NASA's Analog Missions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New and Different to Come Your Way with Regard to Our Upcoming 2019 Sea Technology Buyers Guide/Directory
WATCH FOR SOMETHING NEW AND DIFFERENT TO COME YOUR WAY WITH REGARD TO OUR UPCOMING 2019 SEA TECHNOLOGY BUYERS GUIDE/DIRECTORY PROCEED TO MAGAZINE from Surface to Seabed Position / Heading Weather Monitoring Electromagnetic / Smart™ Depth Sensor Ultrasonic Speed Acoustic Communications (ACOMMs) ADCP / DVL Acoustic Communications (ACOMMs) Altimeter Side Scan Forward-looking Sonar Multibeam Sonar Collecting and connecting from surface to seafloor, AIRMAR and MSI push the boundaries of ultrasonic technology to deliver multi-sensor and array solutions that ensure the highest level of data integrity. Consult with our engineering teams to source or design the perfect combination of sensors to achieve your mission’s goals. AIRMAR.COM MSITRANSDUCERS.COM 2 ST | June 2018 www.sea-technology.com High Performance Cable Handling Systems RESEARCH INSTITUTIONS • MILITARY • GOVERNMENT AGENCIES # Custom and Standard Configurations # Mil-Spec, ABS, DNV and 46CFR Certifications # Easy to Operate and Maintain InterOcean Systems has been supplying specialized winches and cable handling systems for over 45 years. Let our experienced application engineers assist you in reviewing and developing performance specifications for your specialized application. Contact us to discuss your oceanographic winch and cable handling system needs! InterOcean Systems, LLC Tel. (858) 565-8400 • Fax (858) 268-9695 www.interoceansystems.com An affiliate of Delmar Systems, Inc. ANY APPLICATION • ANY LOAD • RUGGED AND RELIABLE www.sea-technology.com June 2018 | ST 3 The SeaBat T-series Modular, compact multibeam sonar family that grows with your business The unique modular design concept of the SeaBat T-series allows you to configure exactly the sonar survey system for the job at hand. -
"Aquarius" Undersea Habitat As an Analog for Long- Duration Space Flight
https://ntrs.nasa.gov/search.jsp?R=20110011365 2019-08-30T15:38:42+00:00Z Source of Acquisiti on NASA Jolmson Space Center The NEEMO Project: A Report on how NASA Utilizes the "Aquarius" Undersea Habitat as an Analog for Long- Duration Space Flight. Bill ToddlUnited Space Alliance Marc Reagan/NASA NEEMO Project Leads Spaceflight Training, NASAJJSC October, 2003 Abstract NEEMO is the NASA Extreme Environment Mission Operations, a cooperative project between NASA and the National Oceanic and Atmospheric Administration (NOAA). NEEMO was created and is managed by the Mission Operations Directorate at the Johnson Space Center in Houston, Texas. On the NOAA side, the National Undersea Research Center (NURC) in Key Largo, FL, with the help of the University of North Carolina at Wilmington, manages and operates the Aquarius Program. NEEMO was developed by astronaut training specialists to utilize an undersea research habitat as a multi-objective mission analog for long-duration space flight. Each mission was designed to expose astronauts to extreme environments for training purposes and to research crew behavior, habitability, and space analog life sciences. All of this was done much in the model of a space mission utilizing specific crew procedures, mission rules and timelines. Objectives of the missions were very diverse and contained many of the typical space mission type activities such as EV As (also known as extra vehicular activities), in-habitat science and research, and educational, public outreach, and media events. Five missions, dubbed NEEMO 1-5, were conducted between October 2001 and July 2003, the longest of which (NEEMO 5) lasted 14 days. -
2013 Annual Report
