Experimental Installations
Total Page:16
File Type:pdf, Size:1020Kb
Appendix A Experimental Installations A.1 EAS Arrays and Cosmic Ray Ground Facilities A.1.1 Lists of Array and Facility Sites In the following we present a list of air shower arrays of the past and present (Table A.1). The altitudes of the arrays are listed together with the corresponding atmospheric depths. The latter are in most cases the vertical atmospheric depths, i.e., the average vertical overburden [g cm−2]. In some cases, however, authors may specify different values for the overburden in different publications for the same array. The reason for these discrepancies is that in some cases authors consider the slant depth for the average near vertical shower, e.g., ∼15◦, as compared to the depth for perfectly vertical showers, that are rather rare exceptions in practice. Some table entries with similar altitudes suggest contradicting altitude-overburden relations, but these are explained by differing average atmospheric and meteorological conditions (see Sect. B.3). Figure A.1, which is a reproduction from a web page of the Yakutsk group, shows the aperture in units of square kilometer-steradian [km2 sr] of the largest air shower arrays of the past and present, and of arrays and detector systems currently under construction or in the planing phase. In Table A.2 we list emulsion chamber sites, and in Table A.3 the threshold energies of the muon detectors of some of the arrays listed in Table A.1. Note that for some arrays different threshold energies were used simultaneously, in others different thresholds at different times. Table A.4 is a partial list of major gamma ray air Cherenkov detectors of past and present. P.K.F. Grieder, Extensive Air Showers, DOI 10.1007/978-3-540-76941-5 22, 1035 C Springer-Verlag Berlin Heidelberg 2010 1036 A Experimental Installations Table A.1 EAS array sites and experiments of past and present Name, place, country (nearest major city, region) Approximate Altitude a.s.l. Atmospheric depth [m] [g cm−2] AGASA, Akeno (Kofu) Japana 900 935 Agassiz, (Boston) USAa 183 1,020 ANI/MAKET Mt. Aragats, (Yerevan), Armenia 3,200 700 ARGO, Yangbajing, (Lhasa), Tibet, Chinab 4,370 606 Auger South, (Malargue),¨ Argentina 1,300–1,400 875 Auger North, (Lamar) Colorado, USAd ∼1,500 ∼865 Bagneres` de Bigorre, Francea 456 965 Baksan, Kabardian-Balkarian Rep., Russiac 2,060 805 Buckland Park, (Adelide), SA, Australia s.l. 1,033 CASA/MIA, (Dugway), Utah, USAa 1,435 870 Chacaltaya, (La Paz), Bolivia 5,230 530 Cornell, (Ithaca), NY, USAa 260 998 Cygnus, (Los Alamos), New Mexico, USAa 2,220 800 Darjeeling, India (Exp. at Siliguri, s.l.) 2,200 802 Dugway, Utah, USA (Durham (GB) Exp.)a 1,450 865 Durham, Englanda 60 1,025 EAS-Top, Gran Sasso, Italya 2,005 810 Echo Lake, Colorado, USAa 3,260 715 El Alto, (La Paz), Boliviaa 4,200 630 Elbrus Laboratory 1,850 820 Evans, Mt., (Denver) Colorado, USAa 4,300 615 Fly’s Eye 1, (Dugway), Utah, USAa 1,585 860 Fly’s Eye 2, (Dugway), Utah, USAa 1,435 870 GAMMA, (Yerevan), Armenia 3,200 700 