Life Support for a Low-Cost Lunar Settlement: No Showstoppers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2013 Winter Newsletter
HHHHHHH LEGACY JOHN F. KENNEDY LIBRARY FOUNDATION Winter | 2013 Freedom 7 Splashes Down at JFK Presidential Library and Museum “I believe this nation should commit itself, to achieving the goal, before this decade is out, of landing a man on the moon and returning him safely to the earth.” – President Kennedy, May 25, 1961 he John F. Kennedy Presidential Library and Museum Joined on September 12 by three students from Pinkerton opened a special new installation featuring Freedom 7, Academy, the alma mater of astronaut Alan B. Shepard Jr., Tthe iconic space capsule that U.S. Navy Commander Kennedy Library Director Tom Putnam unveiled Freedom 7, Alan B. Shepard Jr. piloted on the first American-manned stating, “In bringing the Freedom 7 space capsule to our spaceflight. Celebrating American ingenuity and determination, Museum, the Kennedy Library hopes to inspire a new the new exhibit opened on September 12, the 50th anniversary generation of Americans to use science and technology of President Kennedy’s speech at Rice University, where he so for the betterment of our humankind.” eloquently championed America’s manned space efforts: Freedom 7 had been on display at the U.S. Naval “We choose to go to the moon in this decade and do the Academy in Annapolis, MD since 1998, on loan from the other things, not because they are easy, but because they are Smithsonian Air and Space Museum. At the request of hard, because that goal will serve to organize and measure Caroline Kennedy, Secretary of the Navy Ray Mabus, the best of our energies and skills, because that challenge is the U.S. -
Human Spaceflight in Social Media: Promoting Space Exploration Through Twitter
Human Spaceflight in Social Media: Promoting Space Exploration Through Twitter Pierre J. Bertrand,1 Savannah L. Niles,2 and Dava J. Newman1,3 turn back now would be to deny our history, our capabilities,’’ said James Michener.1 The aerospace industry has successfully 1 Man-Vehicle Laboratory, Department of Aeronautics and Astro- commercialized Earth applications for space technologies, but nautics; 2Media Lab, Department of Media Arts and Sciences; and 3 human space exploration seems to lack support from both fi- Department of Engineering Systems, Massachusetts Institute of nancial and human public interest perspectives. Space agencies Technology, Cambridge, Massachusetts. no longer enjoy the political support and public enthusiasm that historically drove the human spaceflight programs. If one uses ABSTRACT constant year dollars, the $16B National Aeronautics and While space-based technologies for Earth applications are flourish- Space Administration (NASA) budget dedicated for human ing, space exploration activities suffer from a lack of public aware- spaceflight in the Apollo era has fallen to $7.9B in 2014, of ness as well as decreasing budgets. However, space exploration which 41% is dedicated to operations covering the Internati- benefits are numerous and include significant science, technological onal Space Station (ISS), the Space Launch System (SLS) and development, socioeconomic benefits, education, and leadership Orion, and commercial crew programs.2 The European Space contributions. Recent robotic exploration missions have -
Canada's Aviation Hall of Fame
Volume 31, No. 2 THE Spring 2013 Canada’s Aviation Hall of Fame Canada’s Aviation Hall of Fame Panthéon de l’Aviation du Canada Dodds Finland Curtis Fraser Christensen Greenaway Burke Hitchins Boffa Floyd Fullerton Davoud Dowling Bazalgette Clarke Grossmith Capreol Hobbs Baker, A.W. Boggs Garneau Forester Deluce Collishaw Beaudoin Hadfield Agar Dunlap Carr Hollick-Kenyon Baker, R.F. Bradford Garratt Fowler, R. Bell Halton Archibald Hopson Baker, R.J. Brintnell Gilbert Fowler, W. Berry Hamilton Armstrong Balchen Hornell Bristol Dyment Godfrey Cavadias Fox Beurling Hartman Audette Dickins Baldwin Cooke Hotson Brown Graham Edwards Caywood Foy Birchall Hayter Austin Dilworth Bannock Cooper-Slipper Howe Buller Grandy Fallow Franks Chamberlin Bishop Heaslip Bjornson Dobbin Barker Crichton Hutt Burbidge Gray Fauquier Fraser-Harris Blakey Chmela Hiscocks Bain 1 