2012-13 Annual Accountability Report FLORIDA INTERNATIONAL UNIVERSITY STATE UNIVERSITY SYSTEM of FLORIDA Board of Governors Annual Accountability Report FLORIDA INTERNATIONAL UNIVERSITY 2012-2013 TABLE OF CONTENTS EXECUTIVE SUMMARY DASHBOARD p. 2 KEY ACHIEVEMENTS p. 5 NARRATIVE p. 6 DATA TABLES SECTION 1. FINANCIAL RESOURCES p. 16 SECTION 2. PERSONNEL p. 20 SECTION 3. ENROLLMENT p. 21 SECTION 4. UNDERGRADUATE EDUCATION p. 23 SECTION 5. GRADUATE EDUCATION p. 32 SECTION 6. RESEARCH & ECONOMIC DEVELOPMENT p. 35 1 Annual Accountability Report FLORIDA INTERNATIONAL UNIVERSITY 2012-2013 Dashboard Headcount Fall % 2007-2012 Degree Programs Offered 2012 Carnegie Classifications Enrollments 2012 Total % Change TOTAL 50,394 100% 31% TOTAL (as of Spring 2013) 178 Research Universities Basic: White 6,259 12% -5% Baccalaureate 63 (high research activity) Hispanic 31,037 62% 36% Master’s 81 Undergraduate Professions plus arts & Black 6,639 13% 37% Research& Specialist’s Doctorate 30 Instructional Program: sciences, high graduate Doctorate Other 6,459 13% 50% Professional Doctorate 4 Graduate Comprehensive doctoral Full-Time 30,094 60% 31% Faculty Full- Part- Instructional Program: (no medical/veterinary) Part-Time 20,300 40% 30% (Fall 2012) Time Time Large four-year, primarily Size and Setting: Undergraduate 36,217 72% 22% TOTAL 1,116 34 nonresidential Graduate 8,414 17% 35% Tenure & Ten. Track 687 6 Community Curricular Engagement and T. Track Unclassified 5,763 11% 114% Non-Tenured Faculty 429 28 Engagement: Outreach and Partnerships DEGREE PRODUCTIVITY -
Aquarius Fact Sheet
Fact Sheet: 2019 Designer: Perry Submarine Builders (Florida) Construction: Victoria Machine Works (Texas); start: 1986 | complete: 1987 Estimated construction cost: $5.5M Operational Timeline: St. Croix Deployment: Deployment in Salt River Canyon, St. Croix: 1987 Owner: NOAA Operator: Farleigh Dickenson University Interim Period: Recovered: 1990 by the University of North Carolina Wilmington Refurbished: 1990-1993 at North Carolina State Ports, Wilmington, NC Owner: NOAA Operator: University of North Carolina Wilmington Florida Keys Deployment: Initial deployment on Conch Reef, Florida Keys: 1993 (baseplate deployed 1992) Recovered for refurbishment: 1996-1998 - Harbor Branch Oceanographic Institution, Ft. Pierce, FL Redeployment on Conch Reef, Florida Keys: 1998 – present Owner: NOAA: 1986-2014; Florida International University: 2014 – present Operator: FDU: 1987-1989; UNCW: 1990-2012; Florida International University: 2013 - present Aquarius Siting: Conch Reef, Florida Keys (Florida Keys National Marine Sanctuary): Distance From Islamorada shore base: 15.4 km (8.5 nm) Distance offshore: 9 km (5.4 nm) Hatch depth/storage depth: 14 m (46 fsw) 35 psi Depth of bottom directly below Aquarius: 18 m (60 fsw) (updated: 09.15.19) Habitat Specifications: Aquarius weight: 82-ton double-lock pressure vessel Baseplate weight: 120 tons Dimensions: 14-meters long by 3-meters in diameter (46 ft x 10 ft) Crew: 4 scientists and 2 technicians Amenities: kitchen facilities that include a microwave, instant hot water dispenser, refrigerator, sink, dining -
Fantasy Or Fiction , Volumesociety
or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] ofor Th e The to: [email protected] Oceanography approval Oceanography correspondence all portionthe Send Society. ofwith any permitted articleonly photocopy by Society, is of machine, reposting, this means or collective or other redistirbution article has This been published in SPECIAL IssUE FEATURE Oceanography Fantasy or Fiction journal of The 21, NumberOceanography 3, a quarterly Society. , Volume Waking Up to the Public’s Lack of Understanding BY ELLEN PRAGER C opyright 2008 by The 2008 by opyright Oceanography Society. A ll rights reserved. P ermission is granted to copy this article for use in teaching and research. article use for research. and this copy in teaching to granted is ermission ONCE UPon A TIME, in a land ignorance, and even worse, indifference, all but a few, including the educator faraway, there was a society in which about the environment and, specifically, in the bunch, explained or agreed that P people understood and were excited the ocean. They were a diverse group of global warming is due to sun shining O Box 1931, about science, especially ocean science. individuals in terms of ethnicity, afflu- through the ozone hole. “Nooooooo!” R I first dreamed of this place a few years ence, and education; they were brought That’s me knocking my head on the wall ockville, R epublication, systemmatic reproduction, reproduction, systemmatic epublication, ago as I sat behind a wall of one-way together by an ocean-related industry to behind the glass. -