GRAND, (Notre Dame), Indiana, USA 220 1,018 GRAPES, Ootacamund (Mysor), India 2,200 800 GREX, Haverah Park, (Leeds), Englanda 220 1,018 Gulmarg, (Srinagar), Kashmir, Indiaa 2,743 740 Haverah Park, (Leeds), Englanda 212 1,018 HEGRA, La Palma, Canary Islandsa 2,250 800 Homestake, South Dakota, USAa 1,615 843 Issyk-Kul Lake, (Almaty), Kazakhstanb 1,600 845 JANZOS, New Zealanda 1,640 840 KASCADE-Grande, Karlsruhe, Germanya 110 1,022 Kiel, Germanya s.l. 1,033 Kobe, Japan s.l. 1,033 KGF, Kolar Gold Fields, (Karnataka), Indiaa 920 920 L3+C (CERN, Geneva) Switzerlanda 374 1,000 Liang Wang, Mt., Yun-Nan, Chinab 2,720 735 Lodz, Polanda 230 1,000 MILAGRO, (Los Alamos), N.M., USA 2,630 750 Moscow, Russia 192 1,020 Musala Mountain, Bulgariaa 2,925 713 NASCA, see Akeno – – Norikura, Mt., (Matsumoto), Japana 2,770 750 Ohya, (Nikko), Japana 149 1,020 Ootacamund, (Mysore), India 2,200 800 Pamir (old), Tadzhikistana 3,860 650 Pamir (new), Tadzhikistan 4,380 590 A.1 EAS Arrays and Cosmic Ray Ground Facilities 1037 Table A.1 (continued) Name, place, country (nearest major city, region) Approximate Altitude a.s.l. Atmospheric depth [m] [g cm−2] Pic du Midi, Pyrenees, Francea 2,860 729 Samarkand, Uzbekistan 750 958 SPASEa, SPASE-II, South Pole 3,300 695 SPICA, see Akeno – – SUGAR, (Narrabri), Australiaa 260 998 Sulphur Mountain, Alberta, Canadaa 2,285 800 Sydney, Australiaa 30 1,016 Telescope Array, Dugway, Utah, USA 1,400 865 Tibet, Yangbajing, (Lhasa) 4,370 606 Tien Shan, (Almaty), Kazakhstan 3,340 690 Tokyo, INS, Japana 59 1,020 TUNKA-133, (Baikal), Russiab 675 960 UMC array, see CASA/MIA/Fly’s Eyea –– Verrieres` (Paris), Francea 100 1,020 Volcano Ranch, (Albuquerque), N.M., USAa 1,768 834 Yakutsk, Siberia, Russia 105 1,020 a Shut-down. b Under construction or partial operation. c 1,700 m a.s.l. for underground laboratory. d In planning phase or proposed. Note: Some of the atmospheric depths listed above do not correspond exactly to the vertical air column at the specified altitude, but to the effective air column of an incident trajectory subtend- ing a mean zenith angle of about 10–15◦. This zenith angular cut is frequently used to select a reasonable number of quasi vertical events for analysis. 107 6 JEM-EUSO 10 OWL 105 sr] Auger 2 104 HiRes Telescope Array 103 Fly's Eye Aperture [km SUGAR 102 AGASA Yakutsk Haverah Park 101 Volcano Ranch 100 1950 1960 1970 1980 1990 2000 2010 2020 Array Operation [y] Fig. A.1 Apertures of the large arrays of the past and present, of arrays under construction or expansion, and of the proposed JEM-EUSO and OWL satellite based detector systems (curtesy of the Yakutsk Group) 1038 A Experimental Installations Table A.2 Emulsion chamber sites Name, place, country Approximate (nearest major city, region) Altitude a.s.l. [m] Atmospheric depth [g cm−2] Chacaltaya, (La Paz), Boliviaa 5,230 530 Fuji, Mt., Japan 3,776 650 Kanbala, Mt., Tibet, Chinab 5,500 520 Pamir Mountains, Tadzhikistan (Old Station)b 3,860 625 Pamir Mountains, Tadzhikistan (New Station) 4,237 600 a coupled with dedicated electronic detector