Canada’s Aviation Hall of Fame Panthéon de l’Aviation du Canada CONTACT INFORMATION: OFFICE HOURS: STAFF: Tuesday - Friday: 9 am - 4:30 pm Executive Director - Rosella Bjornson Canada’s Aviation Hall of Fame Closed Mondays Administrator - Dawn Lindgren * NEW - PO Box 6090 Wetaskiwin AB Acting Curator - Robert Porter * NEW - T9A 2E8 CAHF DISPLAYS (HANGAR) HOURS: Phone: 780.361.1351 Tuesday to Sunday: 10 am - 5 pm Fax: 780.361.1239 Closed Mondays BOARD OF DIRECTORS: Website: www.cahf.ca Winter Hours: 1 pm - 4 pm Email: [email protected] Please call to confirm opening times. Tom Appleton, ON, Chairman James Morrison, ON, Secretary, Treasurer Barry Marsden, BC, Vice-Chairman Denis Chagnon, QC -
Info-Radio.Eu
1 WEEKLY ONLINE HAM RADIO INFORMATION NEWSPAPER EL BOLETIN SEMANAL EN LINEA SOBRE RADIOAFICION Anno 11 - N.ro 20 16 Maggio 2013 www.info-radio.eu https://twitter.com/@INFORADIO1 http://www.youtube.com/watch?v=XEFzhKppZNo www.facebook.com/group.php?gid=80278864777 ON LINE FROM THE 2003 YEAR IN 127 COUNTRIES REALTA' O FANTASCIENZA ? - REAL OR SCIENCE FICTION ? www.centroufologiconazionale.net/ www.livestream.com/cunwebtv 2 Pag. 1 - IN COPERTINA................... L'astronomo Gian Domenico Cassini 2 - ONOMASTICI DEL GIORNO. Nomi vari 3- LEGGENDO QUA E LA......... Da LG una lavatrice che lava senz'acqua 4 - INFO-RADIO NEWS............. NOTIZIE varie 13 - MOSTRE/MERCATI............ Borgo Faiti (LT) - Caltanissetta - Cesena - Torino 18 - V-U-SHF NEWS.................... IAC - Calendari contest - Riptitori D-star 24 - CQ DX................................. INFO varie 25 - ATTIVITA' RADIANTISTICA.. Calendari contest & Classifiche 25 - E.M.E. NEWS........................ DUBUS 6 cm CW EME contest 25 - ATTIVITA' SPAZIALI............. INFO varie 30 - ASTRONOMIA....................... Occhi su Saturno 31 - U.F.O. NEWS......................... INFO varie 32 - L'ANGOLO DEL C.R.T............ INFO & Attività varie 34 - LA PAGINA DEI DIPLOMI....... 9° Diploma “C.O.T.A.” 2013 39 - AWARD NEWS....................... Attivazioni & Informazioni varie 50 - NEWS DAL C.O.T.A................ INFO varie 50 - NEWS DALL'A.R.Fo.P.I........... INFO varie 51 - NEWS DALL'A.R.M.I............... INFO varie 54 - TV CHE PASSIONE!................ Video consigliati - Info-Radio webTV 57 - INFO TECNICHE..................... Grafene bianco, la nuova arma contro le maree nere 58 - INFORMATICA........................ Come avviene il bootstrap di un PC 63 - CURIOSITA' INFORMATICHE... Windows 8.1 in preview a BUILD 2013 65 - TECNOLOGIA........................ -
Manuel De La Mission Expedition 2394 2 SOMMAIRE
Manuel de la mission Expedition 2394 2 SOMMAIRE L'EQUIPAGE La présentation Le Timeline 4 LE VAISSEAU Le vaisseau Soyuz 8 LE LANCEMENT Les horaires Le planning 10 La chronologie de lancement LA MISSION L'amarrage La présentation 16 LE RETOUR L'atterrissage 18 3 Manuel de la mission Expedition 34 L'EQUIPAGE LA PRESENTATION Kevin A. FORD (commandant de bord) Etat civil: Date de naissance: 07/07/1960 Lieu de naissance: Portland (Indiana) Statut familial: Marié et 2 enfants Etudes: Bachelier en ingénierie (University of Notre Dame), Maîtrise en relations internationales (Troy State University), Doctorat en ingénierie astronautique (Air Force Institute of Technology) Statut professionnel: Colonel à l'US Air Force retraité Nasa: Sélectionné comme astrononaute le 10/02/1999 (Groupe 18) Précédents vols : STS128 (13 jours 20:54 d'août à septembre 2009) Oleg V. NOVITSKY (ingénieur de vol) Etat civil: Date de naissance: 12/10/1971 Lieu de naissance: Cherven (Bielorussie) Statut familial: Marié et 1 enfant Etudes: Statut professionnel: Colonel à l'Armed Forces of the Russian Federation retraité Roskosmos: Sélectionné comme cosmonaute le 11/10/2006 (TsPK14) Précédents vols : Manuel de la mission Expedition 34 4 L'EQUIPAGE Yevgeni I. TARELKIN (ingénieur de vol) Etat civil: Date de naissance: 29/12/1974 Lieu de naissance: Pervomaysky (Russie) Statut familial: Marié et 1 enfant Etudes: Diplomé pilote (Vyssheye Voyennoye Aviatsionnoye Uchilishche Lyochikov et Voyenno Vozdushniye Sily) Statut professionnel: Pilote pour le compte du -
Kindergarten Space Inquiry