NASA Extreme Environment Mission Operations Project (NEEMO) 15
National Aeronautics and Space Administration NASA Extreme Environment Mission Operations Project (NEEMO) 15 facts XV NASA possible t-shirt colors Space exploration presents many unique aquanauts, live in the world’s only undersea challenges to humans. In order to prepare laboratory, the Aquarius, located 3.5 miles astronauts for these extreme environments off the coast of Key Largo, Fla. in space, NASA engineers and scientists use comparable environments on Earth. Most underwater activities are One of the most extreme environments is accomplished by traditional scuba diving, the ocean. Not only is the ocean a harsh but divers are limited to specific amounts of and unpredictable environment, but it has time because of the risk of decompression many parallels to the challenges of living sickness (often called the “bends”). Based and working in space – particularly in on the depth and the amount of time spent destinations with little or no gravity, such as underwater, inert gases such as nitrogen asteroids. will build up in the human body. If a diver ascends out of the water too quickly, the The NASA Extreme Environment Mission gases that were absorbed can create Operations project, known as NEEMO, bubbles within the diver’s body as the sends groups of astronauts, engineers, surrounding pressure reduces. doctors and professional divers to live in an underwater habitat for up to three weeks A technique known as saturation diving at a time. These crew members, called allows people to live and work underwater for days or weeks at a time. After twenty four hours Station, which has served as the living quarters for at any underwater depth, the human body becomes Expedition crew members. -
Aquarius Reef Base • Study Guide
Aquarius Reef Base • Study Guide In this exciting sneak preview of season 4, Jonathan visits Aquarius Reef Base—the world’s only undersea lab where scientists live in saturation for days or weeks at a time, studying the ocean. It’s an amazing combination of science fiction and undersea adventure! Objectives Discussion for after watching the program 1. Introduces viewers to issues regarding gas uptake and decompression in diving. 1. What two factors limit scuba divers in how long they can stay underwater before 2. Demonstrates how research can be surfacing? accomplished “in saturation.” 2. How does Aquarius Reef Base change the need for divers to limit their dive time? Questions for before watching the program 3. What are some technical difficulties that were overcome to allow divers to live in 1. If you hold a glass upside-down and then aquarius? submerge it, does water fill the glass? Why or why not? 4. What are some ways in which the higher ambient pressure inside Aquarius affects 2. What would happen if you then took that people? glass down to 33 feet of seawater? (Internet research: what is the significance of 33 feet 5. Even though we can’t metabolize of seawater?) nitrogen, why does it play a role in diving physiology? 3. If you took an empty glass down to 33 feet of seawater, flipped it upside down and filled 6. What is meant by the term “saturation it with air, what is the pressure of the air diving?” inside? 7. Why doesn’t water come inside Aquarius 4. -
Human Spaceflight in Social Media: Promoting Space Exploration Through Twitter