array. b shut-down. Table A.3 Threshold energies of Muon detectors at various EAS sites Site Threshold energy [GeV] comments Agassiz ≥0.4, ≥0.5, ≥1.0 Akeno/AGASA ≥0.5, ≥1.0 AMANDA ≥1,000 ANI/Aragaz ≥5.0 Auger ∼1.0 Baksan ≥230 Chacaltaya ≥0.6 Cornell ≥2.0 Cygnus ≥1.0, ≥2.0 EAS-Top ≥1.5, ≥2.0 EAS-1000 ≥1.0 GAMMA ≥5.0 GRAPES-3 ≥1.0 Haverah Park ≥0.3, ≥0.41, ≥0.6, ≥0.7, ≥1.0 Haverah Park/Durham 1 ≤ p ≤ 1, 000 GeV/c magn. spectrometera HEGRA ≥0.3 Ice Cube ≈1TeV KASCADE ≥ 0.23, ≥ 0.49, ≥ 0.8, ≥ 2.4 KGF ≥1.0, ≥220, ≥640,≥1,700, ≥12 TeV Kiel ≥2.0, magn. spectrometera Lodz ≥0.6, ≥5.0 LVD ≥1,300 MACRO ≥1,300 MIA ≥0.85 Milagro ≥2, >500, >1,200 Moscow ≥0.5, ≥10.0, magn. spectrometerb Norikura, Mt. ≥0.3, ≥0.7 North Bengal (NBU) ≥2.5, 2 magn. spectrometersa Nottingham ≥0.41 Ohya ≥14.0 SUGAR ≥0.75 Tien Shan ≥5.0 Tokyo (Fukui) ≥2.0 Volcano Ranch ≥0.22 Yakutsk ≥0.3, ≥0.7, ≥1.0c a solid iron magnet spectrometer (Earnshaw et al., 1968). b maximum detectable momentum 600 GeV/c (Vernov et al., 1979). c since 1979 (Diminstein et al., 1979). A.1 EAS Arrays and Cosmic Ray Ground Facilities 1039 Table A.4 TeVa gamma ray air Cherenkov detector sites and experiments of past and present (Arrays and Telescopes, partial List only) Name, place, country (nearest major city, region) Approximate Altitude [m] Atmospheric depth [g cm−2] AIROBIC (see HEGRA) – – ANI, Aragats Mt., (Erevan), Armenia 3,200 690 ASGAT, (Targasonne) France 1,650 840 BLANCA, (Dugway, Utah) USA 1,435 865 CACTUS, (Daggett), CA, USA 610 965 Cangaroo, (Woomera), South Australia 160 1,020 Crimean AP Obs., (Nauchny), Ukraina 2,100 800 Cygnus, (Los Alamos), NM, USA 2,200 800 GAMMA, Mt. Aragats (Erevan), Armenia 3,200 700 GASP 1, South Pole 3,300 695 DICE, (Dugway, Utah) USA 1,450 865 Haleakala, (Maui, HI) USA 3,297 695 HEGRA, (La Palma), Canary Islands 2,200 800 H.E.S.S., (Windhoek), Namibia 1,800 830 JANZOS, (Wellington), New Zealand 1,640 840 MACE, (Hanle), India 4,240 600 MAGIC, (see HEGRA) – – Pachmarhi, (Madhya Pradesh),India 1,100 920 Plateau Rosa, Italy 3,500 675 Potchefstrom, South Africa 1,429 880 SHALON, (Tien Shan), Kazakhstan 3,340 690 Srinagar, (Kashmir), India 1,730 835 STACEE, (Albuquerque), NM, USA 1,740 830 TACTIC,(Mt. Abu, Rajasthan) India 1,219 905 TACT, Tien Shan, Kazakhstan 3,340 690 Themistocle, (Targasonne), France 1,650 840 VERITAS (see Whipple) – – Whipple Obs., Mt. Hopkins, Arizona, USA 2,380 730 Woomera, South Australia 320 1,000 a Some systems claim to have thresholds as low as 0.1 TeV. For a summary of early gamma ray air Cherenkov detectors, see Baillon (1991)orLorenz (1993). Table A.5 Locations of some old cosmic ray experimental sites Name, location Altitude [m a.s.l.] Albuquerque, New Mexico (USA) 1,575 Echo Lake, CO (USA) 3,260 Ithaca, NY (USA) 260 Jungfrau-Joch (Switzerland) 3,454 Mt. Evans, CO (USA) 4,300 Sulfur Mountain Alberta (Canada) 2,285 1040 A Experimental Installations A.1.2 Layouts of Selected Air Shower Arrays of Past and Present On the following pages we show a selection of layouts of air shower arrays of the past and present.