Kindergarten Space Inquiry Wonder, Explore, Play, Investigate, Create, Represent, & Reflect Learning Through Play “Let’s pretend we are lost in space!” exclaimed an excited Kindergartener to a classmate. “Okay! I am going to be Chris Hadfield.” This was only one of the conversations overheard at the dramatic play space centre during our exciting space inquiry. Play allows children to imagine and act out scenarios, make sense of their world and practice skills and knowledge they have learned. They are also developing their language and social skills. Inquiry in Kindergarten Our Kindergarten program embraces inquiry based learning. Instead of set themes, learning is based on topics of student driven interests. Although this means planning on the go for teachers and very often learning alongside their students, the experience is both engaging, motivating and rewarding. During inquiry a teacher’s job is observing her students, creating invitations for learning based on observations of students’ interests, building student capacity for asking questions and formulating their “I wonder statements”, sustaining the inquiry through guidance of knowledge acquisition and perhaps introducing or assisting in the creation of engaging props for play. The teacher also matches up curricular outcomes, provides students with opportunities to represent their learning in various ways and aides in the reflection process. Inquiry is... “A way of learning that requires active engagement. The learner identifies what he already knows, asks intriguing questions about what he does not know, investigates the answers, constructs new understandings, and shares those understandings with others. Inquiry involves reading, writing, speaking and listening to learn. The entire process is permeated with reflection and critical thinking. -
Unit 5 Space Exploration
TOPIC 8 People in Space There are many reasons why all types of technology are developed. In Unit 5, you’ve seen that some technology is developed out of curiosity. Galileo built his telescope because he was curious about the stars and planets. You’ve also learned that some technologies are built to help countries fight an enemy in war. The German V-2 rocket is one example of this. You may have learned in social stud- ies class about the cold war between the United States and the for- mer Soviet Union. There was no fighting with guns or bombs. However, these countries deeply mistrusted each other and became very competitive. They tried to outdo and intimidate each other. This competition thrust these countries into a space race, which was a race to be the first to put satellites and humans into space. Figure 5.57 Space shuttle Atlantis Topic 8 looks at how the desire to go into space drove people to blasts off in 1997 on its way to dock produce technologies that could make space travel a reality. with the Soviet space station Mir. Breaking Free of Earth’s Gravity Although space is only a hundred or so kilometres “up there,” it takes a huge amount of energy to go up and stay up there. The problem is gravity. Imagine throwing a ball as high as you can. Now imagine how hard it would be to throw the ball twice as high or to throw a ball twice as heavy. Gravity always pulls the ball back to Earth. -
NASA's Analog Missions
Executive Summary HMP Today NASA pursues technical innovations and scientific discoveries to advance human exploration of space. PLRP To prepare for these complex missions, a vast amount of planning, testing, and technology development must be DRATS accomplished. Yet, forecasting how that planning will translate into everyday operations in space is difficult while NEEMO ISRU still on Earth. To help prepare for the real-life challenges of space exploration, NASA relies on Earth-based missions that are similar, or analogous, to space. These are called analog missions—field activities set in remote locations with extreme characteristics that resemble the challenges of a space mission. NASA conducts these missions in extreme environments around the globe to test technologies and systems and to help guide the future direction of human exploration of the solar system. This report profiles NASA’s active analog missions, with highlights and successes Habitat from the last few years: Desert Research and Technology Studies (Desert