Human Spaceflight in Social Media: Promoting Space Exploration Through Twitter Pierre J. Bertrand,1 Savannah L. Niles,2 and Dava J. Newman1,3 turn back now would be to deny our history, our capabilities,’’ said James Michener.1 The aerospace industry has successfully 1 Man-Vehicle Laboratory, Department of Aeronautics and Astro- commercialized Earth applications for space technologies, but nautics; 2Media Lab, Department of Media Arts and Sciences; and 3 human space exploration seems to lack support from both fi- Department of Engineering Systems, Massachusetts Institute of nancial and human public interest perspectives. Space agencies Technology, Cambridge, Massachusetts. no longer enjoy the political support and public enthusiasm that historically drove the human spaceflight programs. If one uses ABSTRACT constant year dollars, the $16B National Aeronautics and While space-based technologies for Earth applications are flourish- Space Administration (NASA) budget dedicated for human ing, space exploration activities suffer from a lack of public aware- spaceflight in the Apollo era has fallen to $7.9B in 2014, of ness as well as decreasing budgets. However, space exploration which 41% is dedicated to operations covering the Internati- benefits are numerous and include significant science, technological onal Space Station (ISS), the Space Launch System (SLS) and development, socioeconomic benefits, education, and leadership Orion, and commercial crew programs.2 The European Space contributions. Recent robotic exploration missions have -
Aerospace Engineering2
Aerospace Engineering BY TEAM 39402A Introduction to Aerospace Engineering For our career path, we chose aerospace engineer. Aerospace engineering consists of aircraft, spacecraft and satellite design and construction. Aerospace engineers also test prototypes. A prototype is a new invention that needs to be tested. We chose this career because we love space and adventure! NASA The main United States aerospace engineering company is the National Aeronautics and Space Administration, also known as NASA. This agency was created in 1958. NASA was the first space agency to get a human on the moon. Sent by NASA, Neil Armstrong, an astronaut and aeronautical engineer, was the first human to step on the moon in 1969. Now NASA is working on getting people back to the moon and going to Mars. Aircraft Aerospace engineering includes aircraft. There is one main difference between spacecraft and aircraft. Spacecraft are meant to break earth’s gravitational pull, where as aircraft are meant to stay in earth’s gravity. Aircraft also carry cargo and humans. The first airplane was created on December 17, 1903 by the Wright Brothers. Spacecraft Spacecraft are another part of aerospace engineering. There have been many space shuttles launched into orbit. Throughout time, rockets and space shuttles have evolved. Aerospace engineers have made rockets and shuttles much safer. Rockets and shuttles not only transport humans, but also cargo and rovers. Satellites The first satellite was developed by Russia and was named Sputnik1on October 4, 1957. Sputnik travelled at a speed of 18,000 miles per hour. It went around earth every 93 minutes. -
Canada's Aviation Hall of Fame
Volume 31, No. 2 THE Spring 2013 Canada’s Aviation Hall of Fame Canada’s Aviation Hall of Fame Panthéon de l’Aviation du Canada Dodds Finland Curtis Fraser Christensen Greenaway Burke Hitchins Boffa Floyd Fullerton Davoud Dowling Bazalgette Clarke Grossmith Capreol Hobbs Baker, A.W. Boggs Garneau Forester Deluce Collishaw Beaudoin Hadfield Agar Dunlap Carr Hollick-Kenyon Baker, R.F. Bradford Garratt Fowler, R. Bell Halton Archibald Hopson Baker, R.J. Brintnell Gilbert Fowler, W. Berry Hamilton Armstrong Balchen Hornell Bristol Dyment Godfrey Cavadias Fox Beurling Hartman Audette Dickins Baldwin Cooke Hotson Brown Graham Edwards Caywood Foy Birchall Hayter Austin Dilworth Bannock Cooper-Slipper Howe Buller Grandy Fallow Franks Chamberlin Bishop Heaslip Bjornson Dobbin Barker Crichton Hutt Burbidge Gray Fauquier Fraser-Harris Blakey Chmela Hiscocks Bain 1 Canada’s Aviation Hall of Fame Panthéon de l’Aviation du Canada CONTACT INFORMATION: OFFICE HOURS: STAFF: Tuesday - Friday: 9 am - 4:30 pm Executive Director - Rosella Bjornson Canada’s Aviation Hall of Fame Closed Mondays Administrator - Dawn Lindgren * NEW - PO Box 6090 Wetaskiwin AB Acting Curator - Robert Porter * NEW - T9A 2E8 CAHF DISPLAYS (HANGAR) HOURS: Phone: 780.361.1351 Tuesday to Sunday: 10 am - 5 pm Fax: 780.361.1239 Closed Mondays BOARD OF DIRECTORS: Website: www.cahf.ca Winter Hours: 1 pm - 4 pm Email: [email protected] Please call to confirm opening times. Tom Appleton, ON, Chairman James Morrison, ON, Secretary, Treasurer Barry Marsden, BC, Vice-Chairman Denis Chagnon, QC -
