuse the hydrogen in the star core into helium. When most of the hydrogen in the core has been burned the fusion reaction stops, the core contracts and its temperature increases. If the star is massive enough the core temperature become so high that the fusion of helium into carbon starts and the quasi equilibrium state in reconstituted. Massive stars, M ! (6 y 10) MSUN, can repeat this process in a succession of increasingly shorter and more violent steps, producing heavier and heavier elements until they reach a structure where an iron core is surrounded by shells of lighter elements.
    [Show full text]
  • Implication for the Core-Collapse Supernova Rate from 21 Years of Data of the Large Volume Detector
    IMPLICATION FOR THE CORE-COLLAPSE SUPERNOVA RATE FROM 21 YEARS OF DATA OF THE LARGE VOLUME DETECTOR The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Agafonova, N. Y., M. Aglietta, P. Antonioli, V. V. Ashikhmin, G. Badino, G. Bari, R. Bertoni, et al. “IMPLICATION FOR THE CORE-COLLAPSE SUPERNOVA RATE FROM 21 YEARS OF DATA OF THE LARGE VOLUME DETECTOR.” The Astrophysical Journal 802, no. 1 (March 20, 2015): 47. © 2015 The American Astronomical Society As Published http://dx.doi.org/10.1088/0004-637x/802/1/47 Publisher IOP Publishing Version Final published version Citable link http://hdl.handle.net/1721.1/97081 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal, 802:47 (9pp), 2015 March 20 doi:10.1088/0004-637X/802/1/47 © 2015. The American Astronomical Society. All rights reserved. IMPLICATION FOR THE CORE-COLLAPSE SUPERNOVA RATE FROM 21 YEARS OF DATA OF THE LARGE VOLUME DETECTOR N. Y. Agafonova1, M. Aglietta2, P. Antonioli3, V. V. Ashikhmin1, G. Badino2,7, G. Bari3, R. Bertoni2, E. Bressan4,5, G. Bruno6, V. L. Dadykin1, E. A. Dobrynina1, R. I. Enikeev1, W. Fulgione2,6, P. Galeotti2,7, M. Garbini3, P. L. Ghia8, P. Giusti3, F. Gomez2, E. Kemp9, A. S. Malgin1, A. Molinario2,6, R. Persiani3, I. A. Pless10, A. Porta2, V. G. Ryasny1, O. G. Ryazhskaya1, O. Saavedra2,7, G.
    [Show full text]
  • Pos(ICHEP2012)396 Μ ¯ Ν and Μ Ν † ∗ [email protected] Exploiting the Information Provided by the Muon Spectrometers
    New results of the OPERA long-baseline experiment in the CNGS neutrino beam PoS(ICHEP2012)396 Maximiliano Sioli∗ † Bologna University & INFN E-mail: [email protected] In May 2012 the CERN-CNGS neutrino beam operated in a dedicated short-bunched mode for two weeks in order to provide the opportunity to measure muon neutrino speed on an event-by- event basis. This new measurement campaign was the follow-up of a previous anomalous result reported by the OPERA Collaboration which was later revised and corrected by the Collaboration. The new analysis profited from the precision geodesy measurements of the neutrino baseline and of the CNGS/LNGS clock synchronization performed in the previous analysis. Different OPERA sub-detectors and timing systems were used and results were given separately for nm and n¯m exploiting the information provided by the muon spectrometers. 36th International Conference on High Energy Physics 4-11 July 2012 Melbourne, Australia ∗Speaker. †on behalf of the OPERA Collaboration. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ New results of the OPERA long-baseline experiment in the CNGS neutrino beam Maximiliano Sioli 1. Introduction In 2011 the OPERA experiment [1] at the Laboratori Nazionali del Gran Sasso (LNGS) re- ported the measurement of the time-of-flight (ToF) of muon neutrinos in the CNGS [2] beam. The ToF value obtained in 2011 [3] was shorter than what computed assuming the speed of light at the level of 2 × 10−5. Later checks isolated two unaccounted systematic effects which completely absorbed the anomaly and provided a ToF value compatible with the speed of light [4].