RATS) ........................................................................................... Page 6 This mission tests roving and extravehicular activity (EVA) operations in an environment that, like the Moon and Mars, features extreme temperatures and difficult terrain. The Desert RATS program conducts an annual three-week exploration mission at Black Point Lava Flow, Arizona, investigating the most effective combination of rovers, habitats, and robotic systems; optimum crew size; effects of communication delays; effectiveness of autonomous operations; and how to improve science return for exploration missions. NASA Extreme Environment Mission Operations (NEEMO) ....................................................................................... Page 18 The NEEMO analog mission uses the world’s only operating undersea laboratory, Aquarius, which is located 62 feet underwater off Key Largo Florida, to mimic the isolation, constrained habitats, harsh environments, and reduced gravity that challenge space exploration missions. -
International Space Station Facilities Research in Space 2017 and Beyond Table of Contents
National Aeronautics and Space Administration International Space Station Facilities Research in Space 2017 and Beyond Table of Contents Welcome to the International Space Station 1 Program Managers 2 Program Scientists 3 Research Goals of Many Nations 4 An Orbiting Laboratory Complex 5 Knowledge and Benefits for All Humankind 6 Highlights from International Space Station 7 Benefits for Humanity, 2nd Edition What is an ISS Facility? 9 ISS Research History and Status 10 ISS Topology 11 Multipurpose Laboratory Facilities 21 Internal Multipurpose Facilities 23 External Multipurpose Facilities 37 Biological Research 47 Human Physiology and Adaptation Research 65 Physical Science Research 73 Earth and Space Science Research 87 Technology Demonstration Research 95 The ISS Facility Brochure is published by the NASA ISS Program Science Office. Acronyms 100 Executive Editor: Joseph S. Neigut Associate Editor: Judy M. Tate-Brown Index 104 Designer: Cynthia L. Bush NP-2017-04-014-A-JSC Welcome to the International Space Station The International Space Station (ISS) is an unprecedented human achievement from conception to construction, to operation and long-term utilization of a research platform on the frontier of space. Fully assembled and continuously inhabited by all space agency partners, this orbiting laboratory provides a unique environment in which to conduct multidisciplinary research and technology development that drives space exploration, basic discovery and Earth benefits. The ISS is uniquely capable of unraveling the mysteries of our universe— from the evolution of our planet and life on Earth to technology advancements and understanding the effects of spaceflight on the human body. This outpost also serves to facilitate human exploration beyond low-Earth orbit to other destinations in our solar system through continued habitation and experience. -
STS-135: the Final Mission Dedicated to the Courageous Men and Women Who Have Devoted Their Lives to the Space Shuttle Program and the Pursuit of Space Exploration
National Aeronautics and Space Administration STS-135: The Final Mission Dedicated to the courageous men and women who have devoted their lives to the Space Shuttle Program and the pursuit of space exploration PRESS KIT/JULY 2011 www.nasa.gov 2 011 2009 2008 2007 2003 2002 2001 1999 1998 1996 1994 1992 1991 1990 1989 STS-1: The First Mission 1985 1981 CONTENTS Section Page SPACE SHUTTLE HISTORY ...................................................................................................... 1 INTRODUCTION ................................................................................................................................... 1 SPACE SHUTTLE CONCEPT AND DEVELOPMENT ................................................................................... 2 THE SPACE SHUTTLE ERA BEGINS ....................................................................................................... 7 NASA REBOUNDS INTO SPACE ............................................................................................................ 14 FROM MIR TO THE INTERNATIONAL SPACE STATION .......................................................................... 20 STATION ASSEMBLY COMPLETED AFTER COLUMBIA ........................................................................... 25 MISSION CONTROL ROSES EXPRESS THANKS, SUPPORT .................................................................... 30 SPACE SHUTTLE PROGRAM’S KEY STATISTICS (THRU STS-134) ........................................................ 32 THE ORBITER FLEET ............................................................................................................................ -
EXPEDITION 35 Will Become the First Canadian Commander of the International Space Station
National Aeronautics and Space Administration International Space Station MISSION SUMMARY begins March 15 and ends May 14. Chris Hadfield EXPEDITION 35 will become the first Canadian commander of the International Space Station. The next expedition aboard the orbiting laboratory will be exciting, as astronauts work with new experiments, including the Japan Aerospace Exploration Agency’s (JAXA) Cell Mechanosensing and the Canadian Space Agency’s Microflow experiment, the first miniaturized blood-cell counter in microgravity. THE CREW: Soyuz TMA-07M Launch: Dec. 23, 2012 Landing: May 14, 2013 Soyuz TMA-08M Launch: March 28, 2013 Landing: Sept. 11, 2013 Chris Hadfield – Commander (CSA) Pavel Vinogradov – Flight Engineer (Roscosmos) (PA-vel VIN-o-grad-ov) • Born: Sarnia, Ontario, Canada, raised in Milton, • Born: Magadan, Russia Ontario, Canada • Interests: Sports, aviation and cosmonautics history • Interests: Skiing, playing guitar, singing, running and and astronomy playing volleyball • Spaceflights: Mir-24, Exp. 13 & Exp. 35/36 • Spaceflights: STS-74, STS-100, Exp. 34/35 • Twitter: @Cmdr_Hadfield Roman Romanenko – Flight Engineer (Roscosmos) Aleksandr Misurkin – Flight Engineer (Roscosmos) (RO-man Ro-man-yenk-o) (AL-ek-san-der MI-sur-kin) • Born: Schelkovo, Moscow Region, Russia • Born: Yershichi, Smolensk Region, Russia • Interests: Underwater hunting and tennis • Interests: Badminton, basketball and downhill skiing • Spaceflights: Exps. 20/21 and 34/35 • Spaceflights: Exp. 35/36 will be his first mission Tom Marshburn – Flight Engineer (NASA) Chris Cassidy – Flight Engineer (NASA) • Born: Statesville, N.C. • Born: Salem, Mass., but considers York, Maine, • Interests: Swimming, scuba diving and snowboarding to be his hometown • Spaceflights: STS-127, Exp. 34/35 • STS-127 and Exp. -
A-Cr-Ccp-803/Pf-001 15-1-1 Royal Canadian Air Cadets
A-CR-CCP-803/PF-001 ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL THREE INSTRUCTIONAL GUIDE SECTION 1 EO M340.01 – IDENTIFY CANADIAN ASTRONAUTS Total Time: 30 min PREPARATION PRE-LESSON INSTRUCTIONS Resources needed for the delivery of this lesson are listed in the lesson specification located in A-CR-CCP- 803/PG-001, Chapter 4. Specific uses for said resources are identified throughout the instructional guide within the TP for which they are required. Review the lesson content and become familiar with the material prior to delivering the lesson. Choose two astronauts to be the focus of this lesson. Retrieve current information about the chosen astronauts from the annexes and update with information from the reference. Create a slide of each astronaut’s photograph. PRE-LESSON ASSIGNMENT N/A. APPROACH An interactive lecture was chosen for this lesson to orient the cadets to Canadian astronauts, to generate interest in Canada’s space program, and to emphasize the teaching points. INTRODUCTION REVIEW N/A. OBJECTIVES By the end of this lesson the cadet shall have identified Canadian astronauts. IMPORTANCE It is important for cadets to identify Canadian astronauts so that they can become familiar with the Canadian space program. The hard work that astronauts perform will illustrate the Air Force motto: Per Ardua ad Astra, as well as the rewards that can be achieved by men and women who accept the challenge of the stars. 15-1-1 A-CR-CCP-803/PF-001 Teaching Point 1 Identify Canadian Astronauts Time: 10 min Method: Interactive Lecture Training of Canada’s astronauts began in 1983 and Canada’s first astronaut, Marc Garneau, visited space in October 1984, when, among many other mission accomplishments, the Canada Experiment (CANEX) payload performed important experiments.