Impacts of Sharks on Coral Reef Ecosystems } Do Healthy Reefs Need
Impacts of sharks on coral reef ecosystems } Do healthy reefs need sharks? This is one of the most misunderstood questions in coral reef ecology. Shark populations are declining due to habitat loss, overfishing, and other stressors. It is important to understand how these losses could affect the rest of the ecosystem. Understanding the predator-prey interactions between herbivores and sharks is crucial for coral reef conservation. As top predators, sharks not only eat other fish, but they can also affect their behavior. In the presence of sharks, herbivorous fish may be concentrating their grazing to small, sheltered areas. Because these fish have to eat where they are safe from predators, there is more space to allow young coral to settle, grow, and thrive. In the absence of sharks, herbivorous fish may spread out their grazing randomly across large patches of algae, leaving few well-defined or cleared areas for corals to settle. Fortunately, Florida International University has just the place to explore these dynamic questions, a lab under the sea – Aquarius Reef Base. From September 7th to 14th, a mission at Aquarius Reef Base will combine sonar with baited remote underwater video surveys (BRUVs), an experiment the first of its kind to bring these technologies together. Researchers on this mission strive to understand the direct impact of shark presence on herbivorous fish behavior as well as the indirect impact of sharks on algae communities. Combining these technologies: • Provides a new way to study reef fish behavior • Carves the path forward for future ecological research • Offers insights that may lead to critical marine conservation outcomes Mission Overview: Dr. -
'The Last of the Earth's Frontiers': Sealab, the Aquanaut, and the US
‘The Last of the earth’s frontiers’: Sealab, the Aquanaut, and the US Navy’s battle against the sub-marine Rachael Squire Department of Geography Royal Holloway, University of London Submitted in accordance with the requirements for the degree of PhD, University of London, 2017 Declaration of Authorship I, Rachael Squire, hereby declare that this thesis and the work presented in it is entirely my own. Where I have consulted the work of others, this is always clearly stated. Signed: ___Rachael Squire_______ Date: __________9.5.17________ 2 Contents Declaration…………………………………………………………………………………………………………. 2 Abstract……………………………………………………………………………………………………………… 5 Acknowledgements …………………………………………………………………………………………… 6 List of figures……………………………………………………………………………………………………… 8 List of abbreviations…………………………………………………………………………………………… 12 Preface: Charting a course: From the Bay of Gibraltar to La Jolla Submarine Canyon……………………………………………………………………………………………………………… 13 The Sealab Prayer………………………………………………………………………………………………. 18 Chapter 1: Introducing Sealab …………………………………………………………………………… 19 1.0 Introduction………………………………………………………………………………….... 20 1.1 Empirical and conceptual opportunities ……………………....................... 24 1.2 Thesis overview………………………………………………………………………………. 30 1.3 People and projects: a glossary of the key actors in Sealab……………… 33 Chapter 2: Geography in and on the sea: towards an elemental geopolitics of the sub-marine …………………………………………………………………………………………………. 39 2.0 Introduction……………………………………………………………………………………. 40 2.1 The sea in geography……………………………………………………………………….