    [Show full text]
  • A Large Volume Detector for 222Rn In
    Search for Neutrinoless Double Beta Decay with GERDA Grzegorz Zuzel on behalf of the GERDA Collaboration Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC Three neutrinos and beyond, 05 15-th08.01.2010 Rencontres duCracow, Vietnam, Poland August 05-09, Quy Nhon, Vietnam Outline • Double beta decay • Design and goals of GERDA • Background reduction strategy • GERDA results • Summary Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC Three neutrinos and beyond, 0515th-08.01.2010 Rencontres Cracow,du Vietnam, Poland August 05-09, Quy Nhon, Vietnam Double Beta Decay In a number of even-even nuclei, decay due to energy/angular momentum balance is forbidden, while double beta decay from a nucleus (A,Z) to (A, Z+2) is energetically allowed. E decay GERDA design Bkg reduction Latest results Summary Q = 2039 keV Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC Three neutrinos and beyond, 0515th-08.01.2010 Rencontres Cracow,du Vietnam, Poland August 05-09, Quy Nhon, Vietnam Double Beta Decay Modes 2 0 decay GERDA design Bkg reduction Latest results Summary - - (A,Z) (A, Z+2) + 2e (A,Z) (A, Z+2) + 2e + 2e L = 2 L = 0 exp 26 18 24 T1/2 >~10 yr T1/2 ~ 10 – 10 yr Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC Three neutrinos and beyond, 0515th-08.01.2010 Rencontres Cracow,du Vietnam, Poland August 05-09, Quy Nhon, Vietnam Background Issue No background 푙푛2 푁퐴 푇 90% 퐶퐿
    [Show full text]
  • Arxiv:1208.2629V2 [Hep-Ex] 26 Sep 2012 Luniversità Di L’Aquila, Via Vetoio, Località Coppito, I-67100 L’Aquila, Italy Mnational Centre for Nuclear Research, A
    Prepared for submission to JHEP Precision measurement of the neutrino velocity with the ICARUS detector in the CNGS beam The ICARUS Collaboration M. Antonelloa B. Baiboussinovb P. Benettic F. Boffellic E. Calligarichc N. Cancia S. Centrob A. Cesanae K. Cieślikf D. B. Clineg A. G. Coccod A. Dabrowskaf D. Dequalb A. Dermenevh R. Dolfinic C. Farneseb A. Favab A. Ferrarii G. Fiorillod D. Gibinb S. Gninenkoh A. Guglielmib M. Haranczykf J. Holeczekn A. Ivashkinh J. Kisieln I. Kochanekn J. Lagodam S. Manian A. Menegollic G. Mengb C. Montanaric S. Otwinowskig A. Piazzolic P. Picchio F. Pietropaolo,c P. Plonskip A. Rappoldic G. L. Rasellic M. Rossellac C. Rubbiaa;i P. Salae E. Scantamburlol A. Scaramellie E. Segretoa F. Sergiampietriq D. Stefana J. Stepaniakm R. Suleja;m M. Szarskaf M. Terranie F. Varaninib S. Venturab C. Vignolia H.G. Wangg X. Yangg A. Zalewskaf A. Zanic K. Zarembap and P. Alvarez Sanchezi L. Biagir R. Barzaghir B. Bettir L.-G. Berniers G. Cerrettot C. De Gaetanir H. Estebanu T. Feldmann,v J. D. Gonzalez Cobasi D. Passonir V. Pettitit L. Pintor J. Serranoi P. Spinnatoa M. G. Viscontir T. Wlostowskii aINFN - Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy bDipartimento di Fisica e Astronomia e INFN, Università di Padova, Via Marzolo 8, I-35131,Padova, Italy cDipartimento di Fisica e INFN, Università di Pavia, Via Bassi 6, I-27100, Pavia, Italy dDipartimento di Scienze Fisiche e INFN, Università Federico II, Napoli, Italy eINFN, Sezione di Milano e Politecnico, Via Celoria 16, I-20133, Milano, Italy f H.Niewodniczański Institute of Nuclear Physics, Kraków, Poland gDepartment of Physics and Astronomy, University of California, Los Angeles, USA hInstitute for Nuclear Research of the Russian Academy of Sciences, prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia iCERN, European Laboratory for Particle Physics, CH-1211 Geneve 23, Switzerland arXiv:1208.2629v2 [hep-ex] 26 Sep 2012 lUniversità di L’Aquila, via Vetoio, Località Coppito, I-67100 L’Aquila, Italy mNational Centre for Nuclear Research, A.
    [Show full text]
  • The Icecube-Gen2 Neutrino Observatory
    Prepared for submission to JINST 9th Very Large Volume Neutrino Telescope Workshop (VLVnT-2021) 18-21 May 2021 Valencia, Spain The IceCube-Gen2 Neutrino Observatory B. A. Clark,0,1 on behalf of the IceCube-Gen2 Collaboration∗ 0Dept. of Physics and Astronomy, Michigan State University, 567 Wilson Rd, East Lansing, MI 48824, USA E-mail: [email protected] Abstract: The IceCube Neutrino Observatory opened the window on neutrino astronomy by discovering high-energy astrophysical neutrinos in 2013 and identifying the first compelling as- trophysical neutrino source, the blazar TXS0506+056, in 2017. In this talk, we will discuss the science reach and ongoing development of the IceCube-Gen2 facility—a planned extension to Ice- Cube. IceCube-Gen2 will increase the rate of observed cosmic neutrinos by an order of magnitude, be able to detect five-times fainter neutrino sources, and extend the measurement of astrophysical neutrinos several orders of magnitude higher in energy. We will discuss the envisioned design of the instrument, which will include an enlarged in-ice optical array, a surface array for the study of arXiv:2108.05292v1 [astro-ph.HE] 11 Aug 2021 cosmic-rays, and a shallow radio array to detect ultra-high energy (¡ 100 PeV) neutrinos. we will also highlight ongoing efforts to develop and test new instrumentation for IceCube-Gen2. Keywords: Neutrino detectors, Large detector systems for particle and astroparticle physics 1Corresponding author. *Full author list and acknowledgments are available at icecube.wisc.edu. 1 Introduction High-energy neutrinos are unique messengers to the high-redshift reaches of the Universe. Unlike photons and cosmic-rays, as chargeless and weakly interacting particles, neutrinos travel unatten- uated and undeflected across the cosmos.
    [Show